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a b s t r a c t

Geospatial knowledge has always been an essential driver for many societal aspects. This concerns
in particular urban planning and urban growth management. To gain insights from geospatial data
and guide decisions usually authoritative and open data sources are used, combined with user or
citizen sensing data. However, we see a great potential for improving geospatial analytics by combining
geospatial data with the rich terminological knowledge, e.g., provided by the Linked Open Data Cloud.
Having semantically explicit, integrated geospatial and terminological knowledge, expressed by means
of established vocabularies and ontologies, cross-domain spatial analytics can be performed. One
analytics technique working on terminological knowledge is inductive concept learning, an approach
that learns classifiers expressed as logical concept descriptions. In this paper, we extend inductive
concept learning to infer and make use of the spatial context of entities in spatio-terminological data.
We propose a formalism for extracting and making spatial relations explicit such that they can be
exploited to learn spatial concept descriptions, enabling ‘spatially aware’ concept learning. We further
provide an implementation of this formalism and demonstrate its capabilities in different evaluation
scenarios.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Geospatial knowledge has always been an important driver
or many societal aspects. Especially since the beginning of the
nformation age, vast amounts of digital geospatial data are being
roduced by companies and individuals every day. The ubiquity
f mobile devices nowadays even enables the collection of vol-
nteered geographical information (VGI) [1] from individuals on
large scale. Further, the idea of a Web of Data emerged and
ecame reality in the form of the Linked Open Data (LOD) Cloud.1
he LOD cloud contains open datasets covering many domains,
ncluding spatial data, which are expressed by means of the
esource Description Framework (RDF)2 which allows to define
ocabularies and ontologies with explicit semantics, and interlink
ata. Gaining insights and added value from such geospatial in-
ormation is crucial in a world of pervasive mobile devices and
ocation-aware information services. One recurring field of use

∗ Corresponding author at: Fraunhofer Institute for Intelligent Analysis and
nformation Systems (IAIS), Zwickauer Str. 46, 01069 Dresden, Germany.

E-mail address: patrick.westphal@informatik.uni-leipzig.de (P. Westphal).
1 https://lod-cloud.net/.
2 https://www.w3.org/TR/rdf11-primer/.
ttps://doi.org/10.1016/j.knosys.2022.108233
950-7051/© 2022 Elsevier B.V. All rights reserved.
cases is to harness geospatial citizen sensing data to guide and
support administrative decisions in urban planning and urban
growth [2,3]. Urban development is of special importance since it
is estimated that in 2050 about 68% of the earth’s population will
live in cities.3 This poses challenges for governments, especially in
developing countries, to provide proper infrastructure for better
living standards of citizens. This aim is also reflected in the United
Nations Sustainable Development Goals.4 Further, different Euro-
pean Space Agency (ESA) initiatives employ spatial sensor data to
support sustainable urban development.5

The state-of-the-art with respect to the spatial analytics tech-
niques that drive and support urban planning currently con-
centrates on VGI or sensor data, usually combined with special
purpose spatial information that is lacking explicit semantics.
Only little focus has been put on integrating VGI data with the
rich terminological knowledge available on the Web of Data.
We believe that by providing an enriched and integrated data
infrastructure and the semantics-aware analytics capabilities on

3 https://ourworldindata.org/urbanization.
4 https://sdgs.un.org/goals.
5 https://eo4sd.esa.int/category/themes/urban/.
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Fig. 1. Illustration of the integrated usage of VGI and semantically rich background knowledge.
op, decision support services can be greatly improved. Such
emantically explicit approaches usually operate on a symbolic
evel providing human and machine readable results to support
ecisions. One analytics method in artificial intelligence is the
nductive learning of concept descriptions from labeled exam-
les. Concept descriptions which then serve as a binary classifier
re generated by means of the vocabulary of the terminological
ackground knowledge base. Example outcomes could be rich
escriptions of what constitutes a well accepted and popular
oad segment for cycling, or – to the contrary – what are the
patial and qualitative properties of bike accident hot spots. Since
hese descriptions are human and machine readable they can
e taken into account by decision makers to decide on future
ctions in urban planning, as well as for an automatic detection
nd suggestions of other spots with similar properties.
An example showing available complementary information

bout traffic accidents is shown in Fig. 1. Whereas VGI usually
rovides mere geo-coordinates representing an appearance or
vent with a certain meaning (Fig. 1(a)), the geospatial back-
round information provided, e.g., by LinkedGeoData6 [4] is se-
antically richer (Fig. 1(b)). Here all kinds of spatial features
re captured with their geometries and a comprehensive set
f types, or concept expressions, describing them. Besides the
pen data sources available in the LOD cloud7 this could also be
urther extended with authoritative data usually accessible to the
unicipalities. By combining both kinds of data sources one can
et far richer descriptions of VGI data points and how they relate
o their environment — not just in terms of spatial relations but
lso by means of terminological knowledge, e.g., describing POIs,
oad types etc. (Fig. 1(c)).

Common Geographic Information Systems (GIS) provide a
ide range of optimizations for processing geographical infor-
ation, like indexes and special storage strategies to exploit

6 http://linkedgeodata.org.
7 https://lod-cloud.net/.
2

data locality of spatial entities that are close to each other. In
RDF, however, there are no means for a dedicated processing of
spatial data and the polygon information describing the spatial
entities’ shapes and positions are stored as RDF literals in a string
representation just like any other literal values. Hence, any opti-
mization techniques or spatial inferences have to be performed
by the application using the data. However, since many geospatial
RDF datasets as, for example, LinkedGeoData, were derived from
GIS, or relational databases with GIS capabilities, characteristics
like the spatial data’s consistency are usually ensured. Other, im-
plicit spatial characteristics, like spatial relations between entities
modeled in RDF need to be made explicit, either ‘on the fly’ during
data processing, or materialized and added to the dataset.

Structured geospatial RDF data and ontologies providing a
conceptualization of the spatial domain, e.g. expressed by means
of the Web Ontology Language (OWL),8 can be used to estab-
lish spatially-aware concept learning. However, to make use of
the spatial information, spatial reasoning needs to be integrated
into the OWL reasoning process. Furthermore, the concept learn-
ing algorithms need to be extended to better exploit spatial
knowledge inferred by such reasoning components. In this regard,
our contributions are the following: (i) We provide a formal-
ization of spatial relations that can be inferred by an extended
spatially-aware OWL reasoner, (ii) we implemented such a spa-
tial inference mechanism, and (iii) evaluated the impact on the
reasoning performance in different experimental settings. (iv) We
further formalize the notion of spatial concept learning, (v) de-
scribe our spatial concept learning extension for the DL-Learner
framework and (vi) evaluate it in different learning scenarios on
(geo-)spatial data.

This paper is structured as follows: We survey related work
in Section 2. In Section 3 we cover the formal foundations for
inferences on polygon data. Section 4 proposes an integration

8 https://www.w3.org/TR/owl2-overview/.

http://linkedgeodata.org
https://lod-cloud.net/
https://www.w3.org/TR/owl2-overview/
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Fig. 2. Region Connection Calculus relations: Connected With (C), Discrete From (DR), Overlaps With (O), Part Of (P), Has Part (P−1), Proper Part Of (PP), Has Proper
Part (PP−1), Partially Overlaps (PO), Tangential Proper Part Of (TPP), Non-tangential Proper Part Of (NTPP), Identical With (EQ), Has Tangential Proper Part (TPP−1), Has
Non-tangential Proper Part (NTPP−1), Externally Connected With (EC), Disconnected From (DC).
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of the spatial inference mechanisms into Description Logics and
Section 5 shows how the refinement-based inductive concept
learning can be extended to also consider spatial relations. Im-
plementation details are given in Section 6, and in Section 7, we
discuss evaluation results of different spatial inference and spatial
concept learning experiments. In Section 8 we conclude and give
outlooks to future work.

2. Related work

A considerable milestone providing an axiomatization for the
established field of topology dates back to the first half of the last
century [5]. Here, the authors combine notions from set theory,
topology and Boolean algebra to define an algebra of topology.
Besides the introduction of the definition of a topological space
the authors also presented connections to the modal logic S4.

Far later the spatial interval logic, called Region Connection
Calculus (RCC) was defined [6], and refined [7], expressing a
hierarchy of all possible relations of regions in space, as shown in
Fig. 2. The eight most special relations on the bottom of the hi-
erarchy, usually referred to as RCC-8, have the favorable property
of being jointly-exhaustive and pairwise disjoint (JEPD). A further
approach to provide a systematic collection of regions was the
definition of the Dimensionally Extended nine-Intersection Model
(DE-9IM) [8]. Whereas research on RCC usually excludes all spatial
entities not having a defined area (i.e., lines and points), DE-9IM
explicitly considers area, line and point geometries and relations
between them. The relations are defined by means of intersec-
tions of possible meaningful combinations of two geometries’
boundaries, interiors and exteriors. This amounts to 512 possible
spatial relations in 2-dimensional space (considering the differ-
ent geometry types). But these can be summarized by a set of
eight spatial relations bearing the jointly-exhaustive and pairwise
disjointness (JEPD) feature: disjoint, contains, inside, equal, meet,
covers, coveredBy and overlap.

