
RESEARCH ARTICLE

Approaches to measure class importance in

Knowledge Graphs

Daniel Fernández-ÁlvarezID
1*, Johannes Frey2, Jose Emilio Labra Gayo1, Daniel Gayo-

Avello1, Sebastian Hellmann2

1 Department of Computer Science, University of Oviedo, Oviedo, Spain, 2 AKSW Group, University of

Leipzig, Leipzig, Germany

* fernandezalvdaniel@uniovi.es

Abstract

The amount, size, complexity, and importance of Knowledge Graphs (KGs) have increased

during the last decade. Many different communities have chosen to publish their datasets

using Linked Data principles, which favors the integration of this information with many other

sources published using the same principles and technologies. Such a scenario requires to

develop techniques of Linked Data Summarization. The concept of a class is one of the core

elements used to define the ontologies which sustain most of the existing KGs. Moreover,

classes are an excellent tool to refer to an abstract idea which groups many individuals (or

instances) in the context of a given KG, which is handy to use when producing summaries of

its content. Rankings of class importance are a powerful summarization tool that can be used

both to obtain a superficial view of the content of a given KG and to prioritize many different

actions over the data (data quality checking, visualization, relevance for search engines. . .).

In this paper, we analyze existing techniques to measure class importance and propose a

novel approach called ClassRank. We compare the class usage in SPARQL logs of different

KGs with the importance ranking produced by the approaches evaluated. Then, we discuss

the strengths and weaknesses of the evaluated techniques. Our experimentation suggests

that ClassRank outperforms state-of-the-art approaches measuring class importance.

1 Introduction

With the development of semantic web technologies, a huge volume of information has been

published as Linked Data (LD) or Linked Open Data (LOD) in the form of Resource Descrip-

tion Framework (RDF) graphs. LOD is being used for a wide range of different applications,

including search engines [1–3] or recommendation systems [4, 5]. Many different knowledge

domains are covered by LOD datasets, and there are several projects whose main goal is to

store and to offer as many general-purpose LOD content as possible. DBpedia [6], Wikidata

[7], YAGO [8], and OpenCyc [9] are insightful examples.

The size and variety of such projects make their content complicated. The process of grad-

ual discovery and understanding of the contents of a large and unfamiliar LOD source has

been called graph exploration [10]. In such a context, automatic summarization techniques are

now more necessary than ever. Providing simplified versions of a graph’s content is desirable

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Fernández-Álvarez D, Frey J, Labra Gayo

JE, Gayo-Avello D, Hellmann S (2021) Approaches

to measure class importance in Knowledge

Graphs. PLoS ONE 16(6): e0252862. https://doi.

org/10.1371/journal.pone.0252862

Editor: Jacopo Soldani, University of Pisa, ITALY

Received: July 28, 2020

Accepted: May 25, 2021

Published: June 10, 2021

Copyright: © 2021 Fernández-Álvarez et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All the data used in

this work is available in a public repository: https://

github.com/DaniFdezAlvarez/classrank/tree/

develop/experimentation/doc/ The paper itself

includes URLs to specific files the first time that

those files are used or described. Regarding

Wikidata logs: The data files are hosted by Wikidata

under a CC-0 license at: https://iccl.inf.tu-dresden.

de/web/Wikidata_SPARQL_Logs/en Regarding

DBpedia logs: the logs are hosted in a server of

University of Oviedo under a CC-BY license with

OpenLink’s permission. They can be dowloaded at

http://data.weso.es/classrank/logs/dbpedia-2017-

10-logs.zip.

https://orcid.org/0000-0002-8666-7660
https://doi.org/10.1371/journal.pone.0252862
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252862&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252862&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252862&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252862&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252862&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252862&domain=pdf&date_stamp=2021-06-10
https://doi.org/10.1371/journal.pone.0252862
https://doi.org/10.1371/journal.pone.0252862
http://creativecommons.org/licenses/by/4.0/
https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/
https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/
https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
http://data.weso.es/classrank/logs/dbpedia-2017-10-logs.zip
http://data.weso.es/classrank/logs/dbpedia-2017-10-logs.zip

in two ways for graph exploration. On the one hand, it allows consumers to decide whether a

graph can be suitable for their purposes. On the other hand, it can be a tool to discover which

are the most important topics, entities, or types of relations within a given source.

This is particularly relevant in cross-domain datasets maintained by different people,

organisms, or tools. The bigger, more complex, or greater it is the number of different agents

maintaining a LOD source, the harder it is to produce accurate handcrafted summaries.

There are many valid approaches to produce summaries of different natures of LOD con-

tent [11], especially for schema elements such as classes [12–14]. These summaries frequently

consist of reduced graphs which are representative of the original structure. All these tech-

niques need to identify which are the most important elements in the target graph. Importance

rankings can are to produce any of the aforementioned summaries, but they can also act as a

simpler summary by themselves.

