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Abstract Optimizing mobility services is one of the greatest challenges Smart Cities 
face in their efforts to improve residents’ wellbeing and reduce CO2 emissions. The 
advent of IoT has created unparalleled opportunities to collect large amounts of data 
about how people use transportation. This data could be used to ascertain the quality 
and reach of the services offered and to inform future policy—provided cities have 
the capabilities to process, curate, integrate and analyse the data effectively. At the 
same time, to be truly ‘Smart’, cities need to ensure that the data-driven decisions 
they make reflect the needs of their citizens, create feedback loops, and widen par-
ticipation. In this chapter, we introduce QROWD, a data integration and analytics 
platform that seamlessly integrates multiple data sources alongside human, social 
and computational intelligence to build hybrid, automated data-centric workflows. 
By doing so, QROWD applications can take advantage of the best of both worlds: the 
accuracy and scale of machine computation, and the skills, knowledge and expertise 
of people. We present the architecture and main components of the platform, as well 
as its usage to realise two mobility use cases: estimating the modal split, which refers 
to trips people take that involve more than one type of transport, and urban auditing. 
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1 Introduction 

In a world dominated by huge societal and environmental shifts, urban mobility is 
likely to remain one of the most pressing challenges cities need to tackle over the next 
decades. The UN 2030 development agenda states as one of its goal the provision 
of “access to safe, affordable, accessible and sustainable transport systems for all”. 
In terms of environmental impact, road transport represents nearly 30% of the CO2 

emissions in Europe and the US; reducing this share is critical to fight global warm-
ing, calling for novel approaches and tools to improve urban mobility. Furthermore, 
commuting time spent on the road has been shown to have substantial effects on 
productivity and wellbeing; For example, according to the European Commission, 
traffic congestion costs the EU economy more than 100 billions every year.1 

The advent of IoT has created unparalleled opportunities to collect large amounts 
of data about how people use transportation, real-time positions of public transport; 
traffic cameras and meters; weather reports, etc. However, to be truly ‘Smart’, city 
authorities must find ways to ensure that they make sense of all this data to drive 
their decisions, and that decisions reflect the needs and expectations of the people 
they serve [9]. This may include focus groups, co-design workshops, or ideas com-
petitions, as well as crowdsourced data collection activities in which citizens can 
share data about their own transport patterns via mobile phones, wearables and other 
sensored devices to improve and provide feedback on existing services [5]. 

In this chapter, we introduce the QROWD platform, a data integration and ana-
lytics platform designed to include citizens in the data value chain of Smart Cities. 
It incorporates advanced interlinking and analysis capabilities for different sources 
of data, including human computation to train and validate algorithms, alongside 
means to crowdsource data collection and feedback. The platform is designed to 
develop and deploy arbitrary hybrid workflows that bring together the accuracy and 
performance of machine computation with human skills, knowledge and expertise 
that machines cannot emulate. In addition to the QROWD platform, we report on the 
design, implementation of two end-to-end mobility use cases deployed in the city of 
Trento, Italy: the estimation of the modal split, i.e., the share of citizens that use each 
available mode of transport; and the auditing of infrastructure location and informa-
tion data. We also report on the results and lessons learned from their deployment 
on the city of Trento, Italy. 

This chapter extends previous work published in the 5th International Smart Cities 
Workshop, colocated with Web Conference 2019, where we presented the design and 
implementation of the modal split and mobility infrastructure use cases; and i-Log, a 
crowdsensing mobile application (i-Log) to collect data from personal mobile phones 
in an unobtrusive, responsible way [17]. This chapter introduces the following novel 
contributions:

1 https://ec.europa.eu/transport/themes/urban/urban_mobility_en. 
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• The QROWD platform. A data integration and analytics architecture, compatible 
with the FIWARE set of open standards,2 in use in more than 100 cities in the 
world, which supports the design, development and deployment of hybrid human-
machine workflows for data collection, curation, integration and analysis. 

• A linked-data-enabled, big sensor data storage component (QROWDDB) 
• Extensions of the FIWARE open standard data models for transport and mobility 
to include contributions and feedback from citizens and manage potential rewards 
or compensation. 

• Guidelines to help Smart City managers design human computation tasks as part 
of hybrid workflows. 

• Rewriting of the use cases design following the guidelines 
• Extension of the technical details of the machine components developed for the 
use cases. The transport mode classifier used to analyse data contributed by cit-
izens through the i-Log app and the interlinking component that uses semantic 
technologies to integrate heterogeneous data sources. 

The remainder of the chapter is organised as follows: Sect. 2 reviews previous 
frameworks for Smart Cities aimed at leveraging IoT devices and those that tackle 
the human and citizen perspective. Section 3 describes the QROWD platform and 
architecture. Section 4 introduces the the guidelines for designing and implementing 
tasks for citizens and crowdworkers, and how to architect them as crowdsourcing 
services for their integration with machine processes. Section 5 describes the tools 
for acquiring data from pre-existing static and dynamic sources and crowdsourcing 
services included with the QROWD platform for data collection. Section 6 intro-
duces the data models we developed to facilitate the inclusion of citizens, and the 
QROWDDB, a component to manage data related with citizens and their contribu-
tions in a privacy preserving way. Section 7 describes the data integration capabilities 
of the QROWD Platform. Section 8 describes how we used the QROWD Platform 
to develop and pilot two urban mobility use cases: generating and curating mobility 
infrastructure data and estimating modal split. We report on the results and lessons 
learned from the pilots. 

2 Related Work 

2.1 IOT for Smart Cities 

Several frameworks have been developed to help Smart Cities harness the power 
of IoT infrastructures and sensor devices [10]. They can be classified according to 
their provision of the following capabilities [22] (1) data acquisition (2) semantic 
interoperability (3) real-time data analysis (4) application development support

2 https://www.fiware.org/developers/. 
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SmartSantander created the first experimental test facility for the research and 
experimentation of architectures, key enabling technologies, services and applica-
tions for the IoT in the context of a Smart City. It provides the data acquisition 
and application development support dimensions [27]. The semantic interoperability 
dimension was considered in the SPITFIRE EU project, that developed vocabularies 
to integrate descriptions of sensors and things with the LOD cloud; Semantic entities 
as an abstraction for things with high-level states inferred from embedded sensors; 
Semi-automatic generation of semantic sensor descriptions; Efficient search for sen-
sors and things; all on top of an unified service infrastructure. Another platform that 
focuses on the semantic dimension is OpenIoT, that leverages the W3C Semantic 
Sensor Network ontology to annotate data from sensor streams, providing also a 
toolkit for filtering, selecting them and visualizing them [21]. 

STAR-CITY integrates data of heterogeneous variety, velocity and volume, and 
combines description logic, rule-based reasoning, machine learning inferences and 
stream based correlation to provide spatio-temporal analysis of traffic conditions 
for their diagnosis and prediction. Its main application scenario is real-time data 
analysis and event detection of traffic events [15]. CityPulse aims at facilitating 
knowledge extraction from Smart City environments, using a combination of large 
scale data stream processing modules and adaptive decision support, while providing 
application development support, demonstrated by the development of a prototype 
adaptive travel planner app [22]. 

The IOTManager is a versatile and resilient framework capable to store and rear-
range data collected by IoT sensors [2]. The main contribution is the provision of a 
software that could be easily deployed by public organisations and Smart City man-
agers, without being tied to “platform-as-a-service” contracts with large providers. 
The framework is demonstrated with a case study on traffic controllers and weather 
stations. 

Deepint introduces the concept of “City-as-a-platform” [8]. The main innovation 
is the introduction of wizards to easily create and deploy AI models for common 
Smart City tasks. Deepint is demonstrated with the implementation of a Crowd-
counter to monitor pedestrian traffic levels by using video cameras in the City of 
Melbourne. 