In contrast, research in the field of human language and spatial
cognition covers spatial relations in a broader sense [9]. Here,
besides the topological aspect, further means to express spatial
relations were collected. A proposed hierarchy of subdomains
of spatial language from [9] is shown in Fig. 3. This hierarchy
assumes a 3-dimensional space and an observer looking at the
relation of two spatial objects. Since we are considering a 2-
dimensional space without an observer, certain spatial relations
like left to, behind or above do not make sense. Nonetheless, to
3

Fig. 3. Hierarchy of subdomains of spatial language and example relations for
spatial concept learning.

be able to learn intuitive, high quality concept descriptions we
tried to include as many of the presented subdomains as possible.
We added notes and examples in Fig. 3 (in gray) to highlight
this. In this regard, we trade a more general, and hopefully more
intuitive, vocabulary to express spatial relations for the favorable
JEPD feature mentioned above.

The RCC-8 semantics and its relations to Modal Logics struc-
tures were more thoroughly investigated in [10]. The outcomes
were used for a further translation of the RCC-8 formalism into
OWL-DL [11], which was eventually applied to implement a
‘qualitative spatial reasoning engine’ for OWL ontologies [12].
These research avenues interpret regions as subsets of topo-
logical spaces, bridge their formal approaches to an S4 modal
logic, and eventually to OWL-DL. The main focus in terms of
the reasoning task is to consider all topological constraints and
derive whether a given set of logical assertions is satisfiable.
Whereas [13] showed that the consistency problem for general
topological constraint systems is NP-hard, if the goal was to find
planar model also taking geometric constraints into account,
erifying the consistency of RCC-8 constraint systems was shown
o be NP-complete [10]. In contrast, the consistency problem of
he modal translation in [10] is PSpace-complete [14]. In [15],
hese complexity findings are discussed and related in depth.
urther the authors provide an analysis on how to restrict the set
f spatial relations of RCC-8 to gain a polynomial-time procedure
o check consistency. However, for our spatial concept learning
pproach the main reasoning task regarding spatial inference
s instance classification, or instance checking, not consistency
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alidation. Accordingly, these formal frameworks for modeling
patial regions are not considered in our work.
Another line of research incorporated qualitative spatial rea-

oning into Description Logics modeling the spatial information
y means of concrete domains. This is already covered by the stan-
ard literature on Description Logics like [16], presenting the RCC
ormalism as one example of concrete domains. Here, again, the
ain reasoning task is consistency checking and the tableau algo-

ithm as a means to validate consistency is extended accordingly.
owever, to keep the consistency problem decidable strict re-
uirements on the formalism to represent topological knowledge
re imposed. Whereas these hold for RCC-8, approaches using
ore flexible vocabularies to express spatial relations will likely
o beyond the complexity classes presented and envisioned there.
n [17], requirements are further detailed and tightened to im-
rove the complexity implications of tableau-based consistency
hecking in Description Logics with spatial concrete domains
ased on RCC-8.
A similar idea was presented in [18] where the authors con-

entrate on DE-9IM-like relations that can hold between spatial
ntities expressed by means of polygon strings. Polygon data is
lso modeled as a concrete domain. Further, the authors consider
xplicitly the semantic hierarchy of spatial relations, e.g. that
enerally_inside subsumes equals.
A more general view on spatial knowledge representation and

easoning, not only considering consistency checking is presented
n [19]. Other than the previous approaches, spatial relations are
ot modeled as predicates of spatial regions inside a concrete
omain, but rather as relations that hold between individuals of
he abstract domain. We think this is a more natural approach
specially for concept learning. Further, the authors describe a
ystem that can be used for ontology-based search which also
ncludes reasoning (e.g. to resolve sub-concept relations). Similar
o one of the approaches in [12], they use a specialized RCC rea-
oner which can be used to infer such spatial relations between
ndividuals of the abstract domain.

The task of making spatial relations between individuals ex-
licit in a link discovery setting was studied in [20]. This approach
sed DE-9IM but other than inferring spatial relations ‘on the fly’
i.e. during query time), discovered relations are usually meant
o be stored and added to the knowledge base as new assertions
o hold between individuals. This was further improved in [21]
here the authors introduced the notion of Progressive Holistic
eospatial Interlinking which allows to compute topological re-
ations in a ‘pay-as-you-go’ manner. We argue that this ‘offline
rocessing’ is not always meaningful for settings like concept
earning since it might tremendously increase the size of the
nowledge base.
Another project focusing entirely on search, i.e. inferring (im-

licit) spatial relations from spatial information stored in an
ptimized spatial data store, not applying any Description Logics
easoning techniques, was presented in [22]. The demonstrated
uery engine allows to make use of spatial extensions of the
PARQL query language.9 like GeoSPARQL [23] or stSPARQL [22]
An approach to inductively learn classifiers for point data,

ased on Formal Concept Analysis [24] was proposed in [25].
ere, the classifiers are expressed by means of convex poly-
ons containing the provided example points. Using more com-
lex polygon shapes increases the expressivity over, e.g., simple
ounding box approaches, whereas the requirement of them be-
ng convex allows to keep their algorithmic complexity moderate.
n our attempt to inductively learn classifiers for polygon data

9 https://www.w3.org/TR/sparql11-overview/.
4

Fig. 4. Examples of three geometry primitives: a primitive point (G1), a primitive
line string (G2), and a primitive polygon (G3).

we do not concentrate on polygon patterns but rather on logical
descriptions.

The idea of concept learning, as it is used here, stems from
the field of Inductive Logic Programming (ILP) [26], in which many
popular implementations emerged [27–29]. However, to the best
of our knowledge, there is only one attempt to combine ILP with
spatial pattern learning [30]. Unlike our approach, the corre-
sponding system only considers the learning part and assumes
all inferred spatial relations already materialized in the input
data.

In the field of concept learning in Description Logics, the most
prevalent framework is the DL-Learner10 [31], which provides a
variety of algorithms for supervised Machine Learning in OWL,
RDF and Description Logics. The DL-Learner system follows the
idea of generalization as search [32] and applies, among others, re-
finement operator-based techniques [33–36]. A further example
of a concept learning system is YinYang [35]. However, whereas
the DL-Learner can be configured to support different Descrip-
tion Logics or OWL profiles, YinYang focuses on learning ALC
oncepts only. The formalism introduced in the next sections
as implemented as an extension of the DL-Learner framework
o enable spatial concept learning by introducing and automati-
ally inferring spatial relations that hold between individuals of
he abstract domain. In particular we based our work on the
ELOE algorithm [37] with an adapted set of refinement rules as
escribed in Section 5.

. A calculus for polygon data

In this section we introduce the main building blocks to
xpress the collection of spatial relations used in the following
ections. We base our definitions on the notion of a geometry
rimitivewhich can either be a (primitive) point, a (primitive) line
tring, or a (primitive) polygon as sketched in Fig. 4. Following
he common understanding, each geometry G = [(x1, y1), . . . ,
xn, yn)] represents a subset of points in the 2-dimensional Eu-
lidean space R2, being inside G. The sequence of points
x1, y1), . . . , (xn, yn) is called G’s boundary. Every two consecutive
oints [(xi, yi), (xi+1, yi+1)] form a line segment.
The distinction between a (primitive) point, a (primitive) line

tring, and a (primitive) polygon is defined as follows: If G’s
oundary is closed, i.e. (x1, y1) = (xn, yn) and n ≥ 3, then G is
(primitive) polygon. We assume the points are describing G’s
oundary in clockwise order with the area of G always being
n the right side of each line segment [(xi, yi), (xi+1, yi+1)] (resp.
(xn, yn), (x1, y1)] in case of the last, closing segment). Further we
ssume, that the boundary line has no self-intersections other
han the start/end point. If G contains only one entry, i.e. G =

10 http://dl-learner.org.

https://www.w3.org/TR/sparql11-overview/
http://dl-learner.org
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Table 1
Fundamental operations on geometries and their computational complexities.
Operation Definition Complexity

(has line intersections) Given two sets of line segments S(G1) ⊂ Gln and S(G2) ⊂ Gln , the relation
(S(G1),S(G2)) holds if there exists a line segment Gi ∈ S(G1) and a line

segment Gj ∈ S(G2) such that Gi and Gj intersect.

O(log(N)) where
N = |S(G1)| + |S(G2)| [39]

(point is inside polygon) The problem of deciding whether a point G1 = [(x, y)] ∈ Gpt is inside a
polygon G2 ∈ Gpl is covered by the so called point-in-polygon problem [40].
G1 ⋖ G2 holds iff the point-in-polygon relation holds for (x, y) and G2 . We use
the same notation for the case that G2 ∈ Gln to denote that the point
G1 = [(x, y)] ∈ Gpt equals one of G2 ’s points (i.e. (x, y) ∈ G2), or lies on one of
G2 ’s line segments. To avoid confusions, in the following we will use ∈ to
express set or list containment , whereas ⋖ refers to spatial containment, i.e.
that a point is inside a line string or polygon.

O(N) where N = |S(∂(G2))| if
G2 ∈ Gpl

a , and N = |S(G2)| if
G2 ∈ Gln

(intersection points) For two sets of line segments S(G1) ⊆ Gln and S(G2) ⊆ Gln the function
(S(G1),S(G2)) = Gpt returns the set of intersection points Gpt ⊆ Gpt

between segments from S(G1) and segments from S(G2).

O(N log(N + K )) with
N = |S(G1)| + |S(G2)|, and
K = |Gpt| [41]

ℓ (length) The length function ℓ : Gln ↦→ R is defined on line strings in the natural way. O(N) where N = S(G) for
G ∈ Gln

(buffer) Given an offset d ∈ R, the buffer function [40] (G, d) expands or grows a
geometry G along all its points by d units. For disk shapes, e.g. when applying
the buffer operation to simple points we assume a suitable and accurate
enough polygon approximation.