The concept of class has a key role in these processes. Classes are abstract ideas which group

many individuals sharing a common set of features under the same label. In general, RDF

graphs are explored or exploited via SPARQL queries. Thus, knowing the set of properties

associated to a given class allows for writing SPARQL queries involving their instances, since

they all share a common structure w.r.t property usage.

Despite this, the problem of detecting class importance to elaborate class rankings has not

received enough attention from the scientific community. The notion of importance has not

been properly defined yet. In this paper, we discuss the notion of importance as opposed to the

notion of relevance against a given purpose. Then, we evaluate different approaches to measure

class importance. Our contribution is twofold:

• We make a compilation and comparison of existing unsupervised techniques to produce

class importance rankings. The techniques are compared in terms of quality of their results,

type of information used, and computational complexity.

• We propose a new technique called ClassRank. Our approach is based on PageRank [15]

scores and assigns each class an importance score computed upon the importance of its

instances. ClassRank can capture the importance of classes with few instances when those

instances are important enough.

To evaluate these techniques, we applied them all over the two well-known LD sources:

DBpedia and Wikidata. Then, the results produced are compared to the actual usage of each

class in log samples from the official SPARQL endpoints of these two sources. Class usage in

SPARQL logs has already been proposed as a reference to measure class importance [16].

In section 2, we provide and discuss some notions which are required for a good under-

standing of this paper’s content. In section 3, we introduce all the techniques which are used to

compute class importance in our experiments. In section 4, we describe our experiments and

the obtained results in a detailed way. In section 5, we discuss the results obtained during the

experimentation. In section 6, we analyze some works related to ours. We focus mainly on

techniques to measure class importance/relevance not used in our experiments. Finally, in sec-

tion 7, we provide the conclusions of our work and future work lines.

2 Preliminary notions

2.1 Assertion Box and Terminological Box considerations

In this paper, we will assume that the reader is familiar with basic concepts of RDF such as

URIs ðUÞ, literals ðLÞ, or blank nodes ðBÞ. An RDF graph G can be formally defined as a set of

triples ðs; p; oÞ 2 ðU [BÞ � ðUÞ � ðU [B [LÞ.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 2 / 35

Funding: This work is supported by the Severo

Ochoa Research program (2017 call, exp. number

BP17-88), and by the Spanish Ministry of Economy

and Competitiveness 302 (Society challenges:

TIN2017-88877-R).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0252862

We can distinguish two different types of statements from a conceptual point of view, com-

monly referred to as Terminological Box (T-BOX) and Assertion Box (A-BOX) in the litera-

ture. T-BOX statements stand for abstract concepts, aka classes. They are used to describe

schemata, and they are key elements to define ontologies. A statement such as (:City, :subclas-

s_of, :Human_settlement) is a T-BOX example. On the other hand, A-Box statements contain

instance information. They are more associated with Knowledge Graphs (KGs) containing

information about actual individuals and how these individuals are linked between themselves

and their respective schema elements. Statements such as (:New_York, rdf:type, :City) or

(:New_York, :twinned_city, :Madrid) are A-BOX examples.

The techniques applied in this paper always aim to get scores and rankings for classes, not

instances. However, to obtain such a result, some of them consider structures purely composed

of T-BOX statements, while some others use knowledge related to the A-BOX part of the

graph as well.

2.2 Importance vs relevance

Discovering the most important nodes in a graph has been proven as a key task in order to per-

form further actions, such as summarization or priorization of contents. Even with that, the

notion of importance itself remains ambiguous. Several metrics that compute different topo-

logical features have been purposed to determine the importance of elements. However, there

is not an approach that outperforms the rest in general terms capturing the notion of node

importance. The suitability of the different available techniques may depend on the planned

usage for the obtained rankings.

By contrast, the notion of relevance is linked to a purpose, therefore it is much easier to

define within a context. For instance, search engines provide rankings of elements w.r.t. its rel-

evance to a given query. Recommendation systems produce lists with the most relevant items

for their users. Different classification systems may produce different groupings attending to

different criteria, so the algorithms used check the relevance of each element against those

criteria.

Relevance is not just easier to define, but also to evaluate. Both search engines and recom-

mendation systems are designed to be used by some final users, who are legitimate judges to

classify a set of results as relevant or not for their expectations and preferences. Then, those

users can determine whether a given classification is correct. In the case of importance decou-

pled of a specific purpose, the idea of what are the most important elements in a dataset may

be different for the owner or creator of the source and for each one of its consumers. And

there is not a definitive argument proving which one of them is right.