None of these frameworks considers the integration of citizens or human compu-
tation in general as part of their toolkit. The potential of human sensing for Smart 
Cities was first studied in [6]. For the particular case of social media, it presents a 
methodology to extract the perceptions that may be relevant to Smart City initiatives 
from social media updates, validated on dataset of tweets geolocalised in New York 
City. Beyond social media, [9] proposed a re-imagination of the role of citizens in 
Smart Cities, highlighting the importance of supporting them in playing an active 
role in urban innovation, from the crowdsourcing of initial ideas, to facilitating their 
involvement in the realisation of community projects. 

TCitySmartF outlines a Smart Cities roadmap from the technological, social, 
economic and environmental point of view. It puts both residents and urban dynamics 
at the forefront of the development with participatory planning and interaction for 
the robust community- and citizen-tailored services. It also includes connections to



QROWD—A Platform for Integrating Citizens in Smart City Data Analytics 289

other cities, in order to create a region or country-wide network of data that could be 
used to implement further policies and share technical knowledge [13]. They define 
a high level architectural design that but do not provide an implementation. 

2.2 Mobile Crowdsensing and Crowdsourcing 

The field of Mobile Crowdsensing studies the wide variety of sensing models by 
which individuals collectively share data and extract information to measure and 
map phenomena of common interest, and for which several platforms have been 
discussed in the literature (see for example the survey on [14]). 

A similar line of work studies the efforts of making mobile crowdsourcing useful 
for Smart Cities. Note that mobile crowdsourcing can be used for other types of 
problems, for example, to perform task within a private organisation (like an Univer-
sity campus), or for realising food or package delivery. The particular application for 
Smart Cities has been surveyed by Kong et al. [12]. According to their classification, 
the QROWD platform is a technology enabler for the use of mobile crowdsourcing 
in the context of Smart Cities. 

Both fields are related to our work as one of the goals of the QROWD platform is 
the integration of the human factor, and citizens in particular, in the data value chain 
of a Smart City. The QROWD platform includes its own crowdsensing application 
(the i-Log app) that implements best practices from literature, and enables the flow 
of collected data towards data analytics components, and back to citizens for further 
curation. In this subsection, we review other frameworks that highlight a citizen-
centric approach. 

A discussion of the challenges for sustainable people-centric sensing is presented 
in [24], highlighting the importance of being energy-efficient for user’s devices guar-
anteeing the privacy and security of people’s data, and putting in place appropriate 
incentive mechanisms. Vol4All [28] enables ideas exchange and crowdsourcing by 
facilitating citizens’ involvement in the realization of community projects. Volunteer-
ing actors (initiators, participants, stakeholders) can easily interact via the Vol4All 
platform which enables volunteering opportunities dynamic sharing, evolution and 
monitoring. Vol4All includes a point-system to incentivize participation in volun-
teering activities, and a number of tools for monitoring volunteering activity and 
analyse the result of specific campaigns. 

OrganiCity [11] provides an Experimentation as a Service (EaaS) framework that 
aims at providing a scalable platform to manage city services and of a co-creation 
environment including citizens. It includes technical components to integrate differ-
ent data sources and to host co-creation experiments that empower citizens at differ-
ent stages of the urban service lifecycle. TO this end, it provides a set of co-creation 
tools:(1) SensiNact studio: aims at helping coders working with data streams from 
deployed data assets without the need to learn about the Organicity APIs.(2) Tin-
kerSpace: Toolkit for creating mobile services—Apps—without the need for exten-
sive software training or experience. Providing (3) Smartphone Experimentation: A
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complementary framework that facilitates experimenter to gather and process data 
from the sensors and communication interfaces of the smartphones of volunteers and 
use them to run experiments. 

Both Vol4All and OrganiCity restrict citizen participation to tools for contributing 
data. The QROWD platform extends this in two ways: first, it enables the harnessing 
of human computation, not only from citizens, but also from paid crowdworkers; 
second, human computation is not limited to data collection, but also integrated into 
all the other steps of the data value chain, providing the building blocks to create 
hybrid data flows comprised of several human and machine processing steps. 

CitySpeed is an application and server to collect, manage and provide access to 
vehicular speed data. Participating citizens download a mobile application that mon-
itors the speed of their vehicles [4]. The proposed mobile-phone based monitoring 
was found to match the speed as collected by the ECU units of a set of test vehicles. 
The whole system was piloted on two cities in Brazil. The theoretical framework 
for a similar application is described on [19]. CitySpeed could be re-factored as a 
component of the QROWD platform, giving the additional advantage of managing 
the incentives for the citizens that wish to participate. 

3 The QROWD Platform and Architecture 

The QROWD platform is designed to seamlessly connect human computation tasks 
(HCTs) with machine analytics process, reducing the friction for developers and 
enabling the continuous improvement of data and services. From an architectural 
point of view, it is divided into five sets of components, as shown in Fig. 1. 

1. The Crowdsourcing services (bottom) component set is a repository of stan-
dalone HCTs. We detail how HCTs should be architected in Sect. 4.2. 

2. The Data generation and acquisition (bottom right quadrant) includes a data 
storage component to host heterogeneous data sources that could be static (e.g., 
records of parking locations and fees) or dynamic (e.g. live streams of occupancy 
of said parking). In this component set, we also include machine components to 
perform data harvesting, extraction and semantization of data. 

3. Storage (bottom left): Data acquired from citizens through crowdsourcing ser-
vices and pre-existing data needs to be integrated for further analysis. This com-
ponent set includes the QROWDDB, a Big Data Storage for personal big data 
generated by mobile devices of citizens, and the associated. We describe it in 
detail in Sect. 6. 

4. Data interlinking, fusion and analytics (top right and top left): components 
that take as input data integrated in the QROWDDB and perform machine-based 
fusion and interlinking, or other data analytics. 

To implement inter-component communication, we chose to adopt a technology 
stack consistent with the one promoted by the Open and Agile Smart Cities (OASC) 
alliance, a non-profit, international Smart City network that connects +140 Smart
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Fig. 1 QROWD Platform architecture 

Cities globally organised in national networks from 27 countries and regions, aimed 
at establishing the Minimal Interoperability Mechanisms (MIMs) needed to create a 
Smart City market. The QROWD platform makes use of three core technologies: 

1. Apache NiFi to host and execute data flows. The use of NiFi Is also consistent 
with the design decision of following the FIWARE architecture. 

2. CKAN3 is an open source, fully-featured, mature data portal and management 
solution that can be easily adapted and extended and provides an API. CKAN is 
used by hundreds of data publishers around the world and is the standard platform 
recommended by OASC to store datasets at rest. We use it as the repository for 
acquired data. 

3. FIWARE context broker (Orion). Orion manages the entire lifecycle of context 
information including updates, queries, registrations and subscriptions. Context 
information consists on entities (e.g. a car) and their attributes (e.g. the speed or 
location of the car). Orion implements the NGSIv2 specification.4 The QROWD

3 https://ckan.org/. 
4 https://fiware.github.io/specifications/ngsiv2/stable/. 
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Fig. 2 Integration of machine data analytics task as Apache NiFi processor and human computation 
task deployed as crowdsourcing service 

platform use Orion to manage streaming and sensor data, and to orchestrate 
message passing across different components. 

To illustrate, consider the problem of annotating text with entities from a knowl-
edge base. A machine learning model is trained to output annotations and a confidence 
value. Machine annotations may or may not be correct, therefore, humans could be 
recruited to validate them and provide new ones that could be used for re-training the 
model. How to seamlessly connect inputs and outputs of both types of processes? 
Fig. 2 illustrates how to do this with the QROWD platform, annotation is imple-
mented as a a human computation task and deployed as a crowdsourcing service. 
The Machine Learning model is deployed as a NiFi processor calls the crowdsourc-
ing service through a crowdsourcing connector whenever the confidence value of 
an annotation is under a configurable threshold. The corrected result is used as input 
to re-train the model. 

4 Crowdsourcing Services 

When designing a hybrid human-machine workflow, the first step is to have a clear 
separation between tasks to be executed by machines and Human Computation TAsks 
(HCTs). Designing HCTs is fundamentally different from designing a machine-
only data pipeline. Designers need to consider an appropriate user interface, what 
incentive humans have to perform the tasks, and the general unpredictability of human 
behaviour. Lack of proper thinking about what, how and why a human engages in a 
task might lead to poor quality of results, or even no results at all. In the following, we
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discuss how the QROWD platform helps Smart City managers and service providers 
with the design of HCTs and their implementation as services for their integration 
with machine data processing, as described in Sect. 3. 