Superlinear in N = |G|,
however, empirically usually
near O(N) [42]

≺Gln Given a set of points G = {G1,G2, . . .Gn} ⊂ Gpt each intersecting with a line
string Gln ∈ Gln , ≺Gln imposes a total order on G w.r.t. the distance of its
elements to Gln ’s start point, along Gln , i.e. a sorting on their linear
referencing on Gln .

O(|G| log(|G|)) as we usually
know on which segment of Gln
a point Gi ∈ G lies.

aPlease note that we are considering polygons as closed regions, i.e. the boundary is considered part of a polygon.
i

G

.
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≬

.

[(x1, y1)] then it is called a (primitive) point. Otherwise, G is called
a (primitive) line string. For primitive line strings we also assume
that there are no self-intersections. The set of geometry primi-
tives is denoted by G. The sets of primitive points Gpt, primitive
line strings Gln, and primitive polygons Gpl are all subsets of G
and mutually disjoint.

In real-world GIS, one may often find geometries that are
not primitive, e.g. multi-polygons, multi-line strings, multi-points
or polygon collections [38]. To represent those, the above as well
as the following definitions needed to be extended to consider
(generic) geometries as sets of geometry primitives. However, for
brevity we introduce the notions of our polygon calculus only on
geometry primitives. For complexity considerations we already
report the most general cases also covering multi-geometries. Ac-
cordingly, in the following we will omit the ‘primitive’ adjective
and always refer to their primitive versions whenever we talk
about points, line strings, and polygons.

As mentioned above, a geometry primitive G’s boundary, ∂(G),
is treated as a line string if G is a primitive polygon, i.e. G ∈ Gpl.
In this case, ∂(G) is closed, i.e. a line string having the same start
and end point. If G is a line string G ∈ Gln, its boundary ∂(G) is
the set containing G’s start and end point. For a point G ∈ Gpt,
’s boundary ∂(G) degenerates to a single point being identical

to G itself. Further, we define the function S : Gln → 2Gln to
eturn the set of all line segments of a line string. More formally,
or a line string G = [(x1, y1), . . . , (xn, yn)] ∈ Gln the set of G’s
egments S(G) is defined as {[(xi, yi), (xi+1, yi+1)]}n−1i=1 .
In the field of computational geometry there are certain fun-

damental operations defined on geometry primitives that are
well studied with respect to their computational complexity. The
fundamental operations used to define our polygon calculus are
given in Table 1. To define a generic intersects relation which
olds whenever two geometry primitives intersect we make use
f the fundamental operations as follows:

efinition 3.1 (Intersects, ). For two geometry primitives G1 ∈ G
and G2 ∈ G the intersects relation (G1,G2) holds if one of the
ollowing cases is true:
5

(G1,G2)
f. . .

G2 =

[(x2, y2)] ∈ Gpt

G2 ∈ Gln G2 ∈ Gpl

G1 =

[(x1, y1)] ∈

pt

(x1, y1) =

(x2, y2)
G1 ⋖ G2

G1 =

[(x1, y1),
. . , (xn, yn)] ∈
ln

(G2,G1) ln (S(G1),
S(G2))

∃(xi, yi) ∈ G1 : Gi =

[(xi, yi)] ⋖ G2 , or
ln (S(G1),S(∂(G2)))

G1 ∈ Gpl (G2,G1) (G2,G1) ∃(x1, y1) ∈ G1 : Gi =

[(xi, yi)] ⋖ G2 , or
ln (S(∂(G1)),S(∂(G2)))

In terms of complexity the most expensive cases for are to
determine whether a line string or a polygon G1 intersects with
nother polygon G2 ∈ Gpl. In both cases the point-in-polygon
heck, linear in the number of the boundary segments of G2, has
o be performed for each line string point if G1 ∈ Gln, and each
oint of the boundary if G1 ∈ Gpl, which amounts to a quadratic
ime complexity in the worst case (i.e. O(N ·M) with N = |S(G1)|,
r N = |S(∂(G1))|, respectively, and M = |S(∂(G2))|).
A function to retrieve the actual points where two polygon

rimitives intersect can, again, be defined based on the respective
undamental operation for sets of line segments [40]. The function
o find intersection points on two geometries of arbitrary type can
hen be defined as follows:

efinition 3.2 (Intersection Points, ≬). Given two geometries
1,G2 ∈ G, the function ≬ : G × G ↦→ 2Gpt is defined by one
f the following cases:

(G1,G2) =
. .

G2 = [(x2, y2)] ∈
Gpt

G2 ∈ Gln G2 ∈ Gpl

G1 =

[(x1, y1)] ∈
Gpt

{G1} if (x1, y1) =
(x2, y2); ∅ otherwise

{G1} if G1 ⋖ G2; ∅ otherwise

G1 ∈ Gln ≬ (G2,G1) ≬ln (S(G1),S(G2)) ≬ln (S(G1),S(∂(G2)))
G1 ∈ Gpl ≬ (G2,G1) ≬ (G2,G1) ≬ln (S(∂(G1)),S(∂(G2)))

Accordingly, ≬ inherits the complexity implications of ≬ .
ln
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Table 2
Definitions of the considered spatial relations.
Relation Definition

Connected With C(G1,G2) := (G1,G2) (C1)

Disconnected From DC(G1,G2) := (G1,G2) (DC1)

Part Of P(G1,G2) := EQ(G1,G2) ∧ PP(G1,G2) (P1)

Proper Part Of PP(G1,G2) := TPP(G1,G2) ∧ NTPP(G1,G2) (PP1)

Identical With EQ(G1,G2) := ((G1,G2 ∈ Gln ∧ G1,G2 ∈ Gpt) ∧ G1 = G2) ∧ (G1,G2 ∈ Gpl ∧ S(∂(G1)) = S(∂(G2))) (EQ1)

Overlaps O(G1,G2) := PO(G1,G2) ∧ P(G1,G2) ∧ P−1(G1,G2) (O1)

Discrete From DR(G1,G2) (G1,G2) ∧ ( (G1, ϵ),G2) for some ϵ > 0 (DR1)

Partially Overlaps PO(G1,G2) :=
(G1 ∈ Gln ∧ ∃Gln ∈ S(G1),Gpt1 ,Gpt2 : {Gpt1 ,Gpt2 } ⊆ ≬ (Gln,G2) ∧ Gpt1 ̸= Gpt2 )∧ (PO1)
(G1 ∈ Gpl ∧ ∃Gln ∈ S(∂(G1)),Gpt1 ,Gpt2 : {Gpt1 ,Gpt2 } ⊆ ≬ (Gln,G2) ∧ Gpt1 ̸= Gpt2 )∧ (PO2)
(∃(xi, yi) ∈ G1, ∃(xo, yo) ∈ G1 : Gi = [(xi, yi)] ⋖ G2 ∧ (Gi, ∂(G2)) ∧ Go = [(xo, yo)] G2)∧ PO3
PO(G2,G1) (PO4)

Externally Connected With EC(G1,G2) := (∀(xi, yi) ∈ G1 : Gi = [(xi, yi)] ⋖ G2 → Gi ⋖ ∂(G2)) ∧ EC(G2,G1) (EC1)

Tangential Proper Part Of TPP(G1,G2) :=
(∀(xi, yi) ∈ G1 : Gi = [(xi, yi)] ⋖ G2)∧ (TPP1)
(∃(xj, yj) ∈ G2 : Gj = [(xj, yj)] ̸ ⋖G1)∧ (TPP2)
((∃(xk, yk) ∈ ∂(G1) : Gk = [(xk, yk)] ⋖ ∂(G2))∧

(∃(xm, ym) ∈ ∂(G2) : Gm = [(xm, ym)] ⋖ ∂(G1)))
(TPP3)

Nontangential Proper Part Of NTPP(G1,G2) := ∀(xi, yi) ∈ G1 : Pi = [(xi, yi)] ⋖ G2 ∧ (∂(G1), ∂(G2)) (NTPP1)

Has Part P−1(G1,G2) := P(G2,G1) (P−11)

Has Proper Part PP−1(G1,G2) := PP(G2,G1) (PP−11)

Has Tangential Proper Part TPP−1(G1,G2) := TPP(G2,G1) (TPP−11)

Has Nontangential Proper Part NTPP−1(G1,G2) := NTPP(G2,G1) NTPP−11

Runs Along RA(G1,G2) :=
G1,G2 ∈ Gln ∧ ∃Gpt1 ,Gpt2 : (RA1)
{Gpt1 ,Gpt2 } ⊆ ≬ (G1,

←→
◦ (G2, d))∧ (RA2)

Gpt1 ≺G1 Gpt2∧ ̸ ∃Gpt3 ∈ ≬ (G1,
←→
◦ (G2, d)) : Gpt1 ≺G1 Gpt3 ≺G1 Gpt2∧ (RA3)

ℓ(G1⊢Gpt1 ,Gpt2⊣
) > 2d (RA4)

Is Near N(G1,G2) := ( (G1, δ),G2) for some fixed δ (N1)

Starts Near SN(G1,G2) := G1 = [(x1, y1), . . . , (xn, yn)] ∈ Gln ∧ N(Gpt1 = [(x1, y1)],G2) (SN1)

Ends Near EN(G1,G2) := G1 = [(x1, y1), . . . , (xn, yn)] ∈ Gln ∧ N(Gptn = [(xn, yn)],G2) (EN1)

Crosses Cr(G1,G2) :=
G1 = [(x1, y1), . . . , (xn, yn)] ∈ Gln∧ (Cr1)

(G1,G2)∧ (Cr2)
Gpt1 = [(x1, y1)] G2 ∧ Gptn = [(xn, yn)] ̸ ⋖G2 (Cr3)
p
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With these fundamental operations a variety of spatial rela-
ions can be defined. These are not limited to the relations from
he RCC but include relations from multiple subdomains of spatial
anguage (cf. Fig. 3). An overview of all proposed relations is given
n Table 2. The respective time complexity considerations are
ummarized in Table 3. The proposed relations are discussed in
he following.