For our experimentation, we have adopted the idea of class importance used in [16]. The

authors compare several centrality metrics against an artificial gold standard. They associate

each class a score in light of how frequently that class is mentioned in a SPARQL query against

an endpoint exposing the graph’s content. Further details about how to identify class mentions

in the logs and how to measure class importance with them will be provided in section 4. The

rankings obtained from the logs will be used as a reference to evaluate the approaches men-

tioned in section 3.

3 Metrics

3.1 Importance metrics applied over schema structures

In this section, we will work with a formal definition of a graph G = (V, E), where V is a set of

nodes or vertexes and E is a set of edges linking those nodes.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 3 / 35

https://doi.org/10.1371/journal.pone.0252862

The techniques introduced in this section are Degree, Betweenness, Bridging Centrality,

Closeness, Harmonic Centrality, and Radiality. In our experimentation, they are applied over

graphs composed only by T-Box elements. In the interest of brevity, in the following sections

of this paper, we will refer to them all as Only Terminological Techniques (OTT). The tech-

niques of this section could be theoretically applied to graphs containing A-BOX statements as

well. However, except Degree, they have a computational cost that does not make them suit-

able to be applied over KGs as big as the ones used in this paper’s experiments.

The techniques mentioned in this section are used for general network analysis and they all

aim to measure node centrality. A thorough review of these approaches and similar ones is

offered in [17].

3.1.1 Degree. The degree is one of the simplest measures of graph centrality. The degree

of a node e is the number of edges incident to e. We will denote the degree of a node e 2 V as

D(e).

3.1.2 Betweenness. The Betweenness B(e) of a node e is the ratio of shortest paths between

any pair of nodes (u, v)/e 2 V ^ e 6¼ u 6¼ v that pass through e compared to the total number of

shortest paths. Let σ(G, e) be the function which gives the number of shortest paths in G pass-

ing through e, and σ(G) be the total number of shortest paths in G. Then, the Betweenness B(e)

can be defined as:

BðeÞ ¼
X

e6¼u6¼v

sðG; eÞ
sðGÞ ð1Þ

3.1.3 Bridging centrality. A bridging path is an indirect connection between two aggre-

gate nodes in a graph, i.e., a link of two densely connected components (e.g. a domain knowl-

edge, an organization) via a third node known as bridging node. On the top of this concept,

the Bridging Centrality BC(e) of a node e assigns to e a score which aims to measure how

much e acts as a bridge mainly for the nodes in its neighborhood in G. For such a goal it com-

bines both local and global metrics of centrality. It is based on Betweenness and the Bridging

Coefficient Bc(e) of a node e, which is defined as follows:

BcðeÞ ¼
DðeÞ� 1

P
i2NðeÞDðiÞ

� 1 ð2Þ

where N(e) is the set of nodes in the immediate neighborhood of e. With this, BC(e) is defined

as:

BCðeÞ ¼ BðeÞ � BcðeÞ ð3Þ

In the contexts of KGs, BC(e) can be used to identify useful nodes linking different information

topics or knowledge domains.

3.1.4 Closeness and Harmonic Centrality. The Closeness C(e) of a node e gives a hint

about how close e is to every other node in G. The Closeness score of e consists of the average

of the length of the shortest paths from e to every v/v 2 V ^ v 6¼ e. The Harmonic Centrality

HC(e) consists of a slight modification of Closeness, computing the harmonic mean of dis-

tances instead of the average. Let d(u, v) be the function that gives the length of the shortest

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 4 / 35

https://doi.org/10.1371/journal.pone.0252862

path between u and v. With this, HC(e) can be defined as follows:

HCðeÞ ¼
1

P
u6¼edðe; uÞ

ð4Þ

Harmonic Centrality and Closeness produce an inverse sorting of elements, i.e., the reverse

rank of Closeness would be the same rank of Harmonic Centrality. The element with the high-

est score in Closeness is the less central one, i.e., the one whose paths to every other node hap-

pen to be the longest ones. By contrast, the element with the highest score in Harmonic

centrality is the most central one. Since the rest of the techniques employed produce scores in

which the higher is the value the more important is the element, we will use Harmonic Cen-

trality instead of Closeness.

3.1.5 Radiality. Radiality, as well as Closeness or Harmonic Centrality, aims to quantify

how close is a node to all the rest in a graph. Radiality is based on the concept of Diameter of a

graph Δ(G), which is the maximum distance between any pair of nodes in V. With this, the

Radiality R(e) of a node e can be defined as follows:

RðeÞ ¼
1

P
u6¼e DðGÞ � 1

dðe;uÞ

� �� �
ð5Þ

3.2 Importance metrics applied over the whole graph structure

In this section, we will introduce Instance Counting (IC), PageRank, HITS, and ClassRank.