4.1 Design Guidelines for Human Tasks 

Several frameworks have proposed a taxonomy of dimensions that need to be con-
sidered for general purpose crowdsourcing tasks literature to design effective and 
efficient human and crowdsourcing tasks [18, 23, 25]. However, they all overlook 
some important dimensions for an hybrid context: first: the characteristics and restric-
tions of devices required to fulfill the task; second, for data in motion or streams, 
human tasks need to output results at a certain velocity consistent with the processing 
speed of a machine component, suggesting the consideration of an acceptable delay 
dimension; third, depending on the type of contributors, one might only be able to tol-
erate a certain delay to assign tasks to them before they lose attention or consider the 
proposed incentives as insufficient for the time they invest. To fill this gap, we devel-
oped a guideline (Table 1) that combines the most important dimensions of previous 
frameworks and adds five new ones tailored to hybrid human-machine workflows. 
The first column of the guideline is the name of the dimension; the second one indi-
cates either the source framework, or if it is introduced by us; the third column lists 
sample values for the dimension. To apply the guideline, HCTs designers must ask 
themselves for each dimension which value on the third column corresponds to the 
task being designed. In the following, we expand the questions associated with each 
dimension and the sample values. We proceed in the same order given in Table 1 

• What is going to be done? This dimension refers to both what is required to 
the crowd and what goal the requester wants to achieve. In [18], possible values 
are information finding, verification and validation, and content creation. We add 
passive and active sensing as two activities often required in the crowdsensing 
context. 

• Who is carrying out the task? The who represents the type of crowd. In some 
cases contributors are drawn from an undetermined group of people, meaning 
no assumptions regarding their skills can be made. However, contributors with 
particular skillsets are often required, such as polyglots for translation tasks, or 
citizens of a particular city for location-dependent tasks. Online crowdsourcing 
platforms also often implement strategies aimed at identifying the best or most 
reliable contributors, who may receive access to special benefits and privileges. 
We propose a novel set of values with respect to the literature: (1) Experts, if specific 
knowledge is required (2) Citizens, for location-dependent tasks (3) Whoever, if 
the task could be assigned to any crowdworker (4) Specific contributor, when the 
task can only be performed by a specific person, e.g., the verification of personal 
data provided by a citizen may only be done by the concerned citizen.
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Table 1 Guideline for human computation task design 

Dimension Based on Sample Value (values in bold 
are those proposed by us) 

What Malone et al. [18] Information finding 
Verification and validation 
Interpretation and analysis 
Content creation 
Surveys content access 
Passive sensing 
Active sensing 

Who Malone et al. [18] Expert 
Citizen 
Anyone 
Specific contributor 

Why—Motivation Malone et al. [18], Smart et al. 
[25] 

Economic 
Altruistic 
Hedonic 
Reputational 
Other 

Why—Reward Malone et al. [18], Smart et al. 
[25] 

None 
Monetary 
Prize 
Fun 
Other 

How Malone et al.[18] Collection 
Collaboration 
Context 

Required skill Quinn and Bederson Visual recognition 
Language understanding 
Basic communication 
Physical 

Required device Novel PC 
Mobile 
None 

Device constraint Novel Battery 
Storage 
Bandwidth 
CPU 
None 

Interaction limit Novel [0-N] 

Acceptable question delay Novel Immediate (seconds) 
Short (minutes) 
Medium (hours) 
Long (days) 

Acceptable resolution delay Novel Immediate (seconds) 
Short (minutes) 
Medium (hours) 
Long (days)
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• Why is this task being performed? This dimension concerns the reason why a 
contributor would engage in the task. It is split into two dimensions: motivation, 
related to the intrinsic value for the contributor, e.g., is she doing it for the money 
(economical), for reputation, or for altruism?; and the concrete reward that she 
will get for completing the task. 

• How the task will be organised? We consider three different ways of organising 
a task: (1) Collection: The task is partitioned in several independent micro-tasks 
that are then assigned to one or more contributors. Results are then collected an 
aggregated. (2) Collaboration: Contributors collaborate in solving the task. (3) 
Contest: contributors compete to better perform the task, rewards are higher for 
the winners of the contest. 

• What skill is required to complete the task? Previous work considered visual 
recognition, language understanding and basic communication [23]. We added 
specific mobility requirements to accommodate location-based tasks. Note how-
ever that some tasks may have different skill requirements. 

• Do contributors require a device to complete the task? Especially for sensing 
tasks, contributors might need to be in possession of a connected device. 

• Does the device have any constraints? If a device is needed, it is important to 
consider constraints it might have, especially for the case that the device belongs 
to the contributor. We consider in our framework the basic constraints of an IoT 
device: battery, storage, bandwidth and CPU.

A further set of dimensions that need to be considered are those of quality and 
aggregation, that is, how individual contributions will be quality-checked and aggre-
gated into a final result. Table 2 describes the necessary dimensions and values, that 
we mostly re-use from [23]. We added ‘Formula’ to the aggregation dimension to 
refer to the algorithm that aggregates the set of individual contributions into a final 
result in order to include techniques beyond simple aggregation, such as clustering. 

Once the guidelines have been applied, the next step is to implement the design 
choices in such a way that they can input and output to a workflow composed of 
machine and human processes. To this end, QROWD provides a specification of the 
high level components that a crowsourcing task needs to implement to become a 
crowdsourcing service and fit in the QROWD architecture. 

4.2 Crowdsourcing Service Implementation Framework 

Once a crowdsourcing task has been designed, the next step is to ensure that its 
input/output can be easily plugged from/to other data processes. QROWD proposes 
a framework for implementing human tasks as crowdsourcing services, that interact 
with other components of the QROWD platform. The elements of the framework 
are described in Fig. 3, together with their interactions with inputs, crowdsourcing 
channels and the QROWDDB.
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Table 2 Quality and aggregation dimensions of a human task 

Dimension Based on Sample Value 

Quality control Quinn and Bederson [23] Output agreement 
Input agreement 
Economic models 
Defensive task design 
Redundancy 
Statistical filtering 
Multilevel review 
Automatic check 
Reputation system 

Aggregation Quinn and Bederson [23] Collection 
Statistical processing of data 
Iterative improvement 
Active learning 
Statistical 
Search 
Iterative improvement 
None 
Formula 

Task request cardinality Quinn and Bederson [23] One-to-one 
Many-to-many 
Many-to-one 
Few-to-one 

The first element is a repository of task and/or question templates. A task  
template is a set of source codes, libraries, and resources (such as texts, images, 
appropriate handlers for the incoming data item) that define the logic of a human task, 
including aggregation and quality assurance methods chosen from the list defined in 
Table 2. 

The second element is a decision component that handles the who, why, reward, 
device constraints, interaction limit and acceptable delay dimensions of the design 
guidelines. More precisely, a decision component must include: 

• The list of contributors to the task 
• A register of how many tasks have been assigned to each contributor and a counter 
of interactions 

• Register of each contributor’s answering time and its difference with respect to 
the acceptable delay 

• If relevant, track of any device constraints associated to each contributor 
• An assignment function that given a processing or generation request, instantiates 
a task template and decides to which contributor(s) assign it.
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Fig. 3 Architecture of a crowdsourcing service within QROWD 

The instantiated task template output by the assignment function is passed to 
a Deployment Manager that handles the deployment of the task on the relevant 
crowdsourcing channel and collects the results. Results are passed to an Aggregation 
and Quality Component, that based on the logic provided in the task template, 
executes the relevant quality checks and aggregations. If results are of insufficient 
quality, the decision component may decide to redeploy the task for further iterations. 
The final results are written either back to the context broker, or to the QROWDDB.
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5 Data Acquisition and Generation 

5.1 Pre-existing Data Sources 

Cities often have pre-existing data sources that they would like to integrate to perform 
analytics or to connect with crowdsourcing services. The QROWD platform supports 
the acquisition of pre-existing data sources for both static sources that have a low 
update rate (also called data at rest); and dynamic sources coming from streams and 
other sensors (also called data in motion). Static data acquisition is organised around 
the concept of a dataset that is responsibility of an organisation, was produced by a 
particular source, has a number of different formats and is annotated with provenance 
information. Consider the example of a map with the coordinates and types of bike 
racks in the city. A possible source of this information is a city expert that has collected 
them for a certain area, a second possible source is a Volunteered Geographical 
Information system, e.g., Open Street Maps, or a bike-enthusiast association. 