Connected With/Disconnected From. The Connected With rela-
tion corresponds to the fundamental operation intersects intro-
uced above. Accordingly, Connected With is of the same worst
ase time complexity class, i.e. O(N · M) (where N refers to the
umber of points defining the first, and M refers to the number
f points defining the second geometry). However, this worst
ase complexity only applies to cases where the Connected With
elation is checked between either line strings or polygons, and
olygons. All other cases have more favorable complexities. Since
isconnected From only holds if Connected With does not hold, the
ame complexity considerations apply.
Identical With. Two points (line strings) are considered equal if

hey are defined by the same (sequence of) coordinates. This can
bviously be evaluated in linear time. However, in case of poly-
ons, we consider them as equal if they are defined by the same
ircular sequence modulo the starting point. This means that the
 c

6

olygons defined by the sequences [p1, p2, p3, p1], [p2, p3, p1, p2]
nd [p3, p1, p2, p3] are all considered identical. However, since

we are assuming polygons defined in clockwise order this does
not affect the worst case time complexity of the Identical With
relation. Note that in practice, definition 2 can be, and usually
is, relaxed to also consider two line strings as equal if they are
defined by the same points, but in inverse order.

Tangential Proper Part Of. The Tangential Proper Part Of relation
requires that one geometry G1 has to be inside a containing
geometry G2 (which already takes quadratic time to check in the
worst case with respect to the number of (boundary) segments of
the geometries) (cf. line (TPP1)), and at least one of G1’s defining
oints has to lie on G2’s boundary (cf. line (TPP3)). Further, at
east one of G2’s defining points has to lie outside G1 to establish
proper part relation ruling out spatial identity. As already noted
bove in the worst case these checks require quadratic time in
erms of the number of line segments of the involved geometries.

Nontangential Proper Part Of. For a geometry G1 to be a non-
angential proper part of a containing geometry G2 all defining
oints of G1 have to be inside G2, whereas the boundaries of both
eometries must be disconnected. The required point-in-polygon

heck for each of G1’s defining points, as well as the intersection
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Table 3
Worst case time complexity considerations of the proposed spatial relations. N and M refer to the respective number of coordinates
(xi, yi) that define the point(s), line string(s), or the boundary line(s) of the polygon(s) evaluated for the respective spatial relation
to hold.
Relation Time Complexity

Connected With O(N ·M)
Disconnected From O(N ·M)
Part Of O(N ·M)
Proper Part Of O(N ·M)
Identical With O(N)
Overlaps O(N ·M)
Discrete From O(N · (M + log(n))) where n is the number of monotone chains in the (boundary of the) first

geometry
Partially Overlaps O(N ·M)
Externally Connected With O(N ·M)
Tangential Proper Part Of O(N ·M)
Nontangential Proper Part Of O(N ·M)
Has Part O(N ·M)
Has Proper Part O(N ·M)
Has Tangential Proper Part O(N ·M)
Has Nontangential Proper Part O(N ·M)
Runs Along O(M · log(m)+ (N +M) · log(N +M)+ K · log(K )) where m is the number of monotone chains

in the second line string, and K is the number of intersection points of the first line string
and the boundary of the second line string’s buffer polygon

Is Near O(N · (M + log(n))) where n is the number of monotone chains in the (boundary of the) first
geometry

Starts Near O(M)
Ends Near O(M)
Crosses O(N ·M)
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check have a quadratic worst case complexity in the number of
segments of the geometries involved.

Proper Part Of. A geometry G1 is a proper part of a geometry
G2 either if G1 is a tangential, or a nontangential proper part of
G2. As both Tangential Proper Part Of and Nontangential Proper
Part Of have a worst case time complexity being quadratic in the
number of (boundary) line segments of the geometries involved,
this complexity class also applies to Proper Part Of.

Part Of. A geometry G1 is part of a geometry G2 either if G1 is
dentical with G2, or if G1 is a proper part of G2. Accordingly, the
orst case time complexity is dominated by the harder of both
elations, which is Proper Part Of being quadratic in the number
f (boundary) line segments of the geometries involved.
Partially Overlaps. In general a line string or polygon G1 par-

ially overlaps with another geometry G2 if either (i) there is
line segment of (the boundary of) G1 that has at least two
istinct intersection points with (the boundary of) G2 (cf. lines

(PO1) and (PO2)), or (ii) if one can find two distinct points of
(the boundary of) G1 such that one of them lies inside G2, and
the other point lies outside G2 (cf. line (PO3)). Obviously this
rules out the possibility of points partially overlapping with any
other geometries. Since the intersection and point-in-polygon
tests need to be performed for each (boundary) segment and
point, respectively, this renders Partially Overlaps quadratic in
erms of its worst case time complexity and the number of
boundary) line segments of the geometries involved.

Overlaps. Two geometries G1 and G2 overlap, either if they
artially overlap, or if one geometry is part of the other. As both
ptions are quadratic in the number of (boundary) line segments
f the geometries involved, the worst-case time complexity of
verlaps is also quadratic.
Discrete From. The relation of two geometries being discrete

from each other cannot really be handled by our formalism.
Following the definition of [6], two polygon primitives are con-
sidered discrete from each other if they are not overlapping. For
open regions, i.e. where a region’s boundary is not part of the
region itself, as considered in [6], this allows two concretizations,
namely (i) the case of being disconnected, i.e. where neither
the regions nor their boundaries intersect, and (ii) the case of
being discrete from each other where the regions do not inter-
sect, but the boundaries do. When considering closed regions,
7

i.e. when a geometry’s boundary is considered being part of the
geometry, the Discrete From relation does not really fit into the
hierarchy in Fig. 2 anymore. Applying the same definition of non-
intersecting interiors and intersecting boundaries of the involved
regions Discrete From would simply coincide with the Externally
onnected With relation. Our closest interpretation would be that
wo geometries are discrete from each other if they are located
directly side by side, as, e.g., cargo containers tightly put back
to back on a wagon. How close two geometries must be to be
considered ‘directly side by side’ obviously is a use case-specific
setting, captured by the ϵ parameter in definition (DR1). The
worst case time complexity is then dominated by the intersects
relation but also inherits the superlinear portion from the buffer
operation. Please note that even though we provide a definition
for Discrete From in Table 2, we consider the practical relevance
of this spatial relation as limited and thus do not consider it in
the following.

Externally Connected With. To test whether two geometries G1
and G2 are externally connected one has to verify that whenever
a (boundary) point of G1 lies inside G2, this point has to be
exactly on G2’s boundary. Accordingly, the point-in-polygon test
as to be performed for each point in (the boundary of) G1 and

thus, the worst case time complexity for deciding the Externally
onnected With relation is quadratic in the number of segments
f the geometries involved.
Runs Along. The chosen definition of the Runs Along relation

s motivated by the goal to be able to handle noisy trajectories
nd learn concept expressions for movement data. Since it is
nlikely that the points of GPS traces are exactly on a line string,
.g. representing a bike lane, a robust definition with respect
o spatial inaccuracies is crucial to guarantee meaningful spatial
oncept learning. First of all, this relation can only hold between
wo line strings, e.g. a movement line string GM running along a
ine string GS representing a street, side walk, river, etc. The main
dea is to consider the buffer of the line string GS , a movement
ine string runs along, i.e. the buffer of, e.g., a street, side walk,
r river line string. The buffer offset corresponds to the degree
f inaccuracy one wants to be able to handle and is a use case-
pecific setting. Further, it is assumed that the line string GM
epresenting a movement is longer than the line string G it
S
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Fig. 5. Example of a move (represented by the line string running from right to left) running along a road segment (represented by the line string in the center).
he calculation of the Runs Along relation is based on intersection of the move line segment with the buffer (with offset d) of the road segment line string. The
ove line string runs along the road line segment if the intersection of both (thick green line) has a length greater than 2 · d.
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uns along and thus has at least two intersection points with
he buffer of GS – ideally exactly two, one on each front side
cf. Fig. 5). Now, if one cuts the movement line string GM at two
consecutive intersection points, say Gpt1 and Gpt2 , (represented by
the expression GM⊢Gpt1 ,Gpt2⊣

in Table 2) it should have a certain
length to be considered as running along the other line string GS .
We require this length to be greater than twice the buffer offset to
rule out (orthogonally) intersecting line strings being counted as
line strings running along GS (cf. Fig. 5). Accordingly, this involves
the computation of the buffer operation, the intersects relation,
linear referenced sorting to find consecutive intersection points
on GM , and the computation of a line string’s length. Hence,
the resulting time complexity is superlinear and depends on the
number of segments in GM and GS , the number of monotone
chains in GM , and the number of intersection points.