They have in common that they use T-Box and A-Box knowledge of the target KG to produce

a result. In the interest of brevity, we will refer to them as Also Assertion Techniques (AAT).

Since IC and ClassRank are based on class-instance relations, they both need A-BOX state-

ments for their computation. In opposition, PageRank and HITS can be applied over any

directed network structure, so they can work as AAT or OTT. In this paper, we analyze the

results of applying HITS and PageRank over the T-BOX subgraph and the whole KG. We will

refer to these computations as PageRank/HITS OTT when they are applied over the T-BOX

subgraph, and as PageRank/HITS AAT when they are applied to the whole KG.

3.2.1 Instance Counting. This importance metric is tightly linked to the RDF world and,

specifically, to the class-instance relation. The more instances a class has, the more important

the class is. Several public and widely-used data sources offer statistics about the number of

instances as a clue of class importance, such as Wikidata [18], or offer separate files in their

dumps to manage triples about instantiation, such as DBpedia [19]. Instance Counting (IC) is

a simple and scalable importance metric.

Typically, in RDF sources, the relation of instance-class between two elements ec and c is

expressed using the property rdf:type in a triple (ec, rdf:type, c) (all the prefixes used in this

paper are commonly used and can be solved using the on-line tool prefix.cc [20]). However,

properties with a similar semantic to rdf:type can be used, such as ‘P31—instance of’ in

Wikidata.

3.2.2 PageRank. PageRank is based in a notion of importance which can be informally

explained with the next statement: an element gains importance if it receives more links form

other elements, if those links come from important elements, and if those elements have few

outgoing links. PageRank scores are values in [0, 1] with a nice statistical interpretation. The

PageRank score of a node e is the probability that a random surfer, starting at a random node

and jumping from node to node following links, stops at node e. PageRank was originally

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 5 / 35

https://doi.org/10.1371/journal.pone.0252862

designed to rank the importance of pages in the World Wide Web. Ro model the actual behav-

ior of an Internet user that may follow links between pages, but may write as well some new

URL in his browser to move to a page non-linked from the current one, PageRank uses a

parameter α. The probability d that the random surfer has of getting bored of following links

and jumps to a random page is d = 1 − α.

3.2.3 HITS. The HITS algorithm [21] assigns two types of scores to the nodes in a graph:

hub score and authority score. A given node will have a greater authority score when it receives

links from nodes with a high hub score. Also, a given node will have a greater hub score when

it points to nodes with a high authority score.

As well as PageRank, HITS is an algorithm designed to rank the importance of pages in web

search contexts. The hub score provided by HITS is actually a similar notion to PageRank: in

both cases, a node gains importance when it receives links from important nodes. However,

PageRank and HITS consider a different notion of importance for those incoming links. The

authority score aims for finding pages that link to many other important nodes. This notion

can be very useful for web search tasks: instead of looking for the most relevant result, it finds

nodes from which you can jump to many other relevant results.

HITS is usually applied over subgraphs of a certain network containing nodes and edges

relevant to a given query. For example, when applied to web search, HITS does not compute

the hub and authority score for each page on the Internet. Instead, it computes the connections

between those pages that are relevant to a query according to some other technique. Thus,

both hub and authority scores are relevant to the nature of that query, and not just to the

importance w.r.t to the whole network structure.

Despite this, HITS can be applied over the whole KG, and so we do in this paper. When

applying HITS, we will use the hub score in every case, which is the one whose semantic is

closer to the notion node importance.

3.2.4 ClassRank. We propose a novel technique to compute class importance called Class-

Rank. The ClassRank score of a class c consist of the aggregation of the PageRank scores of its

instances. Let PR(e, α) be the PageRank of e with a damping factor of α. And let I(c) be a func-

tion which gives the set of all the instances of the class c. Then the ClassRank score CR(c, α) of

a class c with a damping factor of α can be simply defined as follows:

CRðc; aÞ ¼
X

ec2IðcÞ

PRðec; aÞ ð6Þ

As well as IC, ClassRank qualifies the importance of a class w.r.t. their instances. Neverthe-

less, while IC purely quantifies the number of instances, ClassRank is able to keep a balance

between the quantity and quality (aka importance) of those instances.

ClassRank assigns scores in [0, 1] which also has a nice statistical interpretation. CR(c, α) is

the probability that a random surfer such as the one described for PageRank has to land in an

instance of c.

Let VC be the subset of nodes in V which are classes. While it is always true that ∑e2V PR(e,

α) = 1, ClassRank does not have a similar property, i.e., it is not always true that
P

c2VC
CRðc; aÞ ¼ 1. The PageRank scores of nodes with no classes are never used, while the

score of nodes with more than one class are used to increase the ClassRank score of all its clas-

ses. Then, to make
P

c2VC
CRðc; aÞ ¼ 1 true, every node e/e 2 V ^ PR(e, α)> 0 should have

exactly one class.