The procedure to add a dataset is as follows: 

1. The originator of the dataset is added as a CKAN organisation 
2. The visibility of the dataset is set (public or private) 
3. The name of the dataset is constructed by concatenating the following input: 

• Name of the dataset, e.g., Bike Racks 
• Version, one of lastVersion or Historical 
• Type of the dataset Source (indicating that an organisation produced the 
dataset), Fusion (indicating the dataset is the result of a fusion via a QROWD 
automated or crowdsourced process). 

When a dataset is updated, the platform manages versions automatically by back-
ing up the contents of the current dataset in a new archive dataset tagged with the 
timestamp of archival. 

QROWD provides three acquisition process templates according to the need or 
not for executing a data transformation on the acquired dataset: 

• Upload/Update a dataset: takes a dataset available in a remote URL path and 
creates a new dataset if the name combination does not exist in CKAN, and updates 
(including versioning) of a dataset if it already exists. 

• JSON transformations: Implements a number of configurable JSON transforma-
tions 

• Custom transformations: After fetching the dataset, apply a custom transformation 
to a target format and add the output as a format of the dataset. 

For dynamic data acquisition, a single process receives the data and transforms the 
original schema into FIWARE data model entities (cf. Sect. 6.1), and uploads/updates 
entities into Orion for their querying by other processes. The procedure is divided in 
the following steps:
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1. Evaluate JSON path, processor in charge of getting the id of the entity. 
2. Invoke HTTP, processor in charge of checking if an entity with this id already 

exist in the Context Broker. 
3. If it exists, the entity is posted to the context broker. 
4. If it does not exist, a pre-processing step is carried out to add the FIWARE entity 

type (if missing), followed by the posting of the entity in the Context Broker. 

5.2 Data from Citizens Devices 

Citizens are the principal human agents of a Smart City ecosystem. As such, a 
fundamental component of a hybrid human-machine platform is one that enables 
data collection and interaction with them. The general idea is to leverage the power 
of devices owned by the citizens, while at the same time balancing the level of 
intrusiveness of the solutions, to ensure a high rate of response and not hurting the 
relationship between citizens and Smart Cities. 

The QROWD platform includes the i-Log mobile application [29], which collects 
data from the user in an unobtrusive, data protection compliant and efficient way. The 
application can be used to generate two very diverse types of data, namely (1) streams 
of value-pairs generated by the devices’s internal sensors, while (2) it can also collect 
the user input in different formats, from text to visual. The latter capability can be 
used to use i-Log as a channel for pushing crowdsourcing services, as seen in Fig. 3. 

A simplified version of i-Log’s architecture is presented in Fig. 4. The system is 
composed of a set of modular, logically isolated components, each one enabling a sub-
set of the overall functionalities of the application. The modularity of the architecture 
allows to personalize the application and adapt it to different contexts and projects, 
with the need to modify only the involved components. This architecture gives i-Log 
a significant advantage in terms of adaptability and extensibility of its features. The 
four main components are: 

Fig. 4 i-Log mobile application architecture
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• Data collection module: it is responsible for efficiently collecting and storing 
the data from the smartphone’s internal sensors. The data collection has been 
designed to be remotely configurable in terms of (i) which sensors to use and 
(ii) at which frequency to collect data from them. Enabled/disabled sensors can 
be configured per individual tasks, within the same infrastructure. Once collected, 
the data are temporarily stored in compressed and encrypted logs file on the device 
and synchronized over WiFi whenever a connection is available. 

• User contribution module: is responsible for collecting the user’s knowledge 
in terms of answers to simple questions (a contribution). The knowledge can be 
of different types, from text, to images and to other objects that are use-case 
dependent, i.e., coordinates on a map. The questions are sent by a remote server 
as JSON objects that are then visualized on the smartphone and made available to 
the user. 

• Communication module: is responsible for all the outbound and inbound con-
nections. In more detail, it allows to contact the backend infrastructure of the 
application to perform operations such as registering/logging in users, to synchro-
nize the generated logs of data and save them in a database. At the same time, 
it allows to receive the questions that the user has to reply to provide her own 
knowledge and keep her in the loop. 

• User interface module: i-Log’s main functionality is to collect data about the 
user while running in background on the phone. The reason for this is that the 
collection process must be as unobtrusive as possible. For this reason the user 
interface is very limited: it consists on a notification system that is always present 
in the notification area of the smartphone while the data collection is active. This 
is a mandatory requirement from a data protection point of view since the user 
must always been informed when someone is dealing with her data. A second 
notification is present whenever the user is asked to provide his knowledge. From 
these two notifications the user can access the actual views of the application, two 
menus, Settings and Contributions that allow respectively to setup the application 
and to have access to all the contributions. 

i-Log allows to assign points to users depending on the quantity of data they have 
provided. These points can be used to implement the economic, reputational and 
hedonic values of the Why - motivation dimension, and by extension, the Monetary 
and prize values of the ‘Why - reward’ dimension of the guidelines in Sect. 4. Points 
may be assigned depending on: 

• The time users spent using the application throughout the day and consequently 
contributed with their sensors data. 

• The day and time of contribution, e.g., to incentivise contributions in the date and 
time that are more needed. 

• Sensors enabled while i-Log is running. This aspect involves the combination 
of different factors: (1) each smartphone has a different set of sensors and this 
information had to be taken into account during the point assignment phase to 
not penalize users who don’t have a sensor in their personal device, bur rather 
penalize those who have it and decided to turn it off. A second aspect is that (2)
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not all the sensors could be disabled, i.e., the accelerometer cannot while the GPS 
can. Finally, we should also consider that (3) not all the sensors have the same 
importance for all use cases, for example, accelerometer could be more valuable 
than position for certain type of analytics. 

5.3 Citizen Challenges 

Section 5.2 described how the QROWD platform supports passive data contributions 
from citizens, where the only action they need to do is to install and run the i-Log 
app on the background of their phones. Other types of applications require humans 
to take a more active role, like taking pictures, or answering questions about a Point 
of Interest, that is, the crowdsensing dimension discussed in Sect. 2. To support these 
use cases, the QROWD platform includes a citizen challenges Crowdsourcing service 
that could be run on top of the i-Log app. Challenges receive the following input 
parameters: 

1. An area of interest on the challenge will take place (defined as a geospatial 
polygon) 

2. Optionally, a set of coordinates within the area of interest where challenge par-
ticipants should go to perform actions. If this set is empty, it is assumed that the 
purpose of the challenge is to locate something within the area of interest, that 
is, creating a map instead of validating it. 

3. An HTML form that allows data input by the citizen, e.g., coordinates using the 
phone capabilites, upload photos or answer questions. 

Data contributions from challenges can be associated with points that may be 
redeemed for rewards, in the same way as described for passive data contributions 
in Sect. 5.2. 

5.4 Annotations from Street-Level Imagery 

The third data acquisition crowdsourcing service included with the QROWD 
platform is the Virtual City Explorer (VCE). It allows contributors to explore cities 
through street-level imagery services and provide annotations (e.g. coordinates or 
state) of point of interest in the map. The VCE accepts the same parameters than 
a citizen challenge: the area that needs to be explored by the contributors; the type 
of item contributors should locate; an HTML form with questions about points of 
interest found; and the number of contributors to assign to a given area; The VCE 
can be regarded as a virtual alternative over citizen challenges that is not limited to 
contributors physically present in the city. In turn, the VCE depends on the existence 
and up-to-dateness of street-level imagery.
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Fig. 5 Virtual city explorer interface 

Figure 5 shows a screenshot of the VCE interface from a contributor’s perspective. 
Before exploration starts, the contributor reads the task instructions that explain its 
general functioning works and which are the types of objects required to locate. 
The contributor then starts their exploration from a random point within the area of 
interest. When a contributor discovers a candidate item, she is required to take three 
photos of it, from three different angles. In the background, the VCE triangulates the 
vectors of the different angles to determinate the coordinates of the item and stores 
them in a database. After submitting a pre-established number of items, the task 
ends. In case a crowdworker was the one completing the task, she is redirected to the 
crowdsourcing recruiting platform to receive her payment. An extensive evaluation 
of the VCE with paid crowdworkers is available on [16]. 

6 Data Models and Storage 

Once data from citizens and pre-existing sources has been acquired, the next step is to 
have an appropriate storage in a unified data model that allows further analysis. To this 
end, the QROWD Platform provides: (i) An extension of the FIWARE data models 
for transportation to include Citizens, Visitors, and Trips as first-class citizens. (ii) A 
Big Data Storage tailored towards data collection on personal devices that facilitate 
compliance with data protection regulations.
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6.1 Data Models 

To ensure data portability for different applications including, but not limited, to 
Smart Cities, the QROWD Platform reuses data models developed by the FIWARE 
framework. We extended the FIWARE transportation data model5 to include citizens 
and their data and processing contributions with three classes (Citizen, Visitor, and 
Trip) . The  Citizen class is defined as an agent that lives or commutes in a city using 
the transport infrastructure. Citizen has two mandatory properties: 

• citizenId: A UUID assigned to the citizen 
• citizenType: The type of citizen according to its mobility: Resident or Commuter. 

Second, the Visitor class as an agent that does not reside in the city. Visitor has 
two mandatory properties 

• visitorId: A UUID assigned to the visitor 
• visitorType: The type of visitor: Business or Tourist. 

Both classes can be extended with further properties according to application 
needs. We describe an example of such an extension in Sect. 8. 

When considering mobility data, an important concept is the one a trip a citizen 
makes within the city. Trips can be used to power a number of services, for example, 
estimate the transport mode usage in a city, understand the demand at certain times 
of the day, or suggest a group of citizens an alternative transportation mode. With an 
unified data model, different transport operators or providers can then add data to a 
common data shared space where analytics can be conducted. 

As such, we included in our data model extension a Trip class, defined as follows: 

• Mode: List of transport modes used by the trip 
• Purpose: purpose of the trip. The concept restriction is work, school, accompany-
ing, errands, free time, working trip, return 

• initDate: timestamp of the start of the trip 
• endDate: timestamp of the stop of the trip 
• startCoordinate: coordinate of the start of the trip 
• stopCoordinate: coordinate of the end of the trip 
• Path: polyline representing the path of the trip 
• Multitrip (Boolean): If the trip has multiple subtrips 
• Subtrips: List of trip identifiers that conform a trip. Subtrips are subject to the 
restriction that their paths must be a subset of the path of the parent trip, that their 
initDate and endDate must be in the range formed by the initDate and endDate of 
the parent trip, and that their have a single Mode. 

We also added four super-classes to facilitate further extension to related scenarios: 
(i) Event: events represent occurrences that can have temporal or spatial parts. We use 
it as superclass of Trip (ii) Location: represents spatial parts. We use it as superclass

5 https://github.com/smart-data-models/dataModel.Transportation/tree/1278849c096d8ea0ceaa3e 
3d8d7b30d6940ab474. 

https://github.com/smart-data-models/dataModel.Transportation/tree/1278849c096d8ea0ceaa3e3d8d7b30d6940ab474
https://github.com/smart-data-models/dataModel.Transportation/tree/1278849c096d8ea0ceaa3e3d8d7b30d6940ab474
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of transportation areas like (iii) Structure: Physical objects representing structural 
entities. We use is as a superclass of the various mobility infrastructure classes in the 
FIWARE data models. (iv) Person: we use it as a superclass of Citizen. 

6.2 Big Data Storage 

Including citizens in data analytics of Smart Cities enables the leveraging of their 
personal mobile devices to contribute with data or to solve tasks. As such, is cru-
cial for Smart Cities to have the technical means to manage huge amounts of data 
from potentially thousands of citizen’s devices. Furthermore, inline with the recent 
entry into force of data protection laws like the European General Data Protection 
Regulation (GDPR), data controllers, i.e., organizations that collect personal data 
are responsible of ensuring that any sharing of data with other organisations for fur-
ther processing is consented, or that appropriate anonymisation or pseudonymisation 
measures have been taken. 

The QROWD Platform provides a Big Data Storage component based on Apache 
Cassandra.6 Cassandra offers robust support for clusters spanning multiple data cen-
ters, with asynchronous masterless replication allowing low latency operations for 
all clients. Linear scalability and proven fault-tolerance on commodity hardware or 
cloud infrastructure make it the perfect platform for mission-critical data. 

To provide pseudonymisation, we included the following policies: 

1. A Cassandra keyspace is associated with the data of a single user. This allows to 
have different consistency strategies for different users and, most importantly, 
will enable to isolate the data for privacy concerns. If every user’s data is saved in 
a separate keyspace it is easier to deal with data protection requests, e.g., delete 
them if the user wants to uninstall the application. The anonymization is granted 
at this level since the name of the keyspace is a 160bit salt string generated 
randomly using the Secure Hash Algorithm10 (SHA-1). All data processing by 
other components of the platform in an hybrid workflow uses this anonymized 
identifier. Thus, the users’ personal data is never used in this regard. Both data, 
the salt and any property of the citizen considered personal are stored in a dis-
ambiguation table that is accessible only by designated data controllers. 

2. There is one table per query we need to reply per sensor. Since we are dealing 
with time series, we chose to allow querying the data by time and in some limited 
cases also by value. In time series most of the time a client application needs to 
have the values in a time interval, e.g., the accelerometer data to understand if 
the user is moving from 08:00 AM to 10:00 AM. In less common situations, we 
would like to query by value, e.g., to understand is the user previously visited a 
specific location.

6 https://cassandra.apache.org/. 

https://cassandra.apache.org/
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7 Data Integration 

Data integration is a fundamental task in most value-adding data processing work-
flows. The general problem statement is to obtain a single coherent dataset from a 
set of hetergoeneous data sources. Data integration consists of data normalization, 
data interlinking and data fusion. The QROWD Platform supports data through the 
leveraging of two tools: Limes,7 a link discovery framework for the Web of Data with 
time-efficient approaches for large-scale link discovery based on the characteristics 
of metric spaces, provides the interlinking capabilities; and Sparql-Integrate,8 for 
normalization and fusion of data. 

The first step of data integration is normalization, that is, represent data in a 
uniform way. Foremost, this involves data models (e.g. graph-based, hierarchical 
or tabular), and schemata (e.g. the domain of bicycle parking). However, it also 
affects units, lexical representations (e.g. date formats) and encodings. Tradition-
ally, a distinction between schema and instance data is made, as there are different 
data integration problems and solutions related to them, for example, the approaches 
for aligning class hierarchies in general differs from fusing attributes of instance 
data. Once data has been normalized, interlinking can be applied to both schema 
and instance level in order to find candidate matches. These matches serve as the 
base for fusion. In general, the set of matches may suffer from data quality prob-
lems related to ambiguity (multiple candidates exist where only one is expected), 
faultiness and incompleteness. While ambiguity is resolved using conflict resolution 
strategies, these may itself introduce additional errors. For this reason, it makes sense 
to decouple the dataset of annotated candidate matches (e.g. confidence scores and 
provenance) as a valuable asset by itself—i.e. in isolation from the remaining fusion 
process. For example, a search for Trento on OpenStreetMap yields the city in Italy 
as well as a Paseo del Trento in Mexico. 