Is Near. To capture the notion of two geometries G1 and G2
being near each other we make use of the buffer operation. If
applied to one of the geometries, say G1, then G1 and G2 are near
each other, with respect to a use-case specific vicinity threshold δ,
if←→◦ (G1, δ) and G2 intersect. Time complexity-wise this amounts
to O(N · log(n)) for the buffer operation, and O(N · M) for the
intersection check, with N being the number of segments in G1,
n being the number of monotone chains in G1, and M being the
number of segments in G2.

Crosses. For a line string to cross another geometry we require
that both intersect, and that the line string’s start and end point
are not inside the geometry to test against. The dominating
fundamental operation is the intersection test which makes the
computation of the Crosses relation quadratic in the number of
the geometries’ segments. We have to note that since our defi-
nition does not rule out points to be crossed, the Crosses relation
might coincide e.g. with the Connected With relation. However, for
geospatial concept learning, especially for cases involving motion
data, we considered it useful and more intuitive to be able to state
the crossing of spatial features modeled as simple points, e.g. to
state that someone crossed a gate.

Having introduced the formal foundations of how to compute
whether a certain spatial relation holds between two geometries,
in the next section we will propose how to embed this formalism
into Description Logics. This concerns the modeling of spatial
entities in a domain of discourse and their underlying geometries,
as well as the representation of spatial relations themselves.

4. Spatial inference on geospatial polygon data in Description
Logics

Description Logics are a family of languages for representing
knowledge of a considered domain of discourse, and further-
more provide means for reasoning about it. A knowledge base
expressed in a Description Logic language usually comprises a

defined terminology, called TBox, providing the vocabulary for

8

describing the domain of discourse. This vocabulary can be used
to make assertions about individuals of the considered domain,
which are stored in the knowledge base’s ABox. The vocabulary
includes concepts, also called classes, and roles. Whereas concepts
represent sets of individuals, roles stand for relations between
individuals. Besides this, a Description Logic language provides a
set of constructors to build complex concepts and roles.

Concepts are referred to via capital letters A, B, C , D (optionally
with indexes). In particular, A and B shall denote atomic, i.e. non-
complex, concepts. The set of all atomic concept names contained
in a knowledge base is given by NC . Roles are named by the upper
case letters R, S (optionally with indexes), and the lower case
letters a, b (optionally with indexes) represent individuals. The
sets NR and NI contain, respectively, all role names, and the names
of all named individuals that occur in a knowledge base. The
Description Logic language considered here allows one to form
concepts according to the following syntax rule:

C,D −→A | (atomic concept)
⊤ | (universal concept)
⊥ | (bottom concept)
¬C | (negation)
C ⊓ D | (intersection)
C ⊔ D | (union)
∀R.C | (value restriction)
∃R.C | (existential restriction)
≥ n R.C | (qualified number restriction)
≤ n R.C | (qualified number restriction)
= n R.C | (qualified number restriction)
{a1, . . . , an}(nominals)

he semantics of a knowledge base K is defined by an interpreta-
ion I comprising the non-empty set ∆I called the domain of the
nterpretation, and an interpretation function ·I . The interpreta-
ion function assigns to every concept C a set CI

⊆ ∆I , and to
very role R a binary relation RI

⊆ ∆I
×∆I .

⊤
I
= ∆I

⊥
I
= ∅

(¬C)I = ∆I
\ CI

(C ⊓ D)I = CI
∩ DI

(C ⊔ D)I = CI
∪ DI

(∀R.C)I = {aI ∈ ∆I
|∀bI .(aI, bI) ∈ RI

→ bI ∈ CI
}

(∃R.C)I = {aI ∈ ∆I
|∃bI .(aI, bI) ∈ RI

∧ bI ∈ CI
}

(≥ n R.C)I =
{
aI ∈ ∆I

| |{bI |(aI, bI) ∈ RI
∧ bI ∈ CI

}| ≥ n
}

(≤ n R.C)I =
{
aI ∈ ∆I

| |{bI |(aI, bI) ∈ RI
∧ bI ∈ CI

}| ≤ n
}

(= n R.C)I =
{
aI ∈ ∆I

| |{bI |(aI, bI) ∈ RI
∧ bI ∈ CI

}| = n
}

{a1, . . . , an}I = {aI1 , . . . , aIn }

Besides this so called abstract domain ∆I Description Logics
were extended to support concrete domains like real numbers,
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Fig. 6. Overview of the relation between spatial features and geometries.

integers, strings etc. We will introduce the polygon geometry
domain here and refer to [43] for definitions of further concrete
domains. To relate an individual aI ∈ ∆I to its polygon geometry
nformation Ga ∈ G we introduce the concrete role G with GI

⊆

∆I
× G.
Apart from declaring a vocabulary, a knowledge base’s TBox

may contain statements about how concepts and roles relate to
each other. One kind of such TBox statements are subsumption
axioms C ⊑ D, or R ⊑ S expressing that the concept C is a sub-
oncept of D, i.e. CI

⊆ DI , and R is a sub-role of S, i.e. RI
⊆

I , respectively. Furthermore, one can express concept and role
quivalences, or name complex concepts by means of definitions
ike Mother ≡ Woman ⊓ ∃hasChild.Person. Another kind of TBox
xiom are role domain and range axioms. For an ABox assertion
(a, b), stating that (aI, bI) ∈ RI , the role domain declaration
R.⊤ ⊑ C allows to infer that C(a), i.e. aI ∈ CI . A corresponding
ange declaration ⊤ ⊑ ∀R.D, on the other hand allows to infer
hat D(b), i.e. bI ∈ DI .

Following the suggestions of the Basic Formal Ontology ap-
roach [44] a spatial feature is a continuant (i.e. something that
‘continue[s] to exist through time’’ [44]) that can either be inde-
endent and material (e.g. buildings, statues, roads), independent
nd immaterial (e.g. countries, administrative areas) or a gener-
cally dependent continuant (e.g. any information artifact), and
as a spatial region (be it 0-, 1-, or 2-dimensional) associated
ith it. A spatial feature’s geometry information is expressed in
he concrete domain G and is not directly attached to the feature
ndividual itself. To be able to make assertions about a feature’s
patial extension a dedicated geometry individual is introduced
hich carries the region information. The role I

⊆ ∆I
×

I expressing the association between a spatial feature and its
eometry is termed geometry link. A geometry link can be an
tomic role or a role chain. However, we assume the hasGeometry
ole defined in the GeoSPARQL specification [23] as a default
hich is declared as a relation between features and geometries.
llowing the geometry link to be an arbitrary role (chain) shall
erely ensure flexibility to also support knowledge bases which
ake use of proprietary vocabularies or follow different modeling
pproaches.
To better distinguish spatial features from geometries, a ded-

cated notation is used. Individuals representing spatial features
re expressed as lower-case letters with a map marker (optionally
ith indexes) a , b with a I, b I

∈ ∆I . By convention, all
eature individuals are instances of a dedicated spatial feature
lass C with C I

⊆ ∆I . Geometry individuals are denoted by
ower-case letters with a geometry icon (again, optionally with
ndexes) a , b with a I, b I

∈ ∆I . We expect the geometry
ink role to be functional and define the function (a I) to
eturn a spatial feature’s geometry following the geometry link.
gain, we assume that the concrete role G relating a geometry
 C

9

individual to its polygon geometry value G ∈ G is functional and
introduce the function fG(a ) to return this polygon G.

As mentioned above, we follow the approach of [19] and
aim to model spatial relations as relations between individuals,
not as relations defined on concrete domains. Moreover, in our
conceptualization, spatial relations are defined between spatial
features, not on the actual geometry individuals. We argue that
this yields more intuitive expressions in the concept learning
setting as one can come up with expressions like ∃isNear.Station,
∀runsAlong.CycleLane which are shorter and better align with
the usage of such spatial relations in natural language. So, given
a knowledge base containing spatial information expressed in
the way described above we extend the set of role names NR
by the set NR such that for each spatial relation S ∈ S =
{C,DR,O, P, P−1, . . .} defined in Table 2 NR contains a new role
RS . Further, we extend the TBox to also comprise domain and
range declarations for all RS ∈ NR . For all RS domain and
range are set to C . In addition to the assertions stated in the
ABox of the given knowledge base we introduce an additional
set of assertions, ABox . For each spatial relation S ∈ S the
ABox then contains spatial role assertions RS(a , b ) that hold iff
S(fG( (a I)), fG( (b I))) holds. An overview of the relations
between spatial features and geometries is given in Fig. 6.

Having introduced means to express when a certain spatial
relation holds between individuals of a domain of discourse,
we can now extend the concept learning formalism to also use
the spatial context of individuals to inductively learn classifying
concept descriptions.

5. Spatial concept learning

The main concept learning problem considered here is to
inductively learn a (usually complex) concept describing a set of
observed individuals from NI . Given

• the set N+ = {a+1 , a+2 , . . .} ⊆ NI of positive examples, and
• the set N− = {a−1 , a−2 , . . .} ⊆ NI of negative examples

a target concept Ct shall be learned, such that for an underlying
knowledge base K

• K |H Ct (a+i ) for all a
+

i ∈ N+, and
• K ̸|H Ct (a−i ) for all a

−

i ∈ N−.

o achieve this, we follow a refinement-based approach for con-
ept learning [36] and extended the existing CELOE algorithm [37]
o account for the specifics of spatial data and the spatial infer-
nce considerations introduced in the previous section. A refine-
ent operator is defined as follows:

efinition 5.1 (Refinement Operator). Given a quasi-ordered space
Σ,⪯), a downward (upward) refinement operator ρ is a map-
ing from Σ to its power set 2Σ such that for any C ∈ Σ we have
hat C ′ ∈ ρ(C) implies C ′ ⪯ C (C ⪯ C ′). C ′ is called a specialization
generalization) of C .

The quasi-ordered space considered here is (ALCHOQ(D),
), i.e. the Description Logic language introduced in Section 4
nd concept subsumption ⊑. CELOE uses an iterative downward
efinement approach, i.e. starting with a very general concept Ct ,
n each step a number of more specific concepts C ′t are derived,
uch that C ′t ⊑ Ct . Respective refinement rules can consider
he concept hierarchy or apply concept or role constructors. To
ive a few examples of such refinement steps, assuming the
oncept subsumption D ⊑ C1, the role subsumption S ⊑ R,
nd an arbitrary concept C2, the following derivations are valid
ownward refinements steps (⇝ denotes a refinement step):
1 ⇝ D C1 ⇝ (C1 ⊓ C2) ∃R.C1 ⇝ ∃S.C1
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R.C1 ⇝ ∃R.D ∃R.C1 ⇝ (∃R.C1 ⊓ C2) ⊤ ⇝ C2

Those refinements that improve a certain learning heuristic
score (e.g. accuracy, concept complexity) will then be consid-
ered in future refinement rounds whereas poor refinements not
improving the currently best solution, or with a score below a
certain threshold, will be discarded. For our spatial concept learn-
ing approach we extended the refinement operator ρ introduced
in [37] with the following rule:

ρ1 (C) = {∃RS .C |C ≡ C ∧ RS ∈ NR }

∪{∀RS .C |C ≡ C ∧ RS ∈ NR } (1)

This means that each spatial feature individual is in some way
related to at least another spatial feature individual via each
of the spatial roles, and only to spatial feature individuals. For
the Part Of relation, this would translate to the statement that
a spatial feature is something that is part of some other spa-
tial feature. This rule follows the intuition behind Tobler’s ‘First
Law of Geography’ [45] claiming that usually a spatial feature
is somehow spatially related to its environment. This holds in
particular in Description Logics where the open world assumption
is applied. This means that the absence of an assertion does not
imply that the assertion does not hold, but just that it is unknown
whether it holds. Accordingly, by applying ρ1 we add existen-
ial and universal restrictions on the introduced spatial roles in
R .
Further, the roles in NR also extend the role hierarchy reflect-

ing the RCC hierarchy illustrated in Fig. 2 which is taken into
account by means of the following refinement rule:

ρ2 (∃R.C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{∃RO.C, ∃RP.C, ∃RP−1 .C,

∃RPP.C, ∃RPP−1 .C, ∃RPO.C,

∃RTPP.C, ∃RNTPP.C, ∃REQ.C,

∃RTPP−1 .C, ∃RNTPP−1 .C, ∃REC.C,

∃RCr.C}

if R = RC

{∃RP.C, ∃RP−1 .C, ∃RPP.C,

∃RPP−1 .C, ∃RPO.C, ∃RTPP.C,

∃RNTPP.C, ∃REQ.C, ∃RTPP−1 .C,

∃RNTPP−1 .C, ∃REC.C, ∃RCr.C}

if R = RO

{∃RPP.C, ∃RTPP.C, ∃RNTPP.C, ∃REQ.C} if R = RP

{∃RPP−1 .C, ∃REQ.C,

∃RTPP−1 .C, ∃RNTPP−1 .C}
if R = RP−1

{∃RTPP.C, ∃RNTPP.C} if R = RPP

{∃RTPP−1 .C, ∃RNTPP−1 .C} if R = RPP−1

{∃RSN .C, ∃REN .C} if R = RN

(2)

An analogue refinement rule was added for concepts of the
orm ∀R.C .

omputational complexity of spatial concept learning. The concept
earning approach introduced above can be seen as an itera-
ive ‘generate-and-test’ procedure where (spatial) concept ex-
ressions generated by the refinement operator are evaluated
ith respect to their fitness for discriminating between positive
nd negative examples. The additional refinement rules ρ1 and
2 have no impact on the overall learning complexity as they

only require a concept equivalence check for ρ which does not
1 t

10
involve any spatial reasoning, and a check of the role name in ρ2
which does not need any automated reasoning at all. However,
instance checking, being the core of many of the evaluation
metrics (e.g. accuracy, F1-score, etc.), needs a closer considera-
ion. For any concept expressions not containing any existential,
niversal or number restrictions on a spatial role r ∈ NR , the

general complexity implications for the supported Description
Logic language apply. In our case, the extended downward oper-
ator ρ generates concepts from ALCHOQ and further supports
oncrete roles. To the best of our knowledge, the complexity
lass for instance checking in ALCHOQ is unknown, however,
or the less expressive language ALCOQ it is already PSpace
omplete (with respect to the knowledge base size). For any sub-
oncept being an existential, universal or number restriction on
spatial role RS ∈ NR , for any instance of the respective role

filler D, all members of the spatial relation RS (and its super-roles
RS↑) need to be found. So, an operation being quadratic on the
number of segments of the involved features’ geometries would
be executed |{a|D(a)}| ·

⏐⏐{b|C (b)}
⏐⏐ · ⏐⏐{RS↑|RS ⊑ RS↑ ∧ RS↑ ∈ NR }

⏐⏐
times. In practical terms, this computation of all members of a
given individual and spatial relation lends itself for caching, such
that in the long run the lookup of the related spatial features
for a spatial role RS is constant in most of the cases, given
that the underlying knowledge base does not change and the
cache size is big enough to stabilize on an acceptable cache hit
rate.

Myopia in spatial concept learning. As already mentioned above,
one particular characteristic regarding spatial data is that usually
spatial features are somehow spatially related to other spatial
features, or as Tobler put it in his ‘First Law of Geometry’: ‘‘ev-
erything is related to everything else, but near things are more
related than distant things’’ [45]. This has some implications
on the refinement-based concept learning approach. Taking an
arbitrary refinement for a concept C with C ≡ C , e.g. ρ1 (C) =
∃RN.C , i.e. refining a class covering spatial feature individuals
to the class of individuals that are near some spatial feature
individual, this is unlikely to increase the heuristic score and
thus might be ignored in future refinements rounds. Usually this
rather generic spatial refinement is not discriminative with re-
spect to the positive and negative examples used in the respective
concept learning setting and thus could well be discarded and
ignored on future refinement rounds. However, there might be
a concept D ⊏ C which could lead to a discriminative concept
expression ∃RN.D if a further refinement step was performed.
o give a more illustrative example, consider the set of positive
xamples are individuals representing traffic lights, and the set
f negative examples being arbitrary spatial features not being a
raffic light. Having the refinement ∃RN.C (i.e. something that is
near a spatial feature) would likely cover positive and negative
examples to the same extent and thus lead to a poor score.
Nonetheless, if we had the subsumption axiom Road ⊏ C in
our TBox, a further refinement of ∃RN.C would lead to ∃RN.Road
which would in fact give a distinctive concept description of
traffic lights. To overcome this myopic behavior, we modify ρ1
to perform a multi-step refinement as follows:

ρ1′ (C) ={∃RS .C↓ |C ≡ C ∧ RS ∈ NR ∧ C
↓
∈ ρ(C )}∪

{∀RS .C↓ |C ≡ C ∧ RS ∈ NR ∧ C
↓
∈ ρ(C )}

(3)

Here C
↓
stands for any direct sub-concept of the spatial feature

concept. Hence, in the above example it would not need two
refinements, as in C ⇝ ∃RN.C ⇝ ∃RN.Road, but it could be
directly derived that C ⇝ ∃RN.Road which remedies myopia in
he concept learning process.
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Fig. 7. Overview of the main components of the DL-Learner framework which were extended to provide the spatial concept learning capabilities.
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. Implementation

The proposed adaptions for the Class Expression Learning for
ntology Engineering (CELOE) approach [37] mentioned above can
e summarized as follows: (i) A calculus to embed the inference
f spatial relations between feature individuals into Descrip-
ion Logics reasoning, and (ii) extended refinement rules for a
efinement-based inductive class expression learning algorithm.
eing implemented in the DL-Learner [31] framework for su-
ervised Machine Learning in OWL, RDF and Description Logics,
ELOE makes use of certain components as sketched in Fig. 7.
he main components of interest here are an extended ‘spa-
ially aware’ reasoning component which implements (i), and an
dapted refinement operator providing the extended rule set of
ii). Moreover, as mentioned above, we provide a CELOE-based
mplementation of a learning algorithm component. Fig. 7 also
ketches CELOE’s generate-and-test loop making use of the ex-
ended refinement rules and the extended reasoner component.

For the extended reasoning component to infer spatial rela-
ions, we make use of the established free software database
ystem PostgreSQL11 with its PostGIS12 database extension. To
ntegrate PostGIS’ capabilities for running complex queries on
even large scale) spatial information in an optimized manner we
irror spatial information of geometry individuals in a PostGIS
atabase when a knowledge source is loaded. Hence, internally
ll reasoning requests are routed to PostGIS, or to an off-the-
helf Description Logic/OWL reasoner used behind the scenes, or
oth, depending on whether the request refers to spatial aspects,
on-spatial aspects, or both, respectively. In our experiments we
sed the Pellet13 OWL reasoner for the non-spatial reasoning
art. For the requests referring to spatial inference bits, tailored
QL queries are instantiated from query templates, in accordance
ith the semantics of the definitions in Table 2, and run against
he PostGIS back-end for spatial inference. The extended reasoner
omponent is able to resolve geometry links in both directions
o integrate the ‘spatial’ role assertions between spatial feature
ndividuals into the overall reasoning task.

11 https://www.postgresql.org/.
12 https://postgis.net/.
13 https://github.com/stardog-union/pellet.
11
Even though the PostGIS extension provides a highly opti-
mized query performance for spatial queries, database access still
imposes a performance penalty during the concept learning pro-
cess compared to native memory access. However, we argue that
having a specialized and established database management sys-
tem in place for this task is reasonable especially for bigger spatial
datasets, since implementing all the database system features
like memory management and indexing structures inside the
extended reasoner component would be infeasible. To speed up
the spatial inference part of reasoning requests we implemented
caching mechanisms in the extended reasoner component to
avoid database access where possible. Further, dereferencing the
geometry link, back and forth, requires (non-spatial) reasoner
access which may be costly, especially in the reverse direction.
As such dereferencing is needed for almost all spatial inference
operations, individuals related via a geometry link are cached as
well.

7. Evaluation

In this section, we provide an overview of different exper-
iments we performed to evaluate the implementation of the
proposed spatial concept learning approach. First, we consider
the spatial inference part where we concentrate on scalability
concerns. In the second part, we report different spatial concept
learning scenarios and discuss their outcomes. All experiments
were executed on a machine with an Intel Xeon CPU (2.10 GHz,
32 cores) and 128 GB of RAM. We ran experiments with the latest
version of the DL-Learner framework with its spatial concept
learning extensions available in the feature/spatial2 branch on
itHub.14

.1. Spatial inference

Goal. In Section 3, we defined 19 spatial relations and esti-
ated their worst case time complexities (cf. Table 3). The main
utcome was that the computation of most of the relations re-
uires quadratic time in terms of the overall number of segments
f the geometries involved. On the more favorable side, there are
xceptions like Identical With, Starts Near and Ends Near which

14 https://github.com/SmartDataAnalytics/DL-Learner/tree/feature/spatial2.

https://www.postgresql.org/
https://postgis.net/
https://github.com/stardog-union/pellet
https://github.com/SmartDataAnalytics/DL-Learner/tree/feature/spatial2
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Fig. 8. Histogram showing the occurrences of geometries of different sizes (with
respect to the number of defining points) in the OpenStreetMap dataset of
Saxony, Germany.

only require linear time in the number of segments of one of the
involved geometries. More demanding relations require a time
complexity slightly worse than quadratic effort in the overall
number of segments of the geometries involved. To get a more
realistic impression on actual scalability concerns of the extended
reasoner component, especially with respect to the PostGIS back
end and its implementations of functions for retrieving spatial
relations [46], we ran experiments on synthetic datasets with
increasing geometry sizes. We measured the runtimes to retrieve
all pairs of features spatially related via a certain spatial role.

Dataset. We generated a range of datasets of different ge-
ometry sizes and computed all spatial relations. To mimic real
world use cases we first examined data from OpenStreetMap.
As an example, Fig. 8 shows the histograms for sizes of line
string and polygon geometries of the dataset covering the German
state Saxony. One can see that the line string and polygon sizes
form distributions with a long tail. Hence, for our scalability
experiments we considered geometry sizes from 3 to 20 defining
points, which covers characteristics of the majority of geome-
tries, leaving bigger and less likely geometry sizes out. For each
such dataset, a point, a line string, or a polygon was created
with the same probability of 1

3 until a total of 500 geometries
as reached. Each point was picked uniformly from a rectangle
ith a defined center point and dimensions. For line strings the

irst geo-coordinate was picked in the same manner. However,
ll the other geo-coordinates were picked from a neighborhood
efined by a normal distribution having the previously generated
oordinate as its center and µ = 0.0005 degrees (both for
ongitude and latitude). To generate smooth line strings and avoid
elf-intersections, all generated coordinates are appended to the
ine string based on their shortest distance to the currently last
oordinate. The number of coordinates is always fixed accord-
ng to the considered geometry size, i.e. 3, 4, . . . , 20. The start
oordinates of random polygons to generate are chosen in the
ame way. Offsets are randomly picked between 0 and 1, for the
ongitude and latitude. Having, e.g., the coordinate (1.0, 0.5) and
he randomly picked offsets (0.62, 0.23) the candidate coordinate
or the next boundary point would be (1.62, 0.73). However, to
nsure that we have mostly non-self-intersecting, convex poly-
ons, we scale the cth offset’s longitude by cos

(
c · 2πn

)
and its

atitude by sin
(
c · 2πn

)
where n is the overall number of defining

oundary points and c starts with 0. For n = 4 this means that the
longitude offset of the second coordinate is kept as is, whereas
its latitude offset is squashed to 0; the third longitude offset is
squashed to 0, but the third latitude offset is kept as is, and so
on. The procedure is sketched in Fig. 9. For each geometry size
five datasets were generated.

Results. The average runtimes, per geometry size, to infer all
feature pairs for which the respective spatial relation holds are
reported in Fig. 10. The first main outcome of the experiments
12
is that in terms of their required runtime the spatial relations
can roughly be grouped into three categories: those that seem to
be easy to infer (upper diagram in Fig. 10), the midfield (middle
diagram in Fig. 10), and those that seem to be expensive to
infer (lower diagram in Fig. 10). However, none of them show
clear quadratic behavior which suggests that the worst case time
complexities are rarely reached on real world data, or, that the
quadratic behavior is not dominant for common geometry sizes,
as, e.g., found in OpenStreetMap. This further suggests that the
overall approach is applicable in practice despite its demanding
theoretical computational characteristics. Other than expected
the three main complexity classes reported in Table 3 (linear,
quadratic, worse than quadratic) do not clearly match the three
classes we found in our evaluation. Whereas the Identical With
relation seems to be the easiest to infer, which does reflect its
theoretical linear worst time complexity we reported in Table 3,
the other two relations having linear worst time complexity in
theory, namely Starts Near and Ends Near, appear in the midfield
and thus show much worse time complexity behavior than an-
ticipated. This may be attributed to the fact that we assumed a
buffer disc approximation for buffer operations applied to points,
which is fixed in the number of defining boundary points. The
ST_Buffer function of the PostGIS database system we used to
implement Starts Near and Ends Near, however, might provide
a less approximative solution which is more expensive, time-
wise. Regarding the spatial relations that have the least favorable
complexity classes, namely Runs Along and Is Near, the experi-
ments support our estimations, however rather seem to suggest
that in practice the relations can still be inferred in linear time.
The upper chart in Table 3 shows an interesting behavior of
the PostGIS database system, namely that for some relations the
execution times slightly drop as the size of geometries increase.
We attribute this behavior to internals of the database system
which we did not further investigate.

7.2. Spatial concept learning

In this section we present experiments demonstrating concept
learning with automatic spatial inference as introduced in Sec-
tion 5. We created two main learning scenarios with positive and
negative examples, as well as a background knowledge base with
spatial information. We applied the proposed extension of the
CELOE algorithm to learn concept descriptions including spatial
relations inferred by the reasoner component. For evaluation
purposes we concentrate on the accuracy of the learned concept
descriptions which serve as binary classifiers. Furthermore, we
report runtime measures.

7.2.1. Car-friendly hotel learning scenario
Goal. In the car-friendly hotel learning scenario we refer to

an artificial example environment introduced by Lutz and Miličić
for their attempt to perform automatic reasoning with concrete
domains and RCC-8 [17]. The main idea is to imagine a hotel with
a reception area, rooms and a car park. Examples of both a car-
friendly and a ‘car-unfriendly’ hotel are given in Fig. 11. Whereas
in Fig. 11(a) one can reach the reception area directly from the car
park through the main entrance, in Fig. 11(b) people arriving by
car have to walk around the whole hotel to enter. Other examples
for car-unfriendly hotels are possible, too. Besides the option of
not having a car park, the car park could be externally connected
to the hotel in the north or the south, or not connected at all. Lutz
and Miličić provide a target description which can be translated
to the following concept in our formalism:

CarFriendlyHotel ≡Hotel⊓

∃isExternallyConnectedWith.(
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Fig. 9. Example of generating a random non-intersecting quadrangle. Dotted lines represent offset ranges (in longitude and latitude direction) to randomly choose
from. The colored numbers next to the dotted lines are the scaling factors for the respective longitude and latitude offsets. Numbers in circles denote the index of
the polygon’s boundary points.
Fig. 10. Runtimes for finding all feature pairs for which a certain spatial relation
holds. The features’ geometries are scaled from 3 to 20 points. The overall
dataset sizes are always 500 features. The reported numbers are the average
over five different randomly generated datasets per geometry size.

CarPark⊓

∃isExternallyConnectedWith.Reception)

ith Hotel, Reception and CarPark being sub-concepts of the
eature class C .

Dataset. To inductively learn this concept expression through
ositive (i.e. car-friendly) and negative (i.e. car-unfriendly) exam-
les, we wrote a dataset generator which can create either type
f hotel and puts them on random geo-coordinates ensuring that
o two hotel instances intersect. Since hotels (together with their
ooms, receptions and parking lots) are the only spatial features
n this experiment, the target concept simplifies to

arFriendlyHotel ≡∃isExternallyConnectedWith.(
∃isExternallyConnectedWith.Reception)

hich is equivalent to (but shorter than) the target concept
escription derived from [17]. For our experiment we generated
0 car-friendly and 50 car-unfriendly hotels. The car-unfriendly
13
hotels either have no car park, have the car park externally
connected to the hotel, but not to the reception area, or have a
car park disconnected from the hotel. Each option is chosen with
the same probability of 1

3 .
Results. We ran the spatial concept learning approach pre-

sented in Section 5 in a 10-fold cross-validation setting. For each
fold we allotted an execution time of 10 s. In all folds the ten
best learned concepts all achieved a classification accuracy and
F1-score of 1.0. The results occurring in the top 10 results of all
folds are shown in Table 4 with their average ranking. It can be
seen that the best learned concept across all folds equals the
simplified target concept mentioned above. The more complex
concept closest to the description derived from [17] was among
the top five solutions in all folds (with an average ranking of 4.8).
This concept is ranked lower despite having a perfect accuracy
because it got a lower score as the learning algorithm favors short
and human readable concepts over more complex ones.

To better show the capabilities of the proposed learning algo-
rithm to effectively overcome myopia in spatial concept learning
we slightly adapted the experiment setting. We, again created 50
positive and 50 negative examples, however this time all negative
examples had a car park externally connected with the hotel.
The only distinction would be whether this externally connected
car park is by itself externally connected with the reception
area, or not (cf. Fig. 11). Accordingly, the intermediate result
∃isExternallyConnectedWith.C would not be distinctive as it fully
covers both the set of positive and negative examples. Hence, a
greedy learning algorithm with a myopic behavior would never
pass this ‘plateau’ getting stuck with a rather weak solution.

This setting required a longer execution time than 10 s as
fully accurate solutions were only found after 15.265 s (averaged
over the ten folds). So we adjusted the maximum execution
time to 30 s. In all ten folds the top 10 ranked solutions are
the same. Table 5 lists the learned concepts with their rank-
ings. First of all, one can see that the search space was ex-
plored in a slightly different way. Instead of focusing on refining
∃isExternallyConnectedWith.C all top 10 solutions contain a uni-
versal restriction. This would render hotels, not having a car
park at all, car-friendly. However, since in this adapted sce-
nario such hotels were not explicitly labeled as negative exam-
ples the results are nonetheless correct. Further one can find
longer result concepts, ranked from 7 to 10 even with redun-
dant parts. (∀startsNear.Room can only be fulfilled trivially since
CarPark cannot start anywhere by the definition of the Starts
Near relation.) Overall, all top 10 results in all folds had a per-
fect classification accuracy and the experiment showed that the
multi-step refinement rule introduced in Section 5 is indeed
effective.
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Fig. 11. Example illustrations of hotel environments (small upright rectangles denote doors).
Table 4
Average rankings of those learned concepts being within the top 10 results across all ten folds of the car-friendly hotel learning
scenario.
Avg. rank. Concept

1.0 ∃isExternallyConnectedWith.(∃isExternallyConnectedWith.Reception)
2.0 ∃isExternallyConnectedWith.(∃isConnectedWith.Reception)
4.8 ∃isExternallyConnectedWith.(CarPark ⊓ (∃isExternallyConnectedWith.Reception))
5.8 ∃isExternallyConnectedWith.(CarPark ⊓ (∃isConnectedWith.Reception))
6.8 ∃isConnectedWith.(CarPark ⊓ (∃isExternallyConnectedWith.Reception))
7.8 ∃isConnectedWith.(CarPark ⊓ (∃isConnectedWith.Reception))
8.8 ∃isExternallyConnectedWith.((CarPark ⊓ (∃isNear.Reception)) ⊓ (∃isExternallyConnectedWith.Reception))
9.8 ∃isExternallyConnectedWith.((CarPark ⊓ (∃isNear.Reception)) ⊓ (∃isConnectedWith.Reception))
Table 5
Top 10 learned concepts of the modified car-friendly hotel learning scenario.
Rank. Concept

1 ∀isExternallyConnectedWith.(∃isExternallyConnectedWith.Reception)
2 ∀isExternallyConnectedWith.(∃isConnectedWith.Reception)
3 ∀isExternallyConnectedWith.(CarPark ⊓ (∃isExternallyConnectedWith.Reception))
4 ∀isExternallyConnectedWith.(CarPark ⊓ (∃isConnectedWith.Reception))
5 ∀isExternallyConnectedWith.((CarPark ⊓ (∃isNear.Reception)) ⊓ (∃isExternallyConnectedWith.Reception))
6 ∀isExternallyConnectedWith.((CarPark ⊓ (∃isNear.Reception)) ⊓ (∃isConnectedWith.Reception))
7 ∀isExternallyConnectedWith.(((CarPark ⊓ (∃isNear.Reception)) ⊓ (∀startsNear.Room)) ⊓ (∃isExternallyConnectedWith.Reception))
8 ∀isExternallyConnectedWith.(((CarPark ⊓ (∃isNear.Reception)) ⊓ (∀startsNear.Room)) ⊓ (∃isConnectedWith.Reception))
9 ∀isExternallyConnectedWith.(((CarPark ⊓ (∃isNear.Reception)) ⊓ (∀startsNear.Reception)) ⊓ (∃isExternallyConnectedWith.Reception))
10 ∀isExternallyConnectedWith.(((CarPark ⊓ (∃isNear.Reception)) ⊓ (∀startsNear.Reception)) ⊓ (∃isConnectedWith.Reception))
w
s

7.2.2. Transportation mode detection learning scenario
Goal. To sketch the capabilities of our spatial concept learning

approach to inductively learn from VGI and spatio-terminological
information we set up a scenario with citizen sensing data and
background knowledge from the LinkedGeoData project. The goal
in this learning scenario is to get a description for commutes per-
formed with public transport. The learned concept should provide
a description by means of spatial relations to traffic infrastruc-
ture elements captured in OpenStreetMap, as well as points of
interest. Compared to the previous experiment the background
knowledge base is far more extensive and thus contains much
more information not relevant for the task, which increases the
search space considerably.

Dataset.We tracked trips within Dresden, Germany, performed
ith different means of transportation via a GPS tracking mobile
pp. The means of transportation were bike, bus, car, tram and
rain. The duration of each trip was at least several minutes. The
espective GPS traces were represented as line string features
with their respective geometries) in RDF with 693.4 segments on
verage. Due to the time overhead needed to track movements
ith different means of transportation only a small amount of
rips was recorded that served as our positive and negative ex-
mples. For the spatio-terminological background knowledge we
sed spatial data covering the Dresden area from OpenStreetMap
nd converted it to RDF by means of the mapping definitions of
14
the LinkedGeoData project15 and the Sparqlify RDB2RDF mapping
tool [4]. The generated dataset contains 542,553 triples and 519
named classes covering amenities, buildings, shops, offices and
traffic infrastructure.

Results. We set tram, train and bus rides as positive examples,
whereas car and bike rides were used as negative examples. Be-
cause of the small set of examples we did not perform cross val-
idations but ran the experiment on the whole data and checked
the result manually for plausibility. The maximum execution time
of the learning algorithm was set to 30 min to account for the big
spatio-terminological background data and the longer example
line strings. A fully accurate target description (i.e. with an accu-
racy, recall and F1-score of 1.0), ∃startsNear.PublicTransportThing,
as found after 15 min and 17 s. The result is plausible con-
idering the subclasses of PublicTransportThing which comprise
Halt, Station, and Platform. Given the flat structure of the Linked-
GeoData ontology and thus the lack of a common super-class
like, e.g., PublicTransportStop the target description is indeed a
meaningful solution.

8. Conclusion

In this work, we introduced a formalism to automatically infer
spatial relations that hold in polygon data. The formalism was

15 https://github.com/GeoKnow/LinkedGeoData.

https://github.com/GeoKnow/LinkedGeoData
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sed to extend state-of-the-art concept learning on spatial RDF
ata allowing to include such inferred spatial relations in the
earned concept descriptions. We showed empirically that even
hough the time complexities for computing whether relations
old between geometries are worse than linear for most relations,
nferring such spatial relations on real world data is usually still
easible. We showed that the extended concept learning approach
enerates meaningful concept descriptions introducing inferred
patial relations. Moreover, we showed that we can overcome
he risk of getting stuck in a non-optimal solution due to myopic
ehavior.
In future work we plan to further optimize the reasoning

erformance by extending caching mechanisms and more in-
epth analyses of spatial concept expressions. Other than the
urrent generic approach which generates SQL queries against the
ack end database system for each spatial role, a spatial concept
escription can be inferred to be empty by its mere structure
hus avoiding costly database round trips. A further approach to
ptimize the usage of the database back end would be to combine
ueries whenever possible such that they are more selective and
hus lead to smaller intermediate results.

Another route of research would concern the invention of
patial concepts based on spatial properties going beyond the
patial relations between features. One such example is given
n [7] where a bay is described by its convexity and composition
tructure as ‘‘a maximal one-piece sea region which is part of
he convex-hull of a land region’’. Further, considering aggregates
f multiple spatial features and introducing spatial relations like
midst, Surrounded By etc. can also serve as meaningful means to
roduce more expressive concept descriptions, as in ‘‘[t]he house
...] in line with the trees.’’ [47].
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