To decide which instances give their score to a given class, ClassRank relies on the concept

of class-pointer. Usually, each KG uses a single property to express instance-class relations,

being rdf:type the usual choice for such a goal. In those graphs, a straightforward pick of

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 6 / 35

https://doi.org/10.1371/journal.pone.0252862

class-pointer is rdf:type. However, there are occasions in which the user may find it useful to

use a more flexible notion of instance-class by picking different properties.

An example of such an arguable property could be :occupation. Let’s consider a triple

(:sarah, :occupation, :doctor) representing that someone called Sarah works as a doctor. It can-

not be said that the essential type of :sarah is :doctor but, even with that, it can be said that

Sarah is a doctor in informal speech. Let G be a graph describing many people’s job, where the

rdf:type of all the individuals is :Person. Then, choosing rdf:type as class-pointer to compute G
with ClassRank will produce not really useful results. The only class with instances would be :
Person. However, an execution of ClassRank using :occupation as class-pointer, or rdf:type and

:occupation at a time, will give a distribution of importance among the different occupations

(classes) stated.

Some other scenarios in which it can be interesting to choose class-pointers different from

rdf:type are ontologies or KGs where most of the knowledge is T-BOX. Then, properties such

as rdfs:subClassOf could be used to propagate the importance of subclasses to their parent

classes.

To support those cases and similar ones, we define class-pointers as properties that are sup-

posed to be used in triples where the object is a class. This definition does not imply that there

must be a strict instance-class relation between a pair of elements linked by a class-pointer.

However, as that is the usual case, and to avoid verbosity, in this paper, we will use the term

instance when referring to elements that give its PageRank score to a class. ClassRank can use

several class-pointers in a single execution to adapt to the user needs.

Even if ClassRank is inspired and built over PageRank scores, it is important to remark that

PR(c, α) 6¼ CR(c, α). While PageRank measures the importance of the URI of a class within a

graph, ClassRank uses this URI as a pure label to represent the accumulated importance of a

group of elements whose common feature is having the same class. Actually, as it is defined,

PR(c, α) does not have any effect on CR(c, α) unless c is its own instance. Formally stated, PR(c,

α) does not have any effect on CR(c, α) unless it is true that (c, p, c) 2 G ^ p 2 CP(G), where

CP(G) is the set of class-pointers of G.

ClassRank’s pseudo-code has been formalized in Algorithm 1. However, some of the con-

ventions used must be described. We define a graph G as a set of triples G = {t1, t2. . .tn}. A tri-

ple t is a group t = (st, pt, ot) (subject, predicate and object). We use the macro fPR(G, α) to refer

to the standard PageRank function. fPR(G, α) receives a graph G and a dumping factor α as

input, and it returns a vector of size n, being n the number of nodes contained in G. We use E
to denote the set of nodes contained in G, and P to denote the set of properties used in any t 2
G. We denote the set of classes to be classified with EC, and the set of class-pointer properties

with PC. We use f; to denote an empty function f;: ;! }(EC), i.e., a function whose domain is

the empty set ; and whose co-domain consist of all possible subsets (powerset) of EC.

Algorithm 1 ClassRank pseudo-code
Input: G = Target Graph
Input: Pc = Set of properties identified as class-pointer
Input: α = Damping factor
Input: θ = Security threshold
Input: EC = Target classes (it can be an empty set)
1: Ic ;;

2: Q

o1 o1 � � � o1

p1

p2

..

.

pn

0 0 . . . 0

0 0 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 0

0

B
B
B
B
B
@

1

C
C
C
C
C
A

▷Stage 1

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 7 / 35

https://doi.org/10.1371/journal.pone.0252862

3: L fPR(G, α) ▷Stage 2
4: for each ti ¼ ðsti

; pti
; oti
Þ 2 G do

5: if pti
2 Pc then

6: Qpti ;oti
 Qpti ;oti

þ 1

7: if EC 6¼ ; then
8: Ic EC
9: else
10: for each j 2 [1, |E|] do
11: for each i 2 [1, |Pc|] do
12: if Qpi ;oj

> y then

13: Ic Ic [{oj}
14: break ▷Stage 3

15: L0 ð 0
ec1

0
ec2

. . .
� � �

0
ecn
Þ

16: S ð f;
ec1

f;
ec2

. . .
� � �

f;
ecn

Þ

17: for each ti ¼ ðsti
; pti

; oti
Þ 2 G do

18: if pti
2 Pc ^ oti

2 Ic ^ Qpti ;oti
� y then

19: if pti
=2DðSoti

Þ then

20: GðSoti
Þ½pti
� ;

21: sti
=2
[

a2DðSoti
Þ

Soti
ðaÞ

22: L0oti
 L0oti

þ Lsti

23: GðSoti
Þ½pti
� GðSoti

Þ½pti
� [fsti

g

Output: L = PageRank score of each entity
Output: S = instantiation vector
Output: L0 = Aggregated PageRank score of each class

In line 16, we initialize a vector of maps, and to represent each map we are using function

notation. Given a certain function f, we denote its domain with Dðf Þ, and its graph with Gðf Þ.
We modify the definition of a function f by adding or modifying elements in Gðf Þ, i.e., in

order to define f(a) = b, we will use Gðf Þ½a� b.

Algorithm 1 receives as input a target graph G, a set PC of class-pointers, a damping factor α
used for the PageRank execution, a security threshold θ, and a set of target classes EC, which

can be empty if the target classes are not known a priori.

The threshold θ is used to ignore classes with few instances. This is specially useful when

the classes to rank are not known a priori and the user of ClassRank wants to discover those

classes using the classpointers, but he prefers to discard those elements with few instances.

The algorithm returns three results: 1) The standard PageRank vector for every entity {e/e 2
E}, denoted as L; 2) the ClassRank vector for every class {eC/eC 2 EC}, denoted as L0, and 3) a

matrix containing information about which entities point to which classes using which class-

pointer, denoted as S. L0 provides the importance of each class, while S allows to analyze the

source of that importance.

We have divided ClassRank in three stages preceded by a preliminary one to prepare some

data structures.

Preliminary stage: Initializations. At this stage, we initialize some data structures that will be

used during the calculations of the ClassRank scores.

Ic is a set that will contain identifiers of the ranked classes. Q is a matrix of (m � n), where

m = |E| and n = |PC|. In Q, we annotate how many times a given object oj is linked with a given

class-pointer pi.

Stage 1: PageRank. At this stage, we calculate the internal relevance of each entity in G and

we store it in vector L. The computation of PageRank is a widely studied problem [22, 23].

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 8 / 35

https://doi.org/10.1371/journal.pone.0252862

Also, there are standard libraries for many widely-used programming languages to compute it.

Our implementation of ClassRank is written in Python and the PageRank computation is

based on the networkx library [24]. Nevertheless, to cope with huge graphs, we have imple-

mented a memory-optimized version of networkx’s PageRank just for non-weighted computa-

tions [25]. This implementation could be needed to reproduce the experiments proposed in

this paper.

Stage 2: Class-pointer matrix and class detection. This stage could be divided into two

phases.

In lines 4-6, the matrix Q is filled with values. This matrix contains the number of times

that each classpointer is used to link each node of the graph.

In lines 9-14, we perform class discovery if needed. When EC 6¼ ;, it means that the set of

classes to be ranked is known a priori, so there is no need to execute lines from 10-14. Other-

wise, the algorithm looks for nodes that are pointed at least θ times by at least a class-pointer.

The set Ic is filled with the nodes fitting that condition. Those nodes are considered classes by

the algorithm.

The security threshold θ has been introduced to filter wrong identifications of classes caus-

ing noise. This is especially handy in sources maintained by many agents making small edi-

tions, where human actions can cause marginal mistakes. This threshold should be used

carefully, since it may also cause a certain number of false negatives for all those actual classes

that are pointed less than θ times by a class-pointer.

Stage 3: ClassRank scores. The ClassRank score of each class is calculated as the aggregation

of the PageRank scores of its instances in lines 15 to 23. This stage can be informally summa-

rized with the next statement: if there is a high enough number of triples that have the same

class-pointer as predicate and the same class URI as object, then the PageRank scores of the

subjects of those triples are added to the ClassRank score of the class URI.

In lines 17-18, for each triple ti ¼ ðsti
; pti

; oti
Þ, we check whether oti

is a class and pti
is a

class-pointer linked to oti
at least θ times. If this is true, we perform three actions:

• In lines 19-20 we include pti
as class-pointer of oti

in the vector of maps S, just in case it had

not been already included.

• In lines 21-22 we add the PageRank score of sti
to the ClassRank score of oti

, just in case it

had not been already added.

• In line 23 we specify in the vector of maps S that sti
is instance of oti

due to the class-pointer pti
.

There is a public implementation of ClassRank available in a GitHub repository [26].

3.3 Adapted importance metrics

The authors in [16] propose an approach to adapt the OTT metrics described in section 3.1.

This adaptation incorporates A-BOX knowledge to compute the scores, so the approaches

become AAT. Let Ti be a given importance metric. In order to compute an adaptation T 0i of Ti,

the authors first propose a score normalization N(Ti(e)) for a given node e in a scale [0, 1],

defined as follows:

NðTiðeÞÞ ¼
TiðeÞ � minðTi;GÞ

maxðTi;GÞ � minðTi;GÞ
ð7Þ

Where min(Ti, G) is the value of the less important node in G according to Ti, and max(Ti, G)

is the value of the most important node.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 9 / 35

https://doi.org/10.1371/journal.pone.0252862

The adapted metric T 0i is computed as follows:

T 0iðeÞ ¼ NðTiðeÞÞ þ NðICðeÞÞ ð8Þ

Where IC(e) is the number of instances of class e. This adapted metric is an equally weighted

addition of the normalized scores of IC and Ti.

We have adapted all the OTT techniques mentioned in section 3.1 according to this for-

mula. Besides, we have experimented with adapted versions of the rest of the techniques ana-

lyzed which are compatible with this proposal. We have combined the IC scores with

PageRank OTT/AAT, HITS OTT/AAT, and ClassRank.

4 Experiments

We have produced reference rankings based on class usage in SPARQL logs of DBpedia and

Wikidata to evaluate the mentioned metrics. Firstly, we describe the general methodology to

build those reference rankings and to perform an evaluation. After that, we describe in detail

each source, their associated information, and methodology adaptations for each one when

needed.

4.1 Methodology

As suggested in [16], we have considered mentions class mentions in SPARQL queries as a

reliable metric of how important a class is. We annotate a mention class in a query when:

• The URI of the class is mentioned.

• The URI of an instance of the class is mentioned.

• The URI of an element e is mentioned, in case e is used in a triple with a property whose

domain/range forces e to be an instance of a class. Let pI be a property which links an

instance to its class; let d(p) and r(p) be the domain and the range of the property p; and let G
be the KG under analysis. Then, formally, a class c is considered to be mentioned in a query

if e is mentioned and it is true that ((e, pa, o) 2 G ^ c 2 d(pa)) _ ((s, pb, e) 2 G ^ c 2 r(pb)),

even if (e, pi, c) =2 G.

With these criteria, we elaborate class rankings based on the number of class mentions.

Then, we use those lists as a gold standard to compare with the rankings produced by the tech-

niques under evaluation.

4.1.1 Reference rankings: Human-generated traffic vs machine-generated traffic. We

produce two different lists for each studied source. One considers every entry available in the

logs. The other one computes just those entries associated with human-performed queries.

With requests made by humans we mean requests caused by people writing and executing ad-

hoc SPARQL queries, or performing small tasks in some applications that trigger a single/few

queries. Usually, machine traffic generates much more requests than human-performed traffic.

To provide some revealing numbers, the sum of requests performed by the top-10 most active

IPs in our DBpedia’s log, which is associated with machine agents, represents 44% of the total

requests. If we consider the top-100 IPs, the number grows to 77% of the total.

Human traffic is not a more reliable notion of importance than machine traffic, nor vice-

versa. However, it is relevant to check the difference between human-generated traffic and

machine one due to the notorious impact that very few machine agents usually have over the

final results. The notion of importance purely based on human actions seems to adopt a more

general point of view, not so polarized by automatic voracious consumers of the endpoint.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 10 / 35

https://doi.org/10.1371/journal.pone.0252862

Distinguishing between requests performed by humans and requests performed by bots or

applications has already been purposed in some other studies of SPARQL logs [27].

To avoid verbosity, in this paper, we will use the following abbreviations:

• Human Hosts (HH) to denote log entries associated with humans.

• Machines Hosts (MH) to denote log entries associated with machines.

• Every Host (EH) to denote all log entries.

4.1.2 How to compare the rankings: Rank-biased overlap. The compared rankings have

two peculiarities. First, it is feasible to have tied elements. Second, the significance of changes

in the top of the ranking is higher than changes in the low spots. Search engine results or classi-

fication in sports are insightful examples of these kinds of lists. When comparing two search

engines, the first results shown to the user are much more relevant than the ones in position

100th. Similarly, the event of a player climbing from the second seed to the top seed in a given

sport receives more social attention than any other jump in deeper regions of the ranking.

Importance rankings in RDF sources are used to prioritize some elements for different tasks or

to get a general idea about the content of a given source. Then, the top-ranked elements are

more relevant than the low-ranked ones.

It is desirable to use a metric that can compare the similarity of two rankings naturally han-

dling these two features. We have found that Rank-Biased Overlap [28] fits our requirements.

Originally, RBO is defined as a distance measure between two rankings, where 0 means mini-

mum distance and 1 means maximum distance. However, it can be trivially transformed into a

metric by calculating 1 − RBO, where 1 means maximum similarity, and vice-versa. From this

point, we will work with the definition of RBO as a metric.

Essentially, RBO checks the overlap of two rankings at incrementally increasing depths.

The elements checked at each depth d are those in rank [1,2. . .d]. Since the first element will

be checked looking for overlap at every iteration, this element has the greatest impact on the

final results. The following element with more importance over the score will be the second

one, and so on. At each iteration, RBO computes the ratio of overlapped elements. It produces

a result by adding all those ratios weighted using an infinite series of weights whose sum con-

verges always to a fixed value. The weights can be configured to give a certain amount of

importance to a region of the top rank using a parameter p.

The p parameter has a nice statistical interpretation. It models the user’s persistence when

performing a manual checking of the rankings. Low values of p arbitrarily decrease the proba-

bility that a user has to keep exploring ranks, and vice-versa. The extreme case p = 0 causes

that the only position checked is the first one. With p = 0, RBO gives a result of 0 (no overlap)

when the first element of both rankings is not the same, or 1 (perfect overlap) on the contrary

case. The rest of the ranking would be ignored. The higher is the value of p, the less probable it

is that the user stops exploring the ranking.

Greater values of p arbitrarily increase the importance of wider prefixes of the rankings.

Each iteration k will always have a greater impact over the results than k+ 1, but greater values

of p decrease that difference. p can also be interpreted as a parameter to configure the exact

amount of importance over the final score that a given prefix length has. For instance, a value

of p’ 0.9 gives an importance of 86% to the top 10 elements. This means that the sum of

weights of the first 10 iterations of RBO will be 0.86. Although there is not a function to obtain

a value of p for a couple of chosen values of importance and prefix length, the authors in [28]

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 11 / 35

https://doi.org/10.1371/journal.pone.0252862

provide the following useful equation:

WRBOð1 : dÞ ¼ 1 � pd� 1 þ
1 � p

p
� d � ln

1

1 � p
�
Xd� 1

i¼1

p1

i

 !

ð9Þ

In Eq 9, d is the depth or prefix length, and WRBO(1 : d) is the accumulated weight of a ranking

in positions 1 to d.

We have developed a script fp(d, w, θe) which receives a length d, a weight w, and an error

threshold θe, and it returns a value p which approximately solves the Eq 9 for d and w =

WRBO(1 : d). The script computes Eq 9 for d with different values of p, obtaining each time a

result wpi
. The script stops when it founds a pi=jwpi

� wj < ye, and returns pi. This script allows

us to find accurate enough values of p for any chosen pair of prefix length and accumulated

weight.

The sum of the weights at each depth of RBO always converges to a fixed value. This makes

RBO an adequate candidate to compare infinite rankings without having the infinite tail’s

importance dominating the finite head. When computing RBO for a given depth, even if this

depth is the size of the compared rankings, the algorithm produces two results: rbomin and

rbores. The value rbomin is the overlapped score obtained after having checked the target rank-

ings until depth d. rbores is the residual score that would have been added to the result in case

the explored rankings had infinite but equal and equally sorted elements beyond depth d.

With this, we can have that the max possible score for infinite lists is rbomax = rbomin + rbores.

Then, RBO can be defined as a function fRBO(R, L, p, d)!rbomin, rbores. It compares two

rankings R and L until depth d, with a user persistence modeled by p, and returns a score

rbomin in the range [0, 1], and a residual rbores based on the assumption that R and L can have

infinite elements.

The authors in [28] provide a formula to express RBO as a single point rboext instead of a

range. This formula extrapolates the tendency observed until depth d and assumes that it will

stay stable along the infinite tail and provide an score rboext where rbomin� rboext� rbomax. In

our experimentation, we will use rboext to obtain a single score point of similarity between two

rankings.

The rankings compared will always have the same number of elements, but the way in

which ties are handled may cause that they do not have the same number of ranks. When two

elements have an identical score within the same ranking, they are both assigned to rank k,

and the element after them is placed at rank k + 1. This means that the total number of ranks

could be smaller than the total number of elements. In our experimentation, we will always

execute RBO with the longest possible depth, i.e., the depth of the ranking with more ranks.

A deeper discussion about the convenience of this technique in scenarios similar to ours, as

opposed to classic approaches such as Spearman [29], in which all the elements have the same

impact over the final score, is provided in [28].

4.2 Describing sources

4.2.1 DBpedia. We have used the English chapter of DBpedia in our experimentation.

The contents offered in DBpedia’s SPARQL can be downloaded as text files. These logs are

described in a GitHub repository and can be downloaded and used with a CC-BY license [30].

The files used contain the version of the English DBpedia chapter at the moment in which the

logs were generated.

The classes ranked are the ones in the DBpedia ontