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With the advancement of Semantic Technologies, large geospatial data sources have been increasingly
published as Linked data on the Web. The LinkedGeoData project is one of the most prominent such
projects to create a large knowledge graph from OpenStreetMap (OSM) with global coverage and
interlinking of other data sources. In this paper, we report on the ongoing effort of exposing the
relational database in LinkedGeoData as a SPARQL endpoint using Virtual Knowledge Graph (VKG)
technology. Specifically, we present two realizations of VKGs, using the two systems Sparqlify and
Ontop. In order to improve compliance with the OGC GeoSPARQL standard, we have implemented
GeoSPARQL support in Ontop v4. Moreover, we have evaluated the VKG-powered LinkedGeoData in
the test areas of Italy and Germany. Our experiments demonstrate that such system supports complex
GeoSPARQL queries, which confirms that query answering in the VKG approach is efficient.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With the advancement of Semantic Technologies and emerg-
ing standards such as GeoSPARQL, large amounts of geospatial
data have been increasingly published as Linked Data on the
Web. Such projects normally convert existing data sources to
RDF graphs using a materialization-based approach [1]. One of
the most notable efforts is the LinkedGeoData project,! which
derives a large and rich spatial semantic data source from Open-
StreetMap (OSM). The OSM project? is creating a free editable
map of the world. Since its inception in 2004, it has grown to
cover both points- and regions-of-interests comprising 6.5 billion
points on the earth® and has become the most prominent ex-
ample of a Volunteered Geographic Information (VGI) ecosystem
with contributions from around seven million users.

The LinkedGeoData project complements OSM by converting
it to an RDF knowledge graph and linking it with other data
sources, e.g., DBPedia. LinkedGeoData began in 2009 [2] and
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Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy.
E-mail addresses: ding@inf.unibz.it (L. Ding), xiao@inf.unibz.it (G. Xiao),
albulen.pano@ontopic.biz (A. Pano), cstadler@informatik.uni-leipzig.de
(C. Stadler), calvanese@inf.unibz.it (D. Calvanese).

1 http://linkedgeodata.org/
2 https://[www.openstreetmap.org
3 https://wiki.openstreetmap.org/wiki/Stats as of 23 November 2020.
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further broadened in 2012 [3]. Nowadays, LinkedGeoData has
become a valuable resource for spatial Semantic Web research. To
name a few, it has been used in the research fields of string-based
entity linking [4,5], spatial entity linking [6], entity alignment [7],
and topological relation discovery [8]. Moreover, the SPARQL
query logs over LinkedGeoData, as a separate resource, have been
used for various analysis tasks [9].

In the very beginning, the LinkedGeoData project was based
on an extract-transform-load (ETL) process paradigm using a
set of mapping rules, as described in [3]. However, the most
notable drawback of ETL over ~7.5B OSM entities is the time
it takes to reprocess all data after any change in the mapping.
As an alternative approach, the Virtual Knowledge Graph (VKG)
paradigm [10], also called Ontology-based Data Access (OBDA) [11]
in the literature, can virtualize underlying data sources, typically
relational tables, through ontology and mapping, as a knowledge
graph. This virtual knowledge graph can be queried using the
SPARQL language.

Indeed, shortly after the publication of the main reference of
LinkedGeoData [3], the project shifted behind the scenes to a
VKG approach using Sparqlify,* as first mentioned in [12]. Spar-
qlify makes it possible to create RDF dumps, generate the ontol-
ogy, and power the Linked Data interface using SPARQL queries
against the VKG. However, due to the functional and performance

4 https://github.com/SmartDataAnalytics/Sparqlify
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limitations of Sparqlify, the VKG is also materialized and served
via a Virtuoso Open Source® triple store. A full dump generated
in 2013% amounted to ~27B triples in 121GB of bz2 compressed
data. As this is unwieldy even today, a materialization of the
complete VKG is typically not feasible such that exporting only
the data related to certain classes of interest is more useful.

The use of Sparqlify in the LinkedGeoData project confirmed
that geospatial functions could be robustly defined and executed
in seconds using the VKG approach. However, the LinkedGeo-
Data project requires an open source VKG engine that is (1)
compliant with all the relevant standards (namely OWL, R2RML,
SPARQL, and GeoSPARQL), and (2) whose query execution ap-
proach scales to the number of involved mappings and the size
of OSM data, which contains billions of spatial entities. Sparqlify
partially supports the R2RML and SPARQL standards, but not
OWL or GeoSPARQL, and the performance of query answering is
suboptimal. Other open source VKG engines, e.g., D2RQ [13] and
Morph [14], are in a similar situation. The most promising one is
Ontop-spatial [15,16], which is derived from Ontop v1.18 [17] and
supports a large fragment of GeoSPARQL. However, since Ontop-
spatial is based on an old version of Ontop, it cannot take advan-
tage of the features provided by the latest versions (v4.x) [18],
notably better compliance with relevant standards (e.g., aggre-
gation functions in SPARQL), improved performance, and new
tooling (e.g., built-in SPARQL endpoint and Docker infrastructure).

In order to build a suitable VKG engine for LinkedGeoData,
we have reimplemented GeoSPARQL support in Ontop v4.1. This
has significantly improved compliance with the OGC GeoSPARQL
standard. All of the geospatial functions defined in GeoSPARQL
are implemented. In particular, it features improved handling of
units (such as degrees and metres) and different spatial reference
systems (SRIDs). We have tested it over PostgreSQL/PostGIS and
H2/H2GIS, and it should work with all relational database systems
that are compliant with the OGC Implementation Standard Simple
Feature Access [19].

Using Sparqlify and Ontop, we can expose LinkedGeoData as
VKGs through a suitable ontology and mappings over the OSM ta-
bles (and some derived views). This new VKG-based architecture
is using the container technology Docker, which encapsulates all
the required software. Now users can easily deploy an instance
of LinkedGeoData and customize the area and the mappings ac-
cording to their needs. We have deployed an instance (currently
with only data in the country of Monaco for demonstration) of
the new version of LinkedGeoData online’ using both Ontop and
Sparqlify.

We have conducted an evaluation of LinkedGeoData VKGs
with both Sparqlify and Ontop using the three areas of North-
East Italy, Italy, and Germany. The experiments demonstrate that
these systems support complex GeoSPARQL queries and con-
firm that the VKG approach is efficient in query answering. Fi-
nally, it shows a clear advantage of Ontop over Sparqlify in both
supported GeoSPARQL query features and performance of query
answering.

The remainder of this work is organized as follows: Section 2
reports the limitations and recent developments of the Linked-
GeoData project. Section 3 discusses the implementation of Spar-
qlify and Ontop-spatial for basic geospatial SPARQL functions.
Section 4 presents the new implementation of GeoSPARQL func-
tions in Ontop v4. Section 5 details the setup of LinkedGeoData
VKGs. Section 6 presents evaluations over LinkedGeoData. Finally,
Section 7 discusses future work and concludes the paper.

5 http://vos.openlinksw.com/
6 http://downloads.linkedgeodata.org/full-dumps/
7 https://linkedgeodata.org/monaco/
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2. The LinkedGeoData project

In this section, we present the revised architecture of the
LinkedGeoData (LGD) project based on VKG technology and the
improvements over the prior ETL-based one.

LinkedGeoData is an effort to add a spatial dimension to the
Web of Data. LinkedGeoData uses the information collected by
the OpenStreetMap project and makes it available as an RDF
knowledge base according to the Linked Data principles. As such,
standard compliance w.r.t. data format and access (RDF and
SPARQL) as well as w.r.t. vocabularies (e.g., spatial vocabular-
ies) are an essential part of the project. All components of the
project are available as Open Source software and there now
exists a dockerized setup that enables custom deployments of
LinkedGeoData’s services with the desired subsets of OSM data.

The core of the project is the “RDFization” of OSM data. In the
very beginning, this was based on an ETL process. However, the
most notable drawback of ETL over roughly 7.5B OSM entities (of
which each is further described using a possibly empty set of tags)
is the time it takes to reprocess all data after any change in the
mapping. Regarding ETL, although Big Data technology brought
significant advancements by distributing workloads over clusters
together with massive parallelization of operations over large sets
of records, it is still rather heavy and not very flexible in handling
the changes of data and mapping rules.

VKG technology enables modified mappings to take effect
instantly w.r.t. SPARQL query execution. This is particularly useful
for checking whether a change in the mapping has the desired
effect and for running “unit tests” over the data with frameworks
such as RDFUnit [20] in order to, e.g., detect regressions.

The ETL-based version of LinkedGeoData required a custom
(Java) software framework to ingest OSM data, process it into
RDF, and keep a triple store in sync. With the shift to VKG
technology, LinkedGeoData’s core is much more lightweight as
it is mainly formed only by a set of SQL scripts and RDB2RDF
mappings.® LinkedGeoData’s SQL scripts extend the OSM schema
with RDF mapping tables, views and additional database indices
without modifying OSM’s schema on which other tool chains
depend upon. A small set of utility shell scripts, especially the
lgd-createdb command, take care of the setup.

The components of LinkedGeoData’s current architecture are
depicted in Fig. 1 and explained as follows:

o Data Sources. The downloads and changesets of OSM are
the enablers for subsequent data processing and replica-
tion. GeoFabrik® is a well-known service which publishes
pre-partitioned OSM dumps and changesets organized into
hierarchical regions. For example, one path is Europe » Italy
» Nord-Est.

o Replication. Osmosis is a command line Java application for
processing OSM data.'? It features readers for OSM data
from different sources, filters, and converters, as well as
writers for different data sinks such as files and databases.
It also supports all common OSM serialization formats (xml,
pbf, csv). The most relevant feature for LinkedGeoData is
its capability to import and replicate a PostgreSQL/PostGIS
database system with OSM data.

e Physical Storage. The PostGIS database for LinkedGeoData
is extended with mapping tables, views, and functional in-
dexes (a limited form of incremental materialized views), as
detailed in Section 5.

8 We use “RDB2RDF mapping” as a generic term for the W3C standard R2ZRML
(RDB to RDF Mapping Language), and other dialects supported by systems like
Ontop and Sparqlify.

9 https://www.geofabrik.de/

10 https://wiki.openstreetmap.org/wiki/Osmosis
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Fig. 1. LinkedGeoData’s architecture. Boxes with dashed lines indicate dockerized components. Ontop is the novel addition to the project.

e SPARQL Services via Virtualization. Given a set of RDB2RDF
mappings, both Ontop and Sparqlify can expose the same
database as similar VKGs via a SPARQL endpoint. We kept
both systems because they originate from different capabil-
ities of the engines, and because hosting a VKG engine does
not require much resource thanks to the virtual nature of
such systems. Addition of future VKG engines with support
for PostGIS and R2RML to LinkedGeoData’s architecture only
requires to contribute an appropriately configured docker
file.

Auxiliary Geo-Services. Nominatim'! is a search tool over
OSM data that supports geocoding and reverse-geocoding.
Its introduction to LinkedGeoData solves a long standing
issue: Although the Osmosis tool replicates “raw” OSM data,
it does not compute effective geometries. For example, large
line-strings, such as boundaries of countries, are split into
multiple segments, which are subsequently related to each
other using an OSM relation. Interpretation of whether an
OSM relation that forms a closed sequence of ways rep-
resents a line-string or a polygon depends on the tags.

1 https://wiki.openstreetmap.org/wiki/Nominatim

Nominatim supports computation of the effective geome-
tries for many relevant spatial features and also uses PostGIS
as a backend. Effective geometries are stored together with
the OSM entity identifier, which allows for joins with the
tables of OSM. Additional RDB2RDF mappings are employed
to expose these effective polygons. Nominatim also ships
with its own replication tool.

Materialization. Downloadable RDF datasets are produced
from the VKG by means of materializing portions of it us-
ing SPARQL CONSTRUCT queries. In accordance with the
FAIR principles (findability, accessibility, interoperability, and
reuse) [21], the 1gd-dumpdb tool not only exports data
partitions using SPARQL CONSTRUCT queries, but it also
generates a DCAT model that describes the exported RDF
files. On this basis, the data publishing process of a collection
of data partitions (such as by classes, e.g.,, Amenity and
Peak) can be automated. OpenLink’s Virtuoso Open Source
(VOS) RDF store is a high performance native triple store
that is traditionally used to serve the materialized datasets.
Virtuoso’s commercial version won the MOCHA2018 Triple
Store Challenge [22] with VOS also achieving high scores.
VOS 7.2.6 promises improved GeoSPARQL support, however
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at present only a development release!? was published that
has not yet been evaluated for LinkedGeoData. Note, that
the focus of this work is about realizing and evaluating
LinkedGeoData’s virtual knowledge graph with support for
GeoSPARQL queries, rather than evaluating native RDF store
performance.

o SPARQL-based Services. These services can wrap any of
the SPARQL endpoints, especially the VKG-based ones, in
order to deliver data access interfaces that some may con-
sider easier to use than SPARQL. Pubby'? is a very old
yet functional wrapper for publishing data according to the
Linked Data principles.'* The LinkedGeoData REST API is
essentially a set of REST methods backed by canned SPARQL
queries. For example, the /ontology method only executes
a SPARQL CONSTRUCT query that retrieves all triples of
resources typed with owl:Class or rdf :Property.

The LinkedGeoData docker architecture is aimed at making the
setup of all involved services as simple as possible. A “. env” file
contains all relevant options for performing initial data loading
and subsequent replication, and for running the services. The
main options are shown in Listing 1 and comprise the amount
of memory allowed for the database and two URLs that point to
the initial OSM dataset and the subsequent updates.

Listing 1: Excerpt of config options of a LinkedGeoData docker
stack

DB_SHARED_BUFFERS=2GB

DB_WORK_MEM=256MB
OSM_DATA_BASE_URL=http://download.geofabrik.de/<dataset>.osm.pbf
OSM_DATA_SYNC_URL=http://download.geofabrik.de/<dataset>-updates/

The OSM schema is non-typical for a relational database, and
for this reason LinkedGeoData also serves as a test-bed for eval-
uating corner cases of VKG engines. The conventional baseline
approach for mapping relational data to RDF is based on class-
per-table and predicate-per-column mappings. The R2ZRML W3C
recommendation includes a specification of how to perform this
approach in a standard way under the name Direct Mapping.'”
However, in an OSM database nearly all data is represented as
tags that are stored in a generic schema with key-value columns.
As OSM contains billions of spatial entities, a VKG engine’s query
execution approach needs to scale to both the number of in-
volved RDB2RDF mappings and the size of the data. Furthermore,
GeoSPARQL has become the specification for spatial data access
in the Semantic Web. LinkedGeoData’s VKG approach to exposing
OSM data as RDF provides a test-bed for state-of-the-art VKG
engines to demonstrate their advances in GeoSPARQL compliance.
Conversely, VKG engines supporting this standard are a highly
relevant and welcome contribution to the LinkedGeoData project.

3. Basic spatial SPARQL support in VKGs

In this section, we first present the SPARQL-SQL rewriter Spar-
qlify used in LinkedGeoData, and discuss its limitation. Then we
present the basic spatial SPARQL support in Ontop-spatial v1.

3.1. Sparqlify

Sparglify'® is a SPARQL-SQL rewriter that enables the defini-
tion of RDF views on relational databases and querying them with

12 https://sourceforge.net/projects/virtuoso/files/virtuoso/
13 https://github.com/cygri/pubby

14 https://www.w3.org/Designlssues/LinkedData

5 https://www.w3.org/TR/rdb-direct-mapping/

16 http://aksw.org/Projects/Sparqlify.html
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Create View people As
Construct
{ ?s foaf:firstName 7fn }
With
?s = uri(eg:, 7id)
?fn = plainLiteral(?"first name")
From personTable

Fig. 2. Example SML mapping.

SPARQL. The LinkedGeoData project has used Sparqlify to provide
access to virtual triples from the OpenStreetMap database. Spar-
qlify supports two mapping languages, i.e., R2ZRML and its own
Sparqlification Mapping Language (SML), which was developed as
a more human friendly alternative to R2RML [23].

SML is inspired by SQL's CREATE VIEW statement and SPARQL’s
CONSTRUCT query form. Both SPARQL and SQL result sets are
relational in nature,!” however SPARQL mandates “column types”
to be uniformly RDF terms, whereas in SQL different types cannot
be mixed. The construction of RDF terms from column values can
be achieved by externally providing suitable meta data to perform
a mapping. An example of an SML specification is shown in Fig. 2.
The With clause is a set of term constructor expressions, where
the variable on the left hand side of =" is the one being defined,
whereas the ones on the right hand side refer to column names.
Special characters in column names can be handled with the use
of double quotes.

The recent work [24] reports its findings on using Sparqlify to
rewrite SPARQL queries to the SQL dialect of the Apache Sparkl8
framework.

Geospatial functions. In LinkedGeoData, the Virtuoso DBMS in its
Open Source edition (VOS) is traditionally used as the primary
triple store. While recent enterprise versions of Virtuoso feature
support for GeoSPARQL, the Open Source version features only
a limited set of spatial functions that predate GeoSPARQL. Spar-
qlify’s geospatial support is aimed at interoperability with VOS,
which comprises the following functions:

e bif:st_intersects. This function has two different im-
plementations depending on the respective PostGIS SQL
function used: (1) ST_INTERSECT, which checks whether
the geometries intersect; (2) ST_DWITHIN, which checks
whether the geometries are within a specified distance in
kilometres (km) from one-another.

e bif:st_point. This function is derived from the PostGIS
function ST_POINT, and it can retrieve geometry
ST_Point(float x, float y) with the respective lon-
gitude and latitude. An additional 3rd argument can be
provided as an SRID ST_SetSRID(ST_Point(float x,
float y), int srid) to set this point into a specific
spatial reference system.

e bif:st_geomFromPoint. This function is equivalent to
bif:st_point.

e bif:st_geomFromText. This function is derived from the
PostGIS function ST_GeomFromText. Similar to ST_POINT,
through ST_SetSRID a composite function is created
through which an SRID can be set.

17 Even though SPARQL result sets are formally defined a sets of partial
functions from variables to RDF terms, a relation is obtained by treating each
variable mentioned in the domains as a separate column.

18 https://spark.apache.org/
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The distance and intersection functions provide useful func-
tionalities and can be written so as to replicate other functions,
such as geof : sfWithin. However, the lack of OGC GeoSPARQL
compliance and even deviation in the case when
bif:st_intersects acts as ST_DWITHIN, limits the scenar-
ios for which LinkedGeoData can be compared with other VKG
solutions.

Sparqlify uses an XML format to declare the mappings of
SPARQL extension function IRIs to SQL expressions, as shown
below:
<simpleFunctions>

<simpleFunction>
<name>http://www.openlinksw.com/schemas/bif#st_geomFromPoint</name>
<mappings>

<mapping>

<signature>geometry ST_Point(float, float)</signature>

<pattern>ST_SetSRID($name$($1$, $2%), 4326)</pattern>

</mapping>

<mapping>

<signature>geometry ST_Point(float, float, int)</signature>
<pattern>ST_SetSRID($name$($1$, $2$), $3$)</pattern>

</mapping>

</mappings>
</simpleFunction>
</simpleFunctions>

The signature element declares a specific SQL function name
together with the argument and return types. Note that as a
design choice Java names such as float or double were used
for the declarations, however these names are not in the standard
SQL (even though some RDBMSs support them). Internally, these
names are then mapped to the appropriate RDF datatype IRIs and
SQL datatype names. This allows for converting the RDF terms
provided as function arguments to the appropriate SQL types, and
for converting back the SQL function’s return value to an RDF
term. In accordance with the SPARQL 1.0 and 1.1 specifications,
incompatible types result in a type error.

Shortcomings. Although Sparqlify features a configurable and ex-
tensible framework and has proven that VKG technology can be
applied to the OSM database, it does not support GeoSPARQL,
aggregate functions besides COUNT (), or ontological reasoning.
Also, query answering performance can be suboptimal. The main
reason is that when translating a SPARQL query, Sparqlify simply
translates each triple pattern in the input SPARQL query to the
corresponding SQL queries from mappings as is, but does not per-
form further optimizations. This often leads to SQL queries with
many redundant subqueries, which are expensive to evaluate by
current DB engines. As a consequence, the LinkedGeoData project
can be significantly improved by introducing a VKG engine that
mitigates these issues.

3.2. Ontop-spatial v1

Ontop [17,18], initiated at Free University of Bozen-Bolzano, is
a state-of-the-art VKG system. It supports almost all the features
of the relevant W3C standards (R2RML, OWL2 QL, SPARQL 1.1),
and all major relational databases. It also has its own mapping
language. For example, the example SML mapping in Fig. 2 can
be equivalently written in Ontop as:

mappingld people
target eg:{id} foaf:firstName {first name} .
source SELECT * FROM personTable

A spatial extension of Ontop, which we call Ontop-spatial v1,'?
has been developed by National and Kapodistrian University
of Athens as a fork of Ontop v1.18 for supporting geospatial

19 http://ontop-spatial.di.uoa.gr/
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data [16]. Ontop-spatial vl implemented a large fragment of
the GeoSPARQL standard and has been successfully deployed
in a number of use cases in maritime security [25], oil explo-
ration [26], data quality assessment [27], and visual analytics [28].
It has also been used as a main technology in the H2020 projects
Copernicus App Lab [29] and DeepCube.2’

However, since Ontop-spatial v1 is based on Ontop v1.18, it
cannot catch up with the latest Ontop version (v4.x) [18], which
comes with better compliance with relevant standards (e.g., ag-
gregation functions in SPARQL), improved performance, and new
tooling (e.g., built-in SPARQL endpoint and Docker infrastruc-
ture). Also, the simpler internal representation used in Ontop v1
(and also in Ontop-spatial v1) does not allow one to properly
take into account all the aspects of GeoSPARQL with respect to
projection systems, units, and type inference. An adoption of
Ontop-spatial v1 in the LinkedGeoData project would suffer from
the same limitations.

4. Improving GeoSPARQL support in VKGs

In this section, we describe how we improve GeoSPARQL
support in VKGs, which is crucial for the LinkedGeoData project.
Specifically, we first recall in Section 4.1 some GeoSPARQL fea-
tures and their challenges, and then explain in Section 4.2 how
we implement them in Ontop v4. We observe that in the follow-
ing we refer to the following three namespace prefixes: geo,21
geof,”” and uom.”*

4.1. OGC GeoSPARQL and current implementations in VKGs

The OGC GeoSPARQL standard defines a vocabulary for repre-
senting geospatial data in RDF, and an extension to the SPARQL
query language for processing geospatial data [30]. This standard
defines a rich set of geospatial functions, which can be split into
two categories:

e Topological functions, which take two geometries as inputs
and return a boolean value with respect to a certain topo-
logical relation, e.g., geof : sfIntersects. There are three
families of topological relations: Simple Features, Egenhofer,
and Region Connection Calculus (RCC8). Simple Features and
Egenhofer apply to all geometries, including points, lines,
and polygons. In contrast, RCC8 functions only apply to 2-
dimensional geometries such as polygons, but not to lines
or points. The more general ternary geof : relate function
takes one more input for a pattern-matrix, which represents
a Dimensionally Extended 9-Intersection Model (DE-9IM) in-
tersection pattern consisting of T (true) and F (false) values,
and returns true if the spatial relationship between the two
geometries corresponds to the pattern-matrix.

o Non-topological functions, which take a geometry and pos-
sibly some other parameters as inputs and compute some
values (e.g, geof:distance) or geometries (e.g.,
geof :buffer).

A complete list of GeoSPARQL functions is provided in Table 1.

Below, we describe some important aspects of GeoSPARQL,
including measurement units, SRIDs, and Geometry Literal Serializa-
tion. To the best of our knowledge, no existing open source VKG
system is able to support all of them.

20 https://deepcube-h2020.eu/

21 http://www.opengis.net/ont/geosparql#

22 http://www.opengis.net/def/function/geosparql/
23 http://www.opengis.net/def/uom/OGC/1.0/
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Table 1
GeoSPARQL functions.

Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100662

Topological functions. (x) indicates no direct SQL counterpart

Non-topological function

Simple features Egenhofer

geof :sfEquals geof :ehEquals
geof:sfDisjoint geof:ehDisjoint
geof :sfIntersects geof :ehMeet

geof :sfTouches geof :eh0Overlap ()
geof :sfCrosses geof :ehCovers

geof :sfWithin geof :ehCoveredBy (x)
geof :sfContains geof :ehInside (%)

geof :sfOverlaps geof :ehContains (x)

RCC8 geof:distance

geof :rcc8eq geof :buffer

geof :rcc8dc (x) geof : convexHull
)

geof:rcc8ec (x geof :intersection
geof :rcc8po () geof :union

geof :rcc8tppi () geof :difference
geof:rcc8tpp (%) geof :symDifference
geof :rcc8ntpp () geof :envelope

geof :rcc8ntppi () geof :boundary

geof :getSRID

geof:relate

Measurement units. Measurement units are of critical importance
to functions that deal with distance. Specifically, for the func-
tions geof :distance and geof :buffer, the last parameter is
the measurement unit. Currently, three widely used metrics are:
uom:metre, uom:degree, and uom:radian. Standard distance
and buffer functions implemented on popular geospatial RDBMSs,
such as PostGIS and H2GIS, default to degrees. Therefore, special
attention on units needs to be taken when translating GeoSPARQL
functions to SQL functions in VKG systems.

We recall that Ontop-spatial vl and Sparqglify ignore mea-
surement units, which in practice means that they only support
uom:degree.

Spatial reference system identifier and geometry literal serialization.
The spatial reference system identifier (SRID) is the identifier for a
geographic coordinate system. In GeoSPARQL, an SRID is specified
as an IR], e.g.,

e <http://www.opengis.net/def/crs/0GC/1.3/CRS84> de-
notes the WGS 84 geodetic longitude-latitude spatial ref-
erence system. This is the default SRID used in GeoSPARQL
if not specified explicitly.

e <http://www.opengis.net/def/crs/EPSG/0/4326>
denotes the WGS 84 geodetic latitude-longitude spatial
reference system. Note that this spatial reference system
defines a different axis order from the former SRID.

e <http://www.opengis.net/def/crs/EPSG/0/3044> is a
Cartesian 2D coordinate system used in Europe between
6°E and 12°E, with the metre as the unit.

The SRIDs are used for serializing geometry as literals.
GeoSPARQL adopts two serialization types of geometries: Well-
Known Text (WKT) and Geographic Markup Language (GML) as
two RDF datatypes: geo:wktLiteral and geo:gmlLiteral.
For example, the literal below encodes a point geometry in WKT
using the default WGS 84 SRID:

"POINT(-83.38 33.95) ""“geo:wktLiteral

and the one below encodes the same point using EPSG 4326 (note
the order of axes):

"<http://www.opengis.net/def/crs/EPSG/0/4326>
POINT(33.95 -83.38) " "geo:wktLiteral

We recall that Ontop-spatial v1 and Sparqlify do not support
specifying SRIDs in geometry literals.

4.2. Implementation of Ontop-spatial v4

Ontop has been undergoing significant refactoring to be better
compliant with relevant standards [18]. The new internal data
structures in Ontop v4 provide a solid foundation to reimplement
GeoSPARQL support systematically and to address the challenges
mentioned above. To distinguish it from Ontop-spatial v1, in the
following, we call this new implementation Ontop-spatial v4. Be-
low we discuss in detail how to implement GeoSPARQL functions.

4.2.1. GeoSPARQL functions

Recall that, to support GeoSPARQL in VKGs, the SQL coun-
terpart we primarily rely on is the OGC standard Simple Fea-
ture Access Standard [19], which in turn depends on the geospa-
tial SQL functionalities that are standardized in ISO/IEC 13249
SQL/MM [31]. It defines geometries as the main data type on
which spatial operations are applied. The SQL/MM standard uses
the prefix ST_, which stands for spatial and temporal, for all
tables, views, types, methods, and function names.

Many GeoSPARQL functions, e.g., all the Simple Feature func-
tions, have direct SQL correspondences. For example, the
GeoSPARQL function geof:sfDisjoint can be translated to
the standard SQL function ST_DISJOINT. Such functions have
already been implemented in Ontop-spatial v1. Some GeoSPARQL
functions do not have direct SQL counterparts (marked with (x)
in Table 1). These include half of the Egenhofer functions and
most of the RCC8 functions, and they are not fully supported
in Ontop-spatial v1. To support them, we rely on the DE-9IM
pattern-matrices of these functions (defined in Tables 1-3 in [30]).
For example, the matrix of geo:ehInside is TFF*FFT+*. These
GeoSPARQL functions can be translated to the generic SQL func-
tion ST_RELATE,2* which allows for evaluating the topologi-
cal relationships between two geometries according to a DE-
9IM pattern-matrix. E.g., geo:ehInside(?x,7y) can be trans-
lated to ST_RELATE (x,y, "TFF*FFT**"). For more information
about these three families and pattern-matrices, we refer to the
GeoSPARQL specification [30] and the relevant references within.

4.2.2. Handling SRIDs and units

SRIDs and units play an important role in the functions
geof : getSRID, geof :distance, and geof :buffer. Below we
detail the implementations of geof:getSRID and geof:
distance, but ignore geof :buffer since it works similarly to
geof :distance.

Implementation of geof:getSRID. The function geof:
getSRID(x) returns the SRID of the input literal x. The challenge
is that the SRID can be part of x as shown in the example in Sec-
tion 4.1. In this case, it requires analysing the string value of the
literal, which can be expensive. To guarantee good performance,
we limit our implementation to be database instance independent,
i.e., we compute the SRID during the query translation process,
and do not need to delegate it to query evaluation.

For example, we support the following templates for specify-
ing the WKT of a point in the mapping target:

- {geom}" "geo:wktLiteral

- '}<http://www.opengis.net/def/crs/EPSG/0/3044>
{geom}"" "geo:wktLiteral

- "<http://www.opengis.net/def/crs/EPSG/0/3044>
POINT ({x} {y}) " "geo:wktLiteral

24 https://postgis.net/docs/ST_Relate.html
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When evaluating geof : getSRID over these points, we obtain the
default WGS 84 for the first one, and <http://www.opengis.
net/def/crs/EPSG/0/3044> for the last two. However, in the
first case, if the column geom stores string values with an SRID
inside, like

"<http://www.opengis.net/def/crs/EPSG/0/3044>

POINT (668682.853 5122639.964)",
our implementation is not able to extract the SRID in such
columns. Nevertheless, such values do not make sense in prac-
tical GIS systems, because the string is not a valid WKT for the
database, and spatial indexes cannot be applied.

Note that this complication is a consequence of the “fea-
ture” of mixing SRID and WKT in the serialization. There is
an ongoing discussion in the community to decouple them in
GeoSPARQL 2.0.2° Such a change would simplify our implemen-
tation.

Implementation of geof:distance. One of the most challenging
functions to implement is geof :distance, because both mea-
surement units (i.e., metres, degrees, or radians) and SRIDs need
to be considered when defining correct translations. To illustrate
the translation, we first present two examples and then introduce
the general algorithm.

Example 1 (Distance on a Cartesian 2D Coordinate). Consider the
following table cities with two columns name and geom, where
the geometries are in the EPSG 30442° projection:

Name Geom
Bolzano POINT(680690.38 5152087 .65)
Merano POINT(665178.23 5170708.71)

We can use the following mapping (in the Ontop mapping
syntax) to construct a VKG:

target :{name} geo:asWKT
"<http://www.opengis.net/def/crs/EPSG/0/3044>
{geom}"" “geo:wktLiteral .

source SELECT name, geom FROM cities

From the template of the WKT literal, we know that the SRID is
EPSG 3044. By consulting a library like proj4j,2” we know that the
input unit is metre.

Now, consider the following SPARQL query to compute the
distance between Bolzano and Merano in metres:

SELECT 7dist WHERE {
:bolzano geo:asWKT 7wktl .
:merano geo:asWKT 7wkt2 .
BIND(geof :distance(?wktl, ?wkt2, uom:metre)
AS 7dist)
}

We can directly translate it to the following SQL query using the
ST_DISTANCE function:

SELECT ST_DISTANCE(tl.geom, t2.geom) AS dist
FROM cities tl1, cities t2
WHERE t1.name = 'bolzano' AND t2.name = 'merano'

If we change the unit to radian in the query, i.e., using the
following BIND clause:

BIND(geof :distance(?7wktl, ?7wkt2, uom:radian)
AS 7dist)

25 https://github.com/opengeospatial/ogc-geosparql/issues/31
6 https://epsg.io/3044
27 https://github.com/locationtech/proj4;j
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we can convert the length to metre by dividing by the radius of
the earth (6,370,986 m), and obtain the following SQL query:

SELECT ST_DISTANCE(tl.geom, t2.geom)/6370986
AS dist
FROM cities t1, cities t2
WHERE t1.name = 'bolzano' AND
t2.name = 'merano' <

Example 2 (Distance Between Geometries on a Sphere). Consider
the table with the same structure as above but the geometries
are in the WGS 84 longitude-latitude projection:

Name Geom
Paris POINT(2.3522 48.8566)
London POINT(-0.1278 51.5074)

and the mapping

target :{name} geo:asWKT
"{geom}"" “geo:wktLiteral.
source SELECT name, geom FROM cities

In this case, the WKT literal uses the default SRID
<http://www.opengis.net/def/crs/0GC/1.3/CRS84> and
the unit is degree.

To compute the distance between Paris and London, we can
use the following GeoSPARQL query:

SELECT ?dist WHERE {
:paris geo:asWKT 7wktl .
:london geo:asWKT 7wkt2 .
BIND(geof :distance(?wktl, ?wkt2, uom:metre)
AS 7dist)
}

This query can be translated to the following SQL query using the
ST_DISTANCESPHERE function:

SELECT ST_DISTANCESPHERE(t1.geom, t2.geom)
AS dist FROM cities t1, cities t2
WHERE t1.name = 'paris' AND t2.name = 'london' <

To summarize, for all the different cases we can use the SQL
functions ST_DISTANCE and ST_DISTANCESPHERE in conjunc-
tion with some additional arithmetic functions. The more general
translation, which supports metre and degree as input units, and
also radian as output unit, is provided below:

function translate_distance(terml, term2,
outputUnit) :
let R, = radius of the earth in metres
sridl, geoml = extractSRIDandGeom(termil)
srid2, geom2 = extractSRIDandGeom(term?2)
if (sridl !'= srid2)
exit '"unsupported: SRIDs do not match"
// using the proj4j library
inputUnit = getUnit(sridl)
if inputUnit == METRE:
dm = ST_DISTANCE(geoml, geom2)
else if inputUnit == DEGREE:
dn = ST_DISTANCESPHERE(geoml, geom?2)

if outputUnit == METRE:
return d,

else if outputUnit == RADIAN:
return d,-180/x7

else if outputUnit == DEGREE:
return dp/R. - 180/7
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<node id="6865960209" version="4"
timestamp="2021-03-07T19:22:05Z"
lat="43.7344681" lon="7.4178776">
<tag k="addr:country" v="MC"/>
<tag k="amenity" v="university"/>
<tag k="email" v="admissions@monaco.edu"/>
<tag k="name"
v="International University of Monaco"/>
<tag k="name:it"
v="Universita Internazionale di Monaco"/>
<tag k="phone" v="+377 97 986 996"/>
<tag k="website" v="https://www.monaco.edu/"/>
<tag k="wikidata" v="Q2504327"/>
<tag k="wikipedia"
v="fr:Université internationale de Monaco"/>

</node>

Fig. 3. Example OSM XML data item.

4.2.3. Summary

To summarize, Ontop-spatial v4 is a significant improvement
upon v1. Among the new features and functionalities, we high-
light the following ones: (i) support for SRIDs beyond CRS 84,
(ii) support for units of metre and radian, in addition to degree,
(iii) support for all topological functions, and (iv) support for the
geof :relate function. The current version of Ontop-spatial v4
has been tested extensively on PostgreSQL/PostGIS and H2GIS.
Other DB systems should also work almost out of the box if they
are compliant with the standards.

We note that Ontop-spatial v4 has still not ported all the
features from Ontop-spatial vl. Among these, we mention in
particular the query rewrite extent of GeoSPARQL, and a raster
data extension implemented in v1 [16,32].

5. Exposing LinkedGeoData as a VKG

In this section, we describe how to expose LinkedGeoData as
a VKG. We show the two realizations using Sparqlify and Ontop.
Specifically, we first introduce in Section 5.1 the database tables
and views derived from OpenStreetMap for LinkedGeoData, and
then the ontology in Section 5.2, and the mapping for VKGs
in Section 5.3. Finally, we illustrate in Section 5.4 the SPARQL
endpoint with an example query.

5.1. Database schema

Recall that OSM data consists of three fundamental geographic
entities:

e Nodes are the most primitive entities and represent geo-
graphic points.

e Ways are entities that have a list of at least two node
references associated with them.

e Relations relate points, ways, and potentially other relations
to each other, thereby forming complex objects.

Each of these entities has a numeric identifier id, the geographic
location represented using lat and lon, and a set of generic at-
tributes described using a set of key-value pairs, known as tags.2
An example data item of the node type in OSM XML is shown in
Fig. 3.

28 A list of all the tags can be found in https://wiki.openstreetmap.org/wiki/
Map_Features.
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Table 2

Example tables and views.
node_id k v
6865960209 addr:country MC
6865960209 amenity university
6865960209 email admissions@monaco.edu
6865960209 name International University of Monaco
6865960209 name:it Universita Internazionale di Monaco
6865960209 phone +377 97 986 996
6865960209 website https://[www.monaco.edu/
6865960209 wikidata Q2504327
6865960209 wikipedia fr:Université internationale de Monaco
(a) node_tags
id version user_id tstamp geom
6865960209 4 0 2021-03-07 19:22:05 01...DE4540
(b) nodes
node_id property object
6865960209 rdf:type lgdo:Amenity
(c) 1gd_node_tags_resource_k
node_id property object
6865960209 rdf:type Igdo:University
(d) 1gd_node_tags_resource_kv
node_id property \
6865960209 foaf:homepage https://www.monaco.edu/

(e) 1gd_node_tags_url

node_id property \Y language
6865960209 rdfs:label International University of Monaco

6865960209  rdfs:label Universita Internazionale di Monaco it
6865960209 foaf:phone  +377 97 986 996

(f) 1gd_node_tags_text

k object

highway lgdo:HighwayThing
amenity lgdo:Amenity
tourism lgdo:TourismThing
historic lgdo:HistoricThing
landuse lgdo:Landuse

(g) 1gd_map_resource_k

k \Y object

building university lgdo:BuildingUniversity
amenity university lgdo:University
amenity airplane lgdo:Airplane

amenity drinking_water Igdo:DrinkingWater
amenity school lgdo:School

(h) 1gd_map_resource_kv

We first import the OSM files using osm2pgsql?® into the
tables node_tags, way_tags, and relation_tags in a PostGIS
database. However, these tables are not suitable for creating
mappings because their structure reflecting directly the key-
value pairs is too generic, and it even stores values of all dif-
ferent types, e.g., integer and string, into the same columns.
Hence we create additional tables and views for LinkedGeoData,
whose names start with ‘“1gd_’’. For example, the views
lgd_node_tags_resource_k and lgd_node_tags_
resource_kv store the top-level and second-level classes de-
rived from the node_tags table, respectively. In a similar man-
ner, data properties are respectively loaded into views depending
on their datatypes. These operations apply to ways and relations
as well. In Table 2, we provide some tables and views with sample
data, which we will also use in the next two subsections while
explaining the ontology and mappings.

29 https://osm2pgsql.org/
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(ht

b/lad.owl]

Igdo:AerialwayThing

Igdo:AerowayThing

Igdo:Amenity
Igdo:Advertisement
Igdo:Advertising

® ontology (http://linkedgeodata.org/ontology) (C]

) : [/User! P

Search...

Active ontology | Entities | Individuals by class | Ontop Mappings = Ontop SPARQL

Datasource manager | Mapping manager | Ontop properties

Asserted & [ETIIEEICA [NEEO[E]
<k New, = Remove [JCopy SO validate [E) Selectall [ Select none
geo:SpatialObject - o —
geo:SpatialThing Igd_nodes_1
9“°:P°i"" Igd:node{id} a 4 ; lgdo:version {version}AAxsd:int ; dcterms:contributor
geom:BoundingBox lgd:user{user_id} ; dcterms:modified {tstamp}AAxsd:dateTime ; Igdo:changeset {changeset_id}AAxsd:int .
Igdm:Node_ SELECT * FROM nodes
Igdm:Relation
Igdm:Way Igd_nodes_2
Igdo:Abutters Igd:node{id} geothasGeometry Igd-geom:node{id} .

SELECT id FROM nodes

lgd_nodes_3

Igd-geom:node{id} a ; geo:asWKT {wkt}AAgeo:wktLiteral .
SELECT id, ST _ASTEXT(geom) wkt FROM nodes

Igdo:AirFill Igd_nodes_4

Igd:node{id} wgs:long {x}AAxsd:double ; wgs:lat {y}AAxsd:double ; Igdo:gadmSameAs

Annotation property hierarchy
Data property hierarchy
Object property hierarchy

Object property hierarchy:  RIINHEM[X lgd_node_tags_resource_k

4 = Asserted @)

= owl:topObjectProperty Igd_node_tags_resource_kv

<http://gadm.geovocab.org/services/withinRegion?lat={y}&long={x}#point> .
SELECT id, ST_X(geom) x, ST_Y(geom) y FROM nodes

Igd:node{node_id} <{property}> <{object}> .
SELECT * FROM lgd_node_tags_resource_k

Igd:node{node_id} <{property}> <{object}> .
SELECT * FROM lgd node_ tags_resource_kv

Igd_node_tags_int

Igd:node{node_id} <{property}> {v}AAxsd:int.

SELECT * FROM lgd_node_tags_int

Mapping size: 292 Search (any of):

Git: develop

Enable filter

To use the reasoner click Reasoner > Start reasoner Show Inferences

Fig. 4. Screenshot of ontology and mapping management in Protégé with the Ontop plugin.

Table 3

Statistics of the OSM datasets and DB size used for the evaluation.
Area #nodes #ways #relations DB size
North-East Italy 59.6M 6.7M 0.1M 28 GB
Italy 193.3M 21.1M 0.3M 85 GB
Germany 319.4M 52M 0.6M 179 GB

5.2. Ontology

The ontology is derived from the OSM tags as described in [3].
In total, the ontology includes around 1,200 classes, 250 data
properties, and 80 object properties.

For Sparqlify, the ontology information is stored in the follow-
ing 6 tables:

lgd_map_resource_k stores top-level classes;
lgd_map_resource_kv stores second-level classes;
lgd_map_property stores data properties;
lgd_map_literal stores data properties that also include
language tags (e.g., Italian, German);

lgd_map_datatype stores the data properties and their
associated types (e.g., boolean, integer, float);
lgd_map_resource_prefix stores some additional ob-
ject properties, in particular the wikipedia language web-
site corresponding to a class.

Sparqlify dynamically populates the ontology using the map-
pings. For example, the SML mapping below (slightly simplified
for readability) populates the rdfs: subClassOf object property
from the tables 1gd_map_resource_k and 1gd_map_resource
_kv. Note that the SML mapping includes a “Constrain” sec-
tion, which can declare, e.g., additional prefix constraints. Such
information can be used as a hint for query optimization.

Create View sub_classes As
Construct {
?child rdfs:subClassOf 7parent .
}
With
?child = uri(?child)
7parent = uri(7parent)
Constrain
?child prefix "http://linkedgeodata.org/ontology/"
?parent prefix "http://linkedgeodata.org/ontology/"
From
[[SELECT a.object AS parent, b.object AS child
FROM  1lgd_map_resource_k a JOIN
lgd_map_resource_kv b ON (b.k = a.k)
115

As Ontop does not support dynamically populating the ontol-
ogy from the mapping, for Ontop, we first extract the ontology
using the mappings and store it as a standard OWL file. To
be compliant with GeoSPARQL, we also import the GeoSPARQL
ontology.? A screenshot of the ontology in the Protégé ontology
editor®! is provided in Fig. 4.

5.3. Mapping

Next we show how to develop mappings for Sparqlify and On-
top to populate the instances of the RDF graphs in LinkedGeoData.
A screenshot of the Ontop mappings is provided also in Fig. 4.

The following tables and views are used for nodes. Those for
ways and relations are similar:

e nodes stores the OSM id and geometry of the nodes;

30 http://www.opengis.net/ont/geosparql
31 https://protege.stanford.edu/
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e lgd_node_tags_resource_k stores object properties of
the nodes (including the property rdf : type) and top-level
classes;

e 1lgd_node_tags_resource_kv stores object properties
of the nodes (including the property rdf:type) and
second-level classes;

e 1gd_node_tags_string, 1lgd_node_tags_int, lgd_
node_tags_float, 1lgd_node_tags_boolean, and
lgd_node_tags_url store data properties of the nodes
of different types (string, integer, float, boolean, and url,
respectively);

e 1lgd_node_tags_text stores data properties of the nodes
of type text as well as the language tag (e.g., en, ft, it);

e 1gd_node_interlinks stores the DBpedia and GeoKnow
links for nodes (used for creating owl:sameAs relations
between OSM and other sources).

We show some example mappings for nodes. Consider the
mapping for the table 1gd_node_tags_resource_kv storing
information on object properties for nodes. First, we show the
mapping in R2RML, which is supported by both Sparqlify and
Ontop:

<lgd_node_tags_resource_kv> a rr:TriplesMap;
rr:logicalTable [
rr:sqlQuery "SELECT * FROM lgd_node_tags_resource_kv"
rr:subjectMap [
rr:template
"http://linkedgeodata.org/triplify/node{node_id}";
rr:termType rr:IRI
1;
rr:predicateObjectMap [
rr:predicateMap [ rr:column "property";
rr:termType rr:IRI ];
rr:objectMap [ rr:column "object";
rr:termType rr:IRI 1;
1.

This mapping can be written in the Ontop syntax as follows:

mappingld lgd_node_tags_resource_kv
target lgd:node{node_id} <{property}> <{object}> .
source SELECT * FROM lgd_node_tags_resource_kv

Below is the same mapping in the SML syntax:

Create View lgd_node_tags_resource_kv As
Construct {

?s 7p %o .
}
With
?s = uri(concat(lgd:node, ?node_id))
?p = uri(7property)
70 = uri(7object)
Constrain

7p prefix "http://linkedgeodata.org/ontology/" "http:...
70 prefix "http://linkedgeodata.org/ontology/"

From
lgd_node_tags_resource_kv

Next we discuss how to map text to xsd:langString, ie.,
strings with language tags. The example SML mapping below
shows that it is possible to construct a literal with language from
the database using plainLiteral (?v,?language):

Create View lgd_node_tags_text As
Construct {

?s 7p %0 .
}
With
?s = uri(concat(lgd:node, ?node_id))
?p = uri(?property)
70 = plainLiteral(?v, ?7language)
From

lgd_node_tags_text

10
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This is, however, not supported by R2RML and Ontop. In an
Ontop (and R2RML) mapping, one has to explicitly enumerate all
possible languages in LinkedGeoData. For instance, below is the
mapping for the Italian language:

mappingld lgd_node_tags_text_lang_it
target 1lgd:node{node_id} <{property}> {v}@it .
source  SELECT * FROM lgd_node_tags_text

WHERE language = 'it'

This means that 3 such mappings (for nodes, ways, and relations)
in SML need to be translated to a large number of mappings in
Ontop and R2RML. This blowup makes the management of the
mappings more difficult and can also cause performance issues.

We list in Fig. 5 the triples of the (Virtual) Knowledge Graph
generated by the example mappings and ontology from the ex-
ample OSM XML in Fig. 3.

5.4. SPARQL endpoint

Using the infrastructure described in Section 2, one can deploy
easily an instance of LinkedGeoData with the developed ontology
and mappings, and expose the SPARQL endpoints powered by
Ontop and Sparqlify. The geographic area in the deployment is
easily configurable by adjusting the download link of OSM as in
Listing 1. The default area is the country of Monaco. We have
deployed an instance (currently with only Monaco data) of the
new version of LinkedGeoData online for demonstration.>? Fig. 6
shows a screenshot of this deployment using Ontop, with an
example query asking for a university and the restaurants around
it.

6. Evaluation

In this section, we evaluate the performance of query answer-
ing over the LinkedGeoData VKGs created by both Sparqlify and
Ontop-spatial v4. All the evaluation results are easily reproducible
following the detailed online appendix.>3

Hardware. The evaluation has been done on a machine with
4 cores (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00 GHz), 16GB RAM,
and 350GB SSD hard disk, running the operating system Ubuntu
18.04 and the DBMS PostgreSQL 12.3.

Datasets. We use three test geographical areas of North-East
Italy, Italy, and Germany from OSM, which fit in our testing
hard disk. The datasets were downloaded from Geofabrik®* on
1 August 2020. The datasets are loaded to a PostgreSQL database
as described in Section 5. The statistics on each OSM dataset, and
the size of tables and views in the PostgreSQL database are shown
in Table 3.

Queries. We have defined 7 GeoSPARQL query templates, as
shown in Table 4, following common patterns of usage of Linked-
GeoData. Each template has some parameters, which are either
classes or spatial filters. The detailed queries and the parameters
used for evaluation are provided in Appendix. For example,
as shown in Table A.6, Q1 can be instantiated into 25 queries
on each dataset (5 classes of “Amenities” x 5 locations). For
Q1 to Q4, we also provide the SPARQL queries of the Sparqlify
version that uses the corresponding bif : functions. For Q5 to Q7,
this is not possible because there are no Sparqlify counterparts
for the standard functions geof : sfWithin, geof:sfContains,
and geof :buffer.
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1gd:node6865960209 a lgdo:Amenity, geo:SpatialObject, lgdm:Node, geo:Feature, lgdo:University;
rdfs:label "Universitd Internazionale di Monaco"@it, "International University of Monaco";
1gdo:gadnSameAs <http://gadm.geovocab.org/services/withinRegion?lat=43.7344681000000008&1ong=7.41787760000000063#point>;
lgdo:version "4""“xsd:int;
lgdo:wikipedia "fr:Université internationale de Monaco";
dcterms:modified "2021-03-07T19:22:05"""xsd:dateTime;
dcterms:contributor lgd:userO;
foaf:phone "+377 97 986 996";
geo:hasGeometry lgdm-geom:node6865960209.

1gdm-geom:node6865960209 a geo:SpatialObject, geo:Geometry;
geo:asWKT "POINT(7.4178776 43.7344681)"""geo:wktLiteral .

Fig. 5. Example triples in the LinkedGeoData (Virtual) Knowledge Graph.

endpoint address: http://li | ontop v4.1.0

LinkedGeoData.org
Query +

SELECT ?x ?wkt ?wktLabel ?wktColor WHERE { K

'3

{ ?x a lgdo:University ; geo:hasGeometry/geo . OPTIONAL {?x rdfs:label ?wktLabel . FILTER (LANG(?wktLabel) = '')}
BIND('red' AS ?wktColor)

}

UNION {
?ual eometry/ge ?uWkt . OPTIONAL {?u rdfs:label PuktLabel . FILTER (LANG(?uktLabel) = '')}
?x a eometry/ge 2wkt ; rdfs:label ?wktLabel . FILTER (LANG(?wktLabel) = '')
FILTER(g e(?wkt, ?uWkt, uom:metre) < 200)
BIND('blue' AS ?wktColor)

}

UNION {
?ual :hasGeomet KT ?uWkt . OPTIONAL {?u rdfs:label ?uktLabel . FILTER (LANG(?uktLabel) = '')}

) AS ?wkt) BIND('red' AS ?wktColor)

=)

uffer (?uWkt, 200, uom:me
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Fig. 6. SPARQL endpoint of LinkedGeoData powered by Ontop. This query retrieves universities and nearby restaurants in a 200 m radius.

Table 4

GeoSPARQL queries.

Operators Query description

Q1 Distance Find OSM entities of a given class within a predefined distance

Q2 Distance Find OSM entities of a given class within a predefined distance from a given DBpedia location
Q3 Intersection Find OSM entities of a given class that intersect with a given polygon

Q4 Intersection Find OSM entities of two given linestring classes that intersect

Q5 Within Find OSM entities of a given class within a given polygon

Q6 Contains Find OSM entities of a given class that are contained in a given polygon

Q7 Buffer+Within Find OSM entities of a given class within a 500 metre buffer of a given location

Results. The evaluation results are reported in Table 5 and Fig. 7.
In Table 5, “OM” and “UF” refer to “out of memory” and “un-
supported functions” respectively. Note that each number is an
average of the running times with all possible parameters. We
provide all the SQL queries rewritten by Ontop and Sparqlify from
SPARQL queries in the online appendix.

For queries Q1 to Q4, Ontop performs better thanks to its
optimization techniques. In particular, it can be seen from the
online appendix that Sparqlify uses SQL queries from the mapping
directly as subqueries and joins them, while Ontop performs
sophisticated SQL translations using structural and semantic opti-
mization techniques, which leads to queries that can be evaluated
more efficiently by the database. Query Q4, which computes a

32 https://linkedgeodata.org/monaco/

https://github.com/ontop/ontop-examples/tree/master/jows-2021-
linkedgeodata

34 http://download.geofabrik.de/
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huge number of intersections, can still be handled by Ontop (in
between 20mins and 3 h), but Sparqlify runs out of memory.
Ontop can also handle efficiently queries Q5, Q6, and Q7. Overall,
the results indicate that the VKG approach in LinkedGeoData is
able to support GeoSPARQL queries that combine topological and
non-topological operations on the database.

7. Discussion & future work

This paper presents the latest development of the LinkedGeo-
Data project using the virtual knowledge graph (VKG) technology.
It confirms that VKG is an efficient and lightweight approach to
expose large geodatasets as a unified Knowledge Graph. Below
we discuss some issues we have encountered and present some
future research directions.

Language tags. Through Sparqlify, all label mappings in a specific
language can be performed with a single line 7o = plainLiteral


https://linkedgeodata.org/monaco/
https://github.com/ontop/ontop-examples/tree/master/jows-2021-linkedgeodata
https://github.com/ontop/ontop-examples/tree/master/jows-2021-linkedgeodata
http://download.geofabrik.de/
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Fig. 7. Evaluation results. NEI = Northeast Italy, I = Italy, G = Germany.

Table 5
Average query response time (s).
Dataset Query Sparqlify Ontop
North-East Italy Q1 3.616 0.311
Q2 59.329 0.846
Q3 3.944 0.301
Q4 oM 1320.733
Q5 UF 0.199
Q6 UF 0.18
Q7 UF 0.179
Italy Q1 4131 0.54
Q2 77.873 1536
Q3 8.807 0.691
Q4 oM 11312.905
Q5 UF 0.742
Q6 UF 0.74
Q7 UF 0.735
Germany Q1 4.564 1.485
Q2 88.553 2.117
Q3 4.677 2.141
Q4 oM 1632.594
Q5 UF 1.496
Q6 UF 1.461
Q7 UF 1.496
“OM” = “out of memory”; “UF’ = “unsupported functions”.

(7label,?language) to assign a label, i.e., data property and
the respective language annotation at once. This feature is cur-
rently supported neither by R2RML nor by Ontop. R2RML would
require the introduction of an attribute like rr: languageColumn
on term maps in order to mitigate this issue. With Ontop a
separate mapping for every language is required. Hence a large
number of SQL unions has to be performed to accommodate all
OSM languages. In LinkedGeoData, 89 mappings were needed for
all the supported languages (including the case with no language).
This issue has been discussed in the community>> and we expect
that the next version of the R2RML standard will include a feature
to simplify the mapping of language annotations.

Constraints over RDF terms. A further feature of Sparqlify that
currently has no counterpart neither in R2RML nor in Ontop
is the declaration of IRI prefixes that term mappings can pro-
duce. For example, if a database column already contains IRIs
(such as interlinks to DBpedia) and a triple mapping uses a term
mapping of the form 7o = uri(?linkTarget), then without
further metadata such a triple mapping qualifies as a candidate
for answering any query’s triple pattern that allows for an IRI in
the respective component. However, if we inferred that a query’s
triple pattern can only match IRIs in one set of prefixes (such as
1gd), and we also knew that the triple mapping produces IRIs
in a different set of prefixes (such as dbr), then we can use this

35 https://github.com/kg-construct/mapping-challenges/issues/18
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information to optimize the pruning of candidate triple mappings
in the query rewriting phase.

Faceted search. A long-envisioned goal of LinkedGeoData is to
facilitate live exploration of reasonably sized subsets of Linked-
GeoData’s Virtual Knowledge Graph, e.g., by means of client-side
SPARQL-based faceted search, as demonstrated in [33]. Client-
side SPARQL-based data exploration means that clients can be
independent of LinkedGeoData and still enable exploration of
its data in an ad-hoc fashion using only a single open standard
protocol and query language, i.e., SPARQL. Due to the lack of
support for aggregation functions in Sparqlify, this was so far not
possible. Preliminary experiments with Ontop and our faceted
search benchmark generator framework [34] showed that queries
were already answered correctly, however the performance was
not yet sufficient for interactive purposes. Hence, further analysis
of the bottlenecks across LinkedGeoData’s VKG stack together
with the corresponding optimizations are worthwhile.

Data quality. A noteworthy issue with OSM is data quality, which
is a result of the volunteered nature of the data collected. OSM
reports that data quality is constantly improving also due to
greater usage of open government data.>®-37 Still, the classes
in the LinkedGeoData ontology derived from OSM data con-
tain for example the following pairs of differentiated classes,
which are obviously identical: “Vending+machine” vs “Vend-
ingMachine”, “Wlan” vs “WLAN", and “Clothes%3A+women” vs
“Clothes%3Awomen”. We are going to tackle such data quality
issues in the future.

Improving interlinking. A relevant point for future work is im-
proving the interlinking. In [3], thousands of interlinks to DBpedia
and GeoNames were first generated using an interlinking en-
gine and subsequently manually verified, which is not a scalable
model. Fortunately, nowadays the Wikidata*® community main-
tains links from Wikipedia to OSM. Hence, in the near future,
we will provide an extra docker container capable of perform-
ing continuous integration of LinkedGeoData-to-DBpedia links by
regularly retrieving Wikidata-to-OSM links, storing them into the
LinkedGeoData database, and exposing them through the VKG as
well.

Integration of the SANSA project. SANSA (Semantic Analytics
Stack)®? is an open-source software project aimed at enabling
analytics based on the RDF data model with open source Big Data
frameworks (primarily Apache Spark??). Its architecture features

36 https://welcome.openstreetmap.org/working-with-osm-data/how-good-is-
osm/

37 https://www.missingmaps.org/osmstats/

38 https://wikidata.org/
http://sansa-stack.net/

40 https://spark.apache.org/
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layers ranging from RDF import/export over SPARQL querying
to machine learning. For querying, there are several partitioning
strategies, some of which partition RDF data into Spark SQL
tables, which are then mapped using R2RML. Previously, only
Sparqlify was supported [24]. Ontop in SANSA is currently under
evaluation, and it can be expected that its support for aggregation
functions as well as the GeoSPARQL support in combination with
the performance improvements will advance the state of the art
in Big Data RDF processing. As it is easy to materialize compressed
datasets from LinkedGeoData whose size exceeds hundreds of
GB, SANSA may be a viable choice for performing analytics on
LinkedGeoData datasets efficiently.
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Appendix. GeoSPARQL queries for evaluation

We provide the seven GeoSPARQL query templates used for
evaluation. Some templates use parameters $class and $geo
for filtering based on OWL classes and locations, respectively.
Possible values used in the experiments are given in Table A.6.
All these queries are supported by Ontop. For Q1 to Q4, we also
provide the Sparqlify variant.

Query 1. Find OSM entities of a given class within a predefined
distance.

SELECT * WHERE {

7a a $class ; geo:hasGeometry/geo:asWKT 7ag ;
rdfs:label 7name .
FILTER(lang(?name) = "" || lang(7name) = "it")

BIND (geof:distance(
'$geo' " “geo:wktLiteral, 7ag, uom:degree)
AS 7distance)
FILTER (?distance <= 0.1)
}

For Sparqlify, the filter is

FILTER(bif:st_intersects('$geo'” “geo:wktLiteral,
7ag, 0.1)) .

Query 2. Find OSM entities of a given class within a predefined
distance from a given DBpedia location.

SELECT ?ag ?7name WHERE {
7a a $class ; geo:hasGeometry/geo:asWKT 7ag ;
rdfs:label 7name .
FILTER(lang(?name) = "" || lang(7name) = "it")
?b owl:sameAs
<http://dbpedia.org/resource/$geo> ;

geo:hasGeometry/geo:asWKT 7bg .
BIND (geof:distance(7bg, 7ag, uom:degree)
As 7distance)
FILTER (?distance <= 0.1)
}

For Sparqlify, the filter is
FILTER(bif:st_intersects(?bg, 7ag, 0.1)) .

Query 3. Find OSM entities of a given class that intersect with a
given polygon.

SELECT * WHERE {
7a a $class ; geo:hasGeometry/geo:asWKT 7ag ;
rdfs:label 7name .
FILTER(lang(?name) = "" || lang(?name) = "it")
FILTER(geof :sfIntersects(7ag,
'$geo' " “geo:wktLiteral))

}
For Sparqlify, the filter is

FILTER(bif:st_intersects(?g,
bif:st_geomFromText ("$geo™))

Query 4. Find OSM entities of two given linestring classes that
intersect.

SELECT * WHERE {
7a a lgdo:Motorway ;
geo:hasGeometry/geo:asWKT 7ag ;
rdfs:label 7aname .
FILTER(lang(7aname) = "" || lang(?aname) = "it")
?b a lgdo:Canal ;
geo:hasGeometry/geo:asWKT 7bg ;
rdfs:label 7bname .
FILTER(lang(7bname) = "" || lang(?bname) = "it")
FILTER(geof :sfIntersects(?ag, 7bg))
}

For Sparqlify, the filter is
FILTER(bif:st_intersects(?ag, 7bg))

Query 5. Find OSM entities of a given class within a given poly-
gon.

SELECT * WHERE {
7a a $class ; geo:hasGeometry/geo:asWKT 7ag ;
rdfs:label 7name .
FILTER(lang(?name) = "" || lang(?name) = "de")
FILTER(geof:sfWithin(7ag, '$geo'”"geo:wktLiteral))

}

Query 6. Find OSM entities of a given class that are contained in
a given polygon.
SELECT * WHERE {
7a a $class ; geo:hasGeometry/geo:asWKT 7ag ;
rdfs:label 7name .
FILTER(lang(?name) = "" || lang(?name) = "de")
FILTER(geof :sfContains ('$geo'~ "geo:wktLiteral, 7ag))

}

Query 7. Find OSM entities of a given class within a 500 m buffer
of a given location.

SELECT * WHERE {
7a a $class ; geo:hasGeometry/geo:asWKT 7ag ;
rdfs:label 7name .
FILTER(lang(?aname) = "" || lang(7aname) = "it")
BIND (geof:buffer ('$geo'” "geo:wktLiteral, 500,
uom:metre) AS 7cg)
FILTER (geof:sfWithin(?ag, 7cg))
}

13
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Parameters for the testing queries. “Amenities” = {1gdo:Restaurant, 1gdo:Bar, 1gdo:Bank, 1gdo:Pharmacy, lgdo:Library}. The column “#” is the number
of combinations of possible values.

Dataset Query $geo $class #

North-East Q1 POINT(11.0452369 45.886548) POINT(11.1257601 46.0664228) Amenities 25

Italy POINT(11.1594185 46.6695547) POINT(11.3547801 46.4981125)

POINT(13.2358377 46.0634632)
Q2 Rovereto, Trento, Bolzano, Udine, Merano Amenities 25
Q3 POLYGON(11 46.45, 11.6 46.45, 11.6 46.64, 11 46.64, 11 46.45) Amenities 5
Q4 1
Q5 POLYGON((11 46.45, 11.6 46.45, 11.6 46.64, 11 46.64, 11 46.45)) Amenities 5
Q6 POLYGON((11 46.45, 11.6 46.45, 11.6 46.64, 11 46.64, 11 46.45)) Amenities 5
Q7 POINT(13.2358377 46.0634632) Amenities 5
Italy Q1 POINT(15.08738 37.5022355) POINT(11.0452369 45.886548) Amenities 25
POINT(7.7748827 43.8198253) POINT(9.1128513 39.2169525)
POINT(18.1718482 40.3570373)
Q2 Cagliari, Catania, Lecce, Rovereto, Sanremo Amenities 25
Q3 POLYGON((7.3 44.5, 8.5 44.5, 8.5 45.5, 7.3 45.5, 7.3 44.5)) 5
Q4 1
Q5 POLYGON((7.3 44.5, 8.5 44.5, 8.5 45.5, 7.3 45.5, 7.3 44.5)) Amenities 5
Q6 POLYGON((7.3 44.5, 8.5 44.5, 8.5 45.5, 7.3 45.5, 7.3 44.5)) Amenities 5
Q7 POINT(18.1718482 40.3570373) Amenities 5
Germany Q1 POINT(6.6441878 49.7596208) POINT(9.4333264 54.7833021) Amenities 25
POINT(8.651177 49.872775) POINT(10.3166999 50.9833)
POINT(11.3290855 50.9802813)
Q2 Darmstadt, Eisenach, Flensburg, Trier, Weimar Amenities 25
Q3 POLYGON((11.6 53.4, 13.65 53.4, 13.65 54.25, 11.6 54.25, 11.6 5
53.4))
Q4 1
Q5 POLYGON((11.6 53.4, 13.65 53.4, 13.65 54.25, 11.6 54.25, 11.6 Amenities 5
53.4))
Q6 POLYGON((11.6 53.4, 13.65 53.4, 13.65 54.25, 11.6 54.25, 11.6 Amenities 5
53.4))
Q7 POINT(11.3290855 50.9802813) Amenities 5
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