Data fusion refers to the merge of data records of a given set of datasets for the 
sake of completing information and enabling resolution of conflicts. A prerequisite 
to fusion is schema integration such that the relevant properties of data records from 
multiple sources are represented uniformly. Interlinking can be applied to provide 
additional input to fusion processes in order to establish candidate equivalence rela-
tions between entities. Going back to the Trento search example above, while the 
remaining fusion process simply adds the geo-coordinates of the match marked as 
correct to the final dataset, the dataset of candidate matches allows for quick verifi-
cation and revision. 

The QROWD platform makes use of Semantic Web technologies RDF and 
SPARQL. With RDF, we can represent schema and instance data uniformly in a 
graph-like structure often referred to as a knowledge graph, which enables retrieval 
and manipulation of data stored in with SPARQL queries. By relying on the linked 
data principles this workflow keeps minimizes the necessary groundwork. All data 
transformations, which achieve the data integration tasks are defined by SPARQL

7 http://aksw.org/Projects/LIMES.html. 
8 https://github.com/QROWD/SparqlIntegrate. 
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queries and/or RDF config files. This leads to two main benefits: the user only has to 
be fluent in these two technologies and this workflow can be integrated in any other 
dataflow where SPARQL processors can be added. Traditionally, in the relational 
database world, fusion processes are specified using sequences of SQL statements 
which implement domain specific rules. Although the SPARQL standard does not 
provide a feature set as rich as that of SQL (dialects), the basic principles can be 
applied to SPARQL nonetheless. For example, DBpedia recently introduced a very 
similar workflow for data fusion in [7], where the set of annotated candidate matches 
is referred to as the PreFuse dataset. 

Following the same pattern described in Sect. 4 for crowdsourcing services, the 
integration of Limes and Sparql-Integrate into the QROWD Platform was achieved 
by writing corresponding Apache NiFi processors.9 Recall from Sect. 3 that the 
QROWD Platform is based on Apache NiFi, which is designed to automate the 
flow of data between software systems. A NiFi dataflow is defined by a network of 
processors, where flow-files are used to pass data along connections, and may have 
multiple ingoing and outgoing connections. 

Sparql-Integrate is a tool developed in QROWD which leverages SPARQL for the 
integration of heterogeneous data. The SPARQL specification itself allows for exten-
sion functions but also notes the risk of limited interoperability.10 For QROWD, we 
chose the Apache Jena Semantic Web framework as the basis for our own SPARQL 
extensions. Our extensions exploit this framework’s plugin system, making it possible 
to easily integrate them into any other Jena-based software project. The SPARQL-
Integrate project is comprised of two libraries and two interfaces: 

• A standalone SPARQL extension library for Jena with support for data formats 
(XML, JSON, CSV), HTTP requests, and file system access. Naturally, some of 
these extensions are meant only for internal processing and should not be exposed 
in e.g. public SPARQL endpoints due to their potential for abuse. 

• A small standalone core library with additional functionality, especially a parser for 
documents holding multiple SPARQL statements, and a corresponding processor 
that gives control over the output. 

• A command line interface for processing files of RDF data and SPARQL queries. 
Additionally it supports launching an embedded SPARQL endpoint with HTML 
frontend and the provided extensions. 

• An Apache NiFi processor integration. 
We wrapped Sparql-Integrate into a processor which can take either data or its con-
figuration as content of a input flow-file. With this the Sparql-Integrate processor 
is able to access files over HTTP, locally on the file system or as the content of a 
flow-file. With the most common file formats CSV, XML and JSON supported it is 
possible to create an ontology aligned graph out of these sources with one ore more 
SPARQL queries.

9 https://github.com/QROWD/nifi-sparql-integrate-bundle. 
10 https://www.w3.org/TR/sparql11-query/#extensionFunctions. 
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LIMES is a link discovery frameworks for the Web of Data that identify similar 
entities as well as duplicates in Web datasets. LIMES can execute so-called link spec-
ifications, which contain heuristics for the similarities of entities in datasets. Those 
specifications can be either created manually or via machine-learning techniques. 
Human feedback is required to assess and maximize the precision and recall of these 
link specifications as well as resultant output. We also wrapped Limes into a Apache 
NiFi processor, the processor accepts a configuration file as input and returns a list of 
found links between entities. The configuration specifies the location of the datasets, 
which entities based on which specific properties should be linked and what kind of 
metric should be used as a distance measure. 

Nifi processors that wrap Limes and Sparql-Integrate can be used within the 
QROWD Platform with a simple “drag and drop”. While it is possible to engineer 
a data integration workflow with the QROWD Platform only, we also developed a 
complementary offline workflow. To deal with the increasing complexity of Sparql-
Integrate queries as tasks become more complex, the complementary workflow11 

treats those files as source code, which enables syntax checking, autoformat, com-
pletion and version control. When finished, these files can be used to configure the 
QROWD platform processors. 

With the addition of Sparql-Integrate and Limes processors, it is possible to create 
arbitrary data integration workflows within the QROWD Platform. In Sect. 8 we will 
see the processors in action for solving the urban auditing problem. 

8 Use Cases 

In this section we show how we used the QROWD platform to develop two hybrid 
human-machine data flows: one to generate and manage mobility infrastructure data, 
and another to estimate modal split. We report on the piloting and evaluation of both 
applications in the city of Trento, Italy. 

8.1 Generating and Managing Mobility Infrastructure Data 

Accurate information of current mobility infrastructure is crucial for the implemen-
tation of mobility policies. However, records may be incomplete due to certain items 
being installed and owned by private parties, or due to digitization errors. Sending 
municipality employees to scout an area or regularly check known infrastructure 
does not scale in area and is expensive. A smarter alternative would be to involve 
citizens to help with the task. In this section, we describe a hybrid human machine 
workflow we deployed on a live setting in the city of Trento, Italy, for generating 
and curating a map of bike rack locations for the Limited Traffic Zone of Trento. In

11 https://github.com/QROWD/link-discovery-and-data-fusion. 
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Table 3 Design guideline applied to bike rack map collection using the VCE 

What Who Why—motivation Why—reward 

Collection Crowdworkers Economic 

How Required skill Required device Device constraint 

Collection Visual recognition PC None 

Interaction limit Question delay Resolution delay 

5 Medium Medium 

the following, we describe each of the steps we follow together with the Smart City 
managers in Trento. 
Acquisition 
The municipality of Trento had an initial dataset of 39 bike racks in the area of 
interest, each one including the type of bike rack (single sided or double sided), the 
name of the street is located and the capacity. The Smart City managers wanted to 
know id the dataset was complete in the sense that all bike racks in the area were 
included, and accurate, in the sense that all properties of each bike rack in the dataset 
were correct. Using the tools described in Sect. 5.1, we acquired this dataset into the 
CKAN repository. 

A second bike rack dataset was openly available from OpenStreetMaps. Two 
volunteers had contributed the locations and properties of 59 bike racks in the same 
area of interest than the Municipality dataset. However, 36 bike racks were missing 
at least one of the type or capacity properties. We acquired the dataset to the CKAN 
repository, but before further analysis, we decided to generate a new dataset taking 
advantage of the availability of recent street-view level imagery in Trento. 
Generation We used the Virtual City Explorer tool described in Sect. 4 to create a 
crowdsourcing task to collect bike racks from the Google Maps street-view imagery 
of the area of interest defined by the municipality. Table 3 shows the application of 
the design guidelines to this task. We deployed the task on a crowdsourcing platform 
and recruited 25 crowdworkers that mapped 44 bike racks. 
Interlinking and Fusion 
Using the machine components described in Sect. 7 we ran an interlinking process 
between the three acquired datasets based on the bike rack’s geographical coordi-
nates. The output is a fused dataset where bike racks from different datasets judged to 
be the same are merged into a new representative entity that aggregates all properties 
from its parents in a set. 

Figure 6 shows a visualisation of the fused dataset. Bike racks from different 
datasets considered to be the same are shown as groups of circles with the same 
color. White circles represent bike racks that were not linked with any other. Shapes 
within the circles encode from which dataset the bike rack comes from: squares 
represent bike racks from the data generated with the VCE; triangles from Open-
StreetMaps, and crosses bike racks from the Municipality dataset. Datasets for each
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Fig. 6 Map of bike rack clusters 

source (OpenStreetMaps, Municipality and VCE) and the fused dataset are openly 
available in the Zenodo repository.12 

Curation 
To validate the location and properties of the bike racks in the interlinked map, a 
human needs to verify them. We modeled this as a Citizen Challenge (Sect. 5.3) using  
as input the area of interest and the interlinked map. Table 4 shows the instantiation 
of the crowdsourcing guidelines given in Sect. 4 for this task. 

Citizens were asked to go to one of the locations in the interlinked map and confirm 
(Fig. 7 (center)) if the bike rack is there using a form with the following input fields: 

1. Their location, taken from the device’s GPS by the i-Log app. This step is needed 
to confirm that the citizen is on the point featured in the map. Location was only 
considered valid if the measured GPS accuracy provided by the app was below 
10.0m.

12 https://doi.org/10.5281/zenodo.3574485. 
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Table 4 Design guideline applied to bike rack verification challenges 

What Who Why—motivation Why—reward 

Verification and 
validation 

Citizens Economic, hedonic Prizes 

How Required skill Required device Device constraint 

Collection Visual recognition, 
Physical 

Mobile phone Bandwidth 

Interaction limit Question delay Resolution delay 

None Challenge duration Challenge duration 

Fig. 7 Three i-Log interfaces, for (left) a user to decide if accept to participate a challenge, (middle) a 
user contribute with a new item detection, and (right) a user taking a picture of a new item discovered 

2. Reply Yes/No to the question Is the bike rack still here? If the selected answer 
is No, then the contribution is submitted. 

3. If the answer to the previous question was Yes, provide a photo of the bike rack 
(Fig. 7 (right)). 

4. Answer the question What kind of bike rack do you see? The answer is picked 
from example pictures of three different types of bike racks. 

5. Answer the question: What is the capacity of the bike rack? 
6. Answer the question: How many available spots does the bike rack have? 

12 citizens of age 18–25, students of the University of Trento, accepted to partici-
pate in the challenge over a one week period. For each verified bike rack, participants 
received 5 points, for each 20 points accumulated, the participant had the right to a 5 
euros voucher to exchange for phone credit. All participants validated at least 4 bike 
racks, and all but one of the bike racks on the input map were verified as as existent
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Fig. 8 High level description of the hybrid human workflow for completing mobility infrastructure 

or not. The one bike rack missed by the challenge was checked by a municipality 
employee and found to be within a private ground, therefore, removed from the final 
result. 

On the light of the good results with bike racks, we decided to invite the same 
participants to a second challenge to collect locations, types and pictures of special 
parking spots (disabled, taxi ranks, freight load/unload). These type of parking spots 
are challenging to collect with the VCE due to the fact that available pictures on 
street-view level imagery may have a vehicle on them, impeding their identification. 
The input form was comprised of the following three fields: 

1. Take picture of parking spot 
2. Share location using phone capabilities 
3. Answer the question What type of parking spot is this, disabled, taxi rank or 

freight? Examples of each type were provided in the interface for clarity. 

The new challenge ran for one week and allowed the collection of a dataset 
containing 401 special parking spots (Fig. 8). 

8.2 Modal Split Surveys 

Modal split is a fundamental indicator for understanding how citizens use various 
means of transport. It is defined as the percentage of citizens using a particular
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Fig. 9 High level description of the hybrid human workflow for trip collection from Citizen’s 
devices 

mode of transportation for their travel in a specified time period (e.g., 30% car, 
30% bus, 20% bike, 20% walking). It is also an important input for designing and 
evaluating mobility policies. For example, if a large number of car trips are detected 
towards a certain district, the municipality can then devise a policy to encourage 
other transportation modes. Furthermore, the same measurement can be made again 
focused on trips to that district to evaluate the effectiveness of the policy. 

Traditionally, modal split is estimated through travel surveys, where citizens either 
fill a paper form, or provide answers by telephone to an operator, with details of their 
trips during a certain period of time. This is quite expensive and time consuming, 
greatly limiting the number of times the modal split can be measured. An interesting 
approach is to use citizen’s mobile phones to automate the application of the survey, 
and use data analytics on collected data to “fill the form” as automatically as possible, 
asking the user only to confirm trips where we are not confident enough about the 
result provided by the machine. Figure 9 shows a high level overview of the data 
flow for collecting trips from citizens. We describe below how we implemented it to 
satisfy the particular needs of the Municipality of Trento (MT) with the help of the 
QROWD platform. 

First, we extended the Citizen data model described in Sect. 6.1 with the demo-
graphic properties required by MT to filter and aggregate modal split. Table 5 describe 
the added attributes. The data model was loaded into QROWDDB, and CRUD oper-
ations on Citizens and Trip were configured into the QROWDDB (Sect. 6) 

For connected vehicles and public transport, it is relatively easy to generate trip 
data that is complete, with accurate start, stop points and a correct transport mode
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Table 5 Attributes added as an extension to Citizen data model for modal split survey application 

Attribute Description 

Occupation Principal work activity 

numberCohabitants Number of people that live in the same house 

numberVehicles Total number of vehicles available to all 
cohabitants 

preferredMode Preferred transportation mode 

WorkSector Sector where citizen works 

HomeSector Sector where citizen lives 

Age Age of citizen 

Gender Gender of citizen  

Email e-mail address 

streetAddress Address 

drivingLicense Type of driving license owned, if any 

label. However, contributions from mobile devices simply push data upstream and do 
not have the capabilities to convert raw data into trips. Within the QROWD Platform 
we developed a Transport Mode Detection component, that uses Machine Learning 
models to processs GPS and accelerometer time series to (i) Separate a GPS trace 
into (multimodal) trips by detecting start and stop points. (ii) For each trip, infer the 
transport mode of each leg. 

However, data from personal devices is often noisy and/or sparse, and training 
data for specific transport modes in the specific topological and traffic conditions of 
a city may not be available, leading to inaccurate trip classification. To solve this, we 
put citizens in-the-loop by providing a Trip Update Interface as a Crowdsourcing 
Service (cf. Sect. 4) to allow the confirmation and amendment of the trips inferred 
by the machine. 

The overall data and workflow is shown in Fig. 10. We assume the sensor data 
captured by the citizens’ device is available in the QROWDDB component. For 
each citizen, we analyse whole-day GPS trajectories. First we preprocess them to 
extract the actual traveling segments. After removing outliers, unsupervised machine 
learning techniques like space-time clustering are applied to find stop points, e.g. 
when a citizen only moved inside a building where many captured GPS positions 
are in the near vicinity, thus building a point cluster, as shown in Fig. 11. The actual 
traveling segments, or ‘trips’, are then the movements between clusters. 

To detect transportation modes, we apply supervised machine learning techniques 
trained on labeled data, i.e., example trips where we knew the correct transporta-
tion modes. For training, the same preprocessing was performed. We use supervised 
machine learning approaches that can be grouped into two categories, ‘numeric’ 
and ‘symbolic’. The numeric machine learning approaches work on features derived 
from the accelerometer data streams we captured on the users’ smart phones. Here 
we use several classification algorithms from the Scikit-Learn [20] machine learning
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Fig. 10 Data and workflow of the transport mode detection component 

Fig. 11 Part of an example 
GPS trajectory showing a 
cluster at a stop inside a 
shopping mall
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library.13 The symbolic machine learning algorithms make use of the citizens’ trip 
trajectories and symbolic background data representing the traffic infrastructure and 
further geographic information of the model region. This background data is rep-
resented by means of the Resource Description Framework (RDF)14 and the Web 
Ontology Language (OWL).15 As supervised machine learning software for learning 
OWL class expressions that describe and serve as classifiers to distinguish, e.g. bus 
trips from non-bus trips, we used the DL-Learner framework16 [1]. To be able to infer 
class expressions that reflect distinctive spatial relations, e.g., that a trip was probably 
made by bus if it started and ended near a point of interest of type ‘bus stop’ and 
went along a line feature which represents a known bus route, we extended the OWL 
reasoning components of the DL-Learner to enable ‘spatial reasoning’. This spatial 
reasoner component is able to make implicit knowledge stored in the background 
knowledge base explicit and thus usable in OWL class expressions. We set up an 
RDF vocabulary of ‘virtual’ spatial RDF properties covering the relations from the 
Region Connection Calculus (RCC) [3] and further relations that seemed suitable for 
the task of expressing characteristic features of the different transportation modes. 
Those spatial properties are inferred by means of the spatial coordinates attached to 
spatial entities in the knowledge base. A simple example would be the near property, 
where an assertion  a near b is inferred whenever the distance between the geograph-
ical coordinates of a and b is less than, e.g. 10 m (where the actual value can be 
configured). Taking into account that GPS trajectories recorded on general purpose 
commodity hardware like smart phones usually are not 100% accurate, the spatial 
reasoner also needs to handle a certain degree of fuzziness. Figure 12 exemplifies 
this for the runs along property.

Here, the spatial reasoner extension we developed returns all road segments from 
LinkedGeoData17 [26] on which the given GPS trajectory runs along even though 
the respective trajectory segments do not exactly match the road segments. 

All trained classifiers are consolidated in an overall ‘meta’ transportation mode 
classifier which may chose a classification outcome, e.g., from that classifier that 
could achieve the highest confidence. However, both start-stop detection and trip 
classification may fail, e.g. due to very sparse GPS trajectories or lack of enough 
training data. The citizen is the only one that knows exactly what the itinerary was, 
therefore, to put them in the loop, we designed a Trip Update Interface (TUI) as a 
crowdsourcing service to allow the confirmation and amendment of the trips inferred 
by the machine. Table 6 shows the design guidelines applied to the TUI. The moti-
vation was set as partly altruistic (desire to collaborate with the municipality) and 
partly economic (winning a prize for contributing data). To avoid annoying users, the 
interaction limit was set to one question per trip. To avoid issues of users forgetting

13 https://scikit-learn.org. 
14 https://www.w3.org/TR/rdf11-primer/. 
15 https://www.w3.org/TR/owl2-overview/. 
16 http://dl-learner.org/. 
17 http://linkedgeodata.org. 
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Fig. 12 Bike ride trajectory exemplifying the spatial relation runs along; the lgdr prefix of the 
results resources resolves to http://linkedgeodata.org/triplify/ 

Table 6 Design guideline applied to the trip verification task 

What Who Why—motivation Why—reward 

Verification and 
validation 

Trento citizens Economic, altruistic Prizes 

How Required skill Required device Device constraint 

Collection Visual recognition Mobile phone Battery—bandwidth 

Interaction limit Question delay Resolution delay 

1 question per trip 24 h 72 h 

the details of a trip, the question delay was fixed to 24 h. Resolution delay was set 
to 72h. 

We implemented a decision component that for each trip detected by the TMD 
generated one instance of the TUI. Both the classifier and the decision component 
were executed every morning on data collected from the previous day, according to 
the value of the question delay property in the guidelines. In case no sensor data had 
been received, a failsafe question asking the reason why no data had been received 
(app failure or conscious decision of not submitting data) and providing the user 
with a blank map where they could manually input their trips if they wished to do 
so. As deployment manager, we implemented a simple connector that encapsulated 
the instantiated TUI into an i-Log question and called the i-Log API. As questions 
about a trip can only be answered by the citizen that made it, we did not implement 
any aggregation metric. 

The TUI receives as input a trip, and generates an HTML5 + JavaScript responsive 
interface (for which an example is shown in Fig. 13) that enables amendment as 
follows:

http://linkedgeodata.org/triplify/

8705 17490 a 8705 17490 a
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Fig. 13 The trip update 
interface 

1. Each approximate start and stop point is shown as a highlighted circle on a 
section of the map. A user can drag the circle on the map to amend the location 
any of the points. 

2. Each pair of start/stop points is linked to an icon representing the detected trans-
port mode used between the two points in question. In the example, bus was 
detected between the start point and the first stop point, while walking was 
detected between the first and second stop points. A user can tap on the icon to 
select another transportation mode. 

3. Finally, an user can add or remove intermediate stops using the add stop button 
and the rubbish bin icon. 

The TUI outputs a trip with the amended start/stop points and transport modes (if 
any). Amended trips are considered ‘ground truth’. As such, we can also use them 
for bootstrapping the training of the classifiers by always asking for confirmation of 
all the trips and periodically re-training the classifiers. Once they achieve a certain 
accuracy, one can only ask for amendment of those trips with a confidence level below 
a certain threshold. Model re-training can be configured as an offline process, or as a 
step of the data flow, based on a certain condition, e.g., number of confirmed/amended 
trips collected. 

To collect data from citizens, we used the i-Log application described in Sect. 5.2. 
Inline with the data minimisation principle of the European General Data Protection 
Regulation (applicable as the use case is within Europe), we configured i-Log to only 
collect accelerometer and GPS data, as the only streams required by TMD.
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A pilot was run in the first week of October 2019 with 149 participants. 44 
participants submitted either sensor phone data or a failsafe question every day of 
the week, 65 at least one day of the week and 40 abandoned the experiment without 
contributing any data. Users could provide qualitative feedback through email after 
the end of the pilot. 18 people chose to do so, from which we highlight the following 
comments. 

1. In some phones, the impact of sensor data collection on the device’s battery was 
perceived as high, prompting users to uninstall the app. Lesson learned: Further 
improvements in the engineering of the app would be required for going into 
production. 

2. When the automatically inferred trips were very different from real trips, it was 
hard to update it to reflect reality. Lesson learned: further research needs to 
be conducted on the user experience of interfaces to update trips, especially in 
mobile devices. 

3. Users that were less skilled with their phones considered the interface too com-
plicated, leading to worries about providing wrong data. Lesson learned: the 
rationale of using mobile devices for modal split surveys is to take advantage of 
their ubiquity and the assumption that embedding questions about the data on the 
same devices would increase the number and quality of the answers. However, 
for some demographics this needs to be balanced with the user experience. A 
possible way forward is allowing trip update on a PC or tablet. 

In terms of the experience of the Municipality, we identified as main pain point 
the need to run a helpdesk to support citizens with questions and to resolve issues 
with. This need partially offsets the savings of this approach with respect to the phone 
surveys that it intends to replace. Nevertheless, the i-Log approach was estimated to 
be 20% less expensive than an equivalent phone survey. We expect this percentage to 
increase with improvements on the battery usage of the app and in the user experience 
of the Trip Update Interface. 

9 Summary and Conclusion 

In this chapter, we presented the QROWD Platform, a collection of crowdsourc-
ing enabled integrations within a FIWARE-compliant architecture to create hybrid 
human-machine data processing workflows. The platform provides a framework for 
helping Smart City managers and their IT teams with the design and implementation 
of human computation tasks and citizen sensing as Crowdsourcing services such that 
they can be integrated with machine processes. 

We demonstrated QROWD’s capabilities by describing how we use it to develop 
two hybrid human-machine workflows to solve two real problems in the municipal-
ity of Trento, Italy: locating mobility infrastructure, and implementing modal split 
surveys leveraging mobile phone sensor data and citizen’s feedback. The approach
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was very successful for the first use case. For the second, there is still room for 
improvement for their large scale implementation: better engineering of the sen-
sor data collection application to reduce impact on phone battery, and providing 
more interface options to citizens for validating trip classifications provided by the 
machine. 

As the amount of data available to Smart Cities grows, there will be a need for 
purposeful analytics for operational managers and decision makers, in addition to 
approaches that enable citizen inclusion towards more human-centric cities. QROWD 
paves the way towards this end, and at the same time provides tools for leveraging 
other types of human contributions, such as those available from crowd-working 
platforms. Future work will be focused on two areas: first, incorporate advanced data 
privacy mechanisms that allow citizens fine-grained control on what type of analysis 
they allow on their data; second, when integrating data from different sources from 
different providers, the question about how to price queries on that data in the context 
of an analytic process arises. This also has implications for monetary or prize rewards 
for citizens contributing data. 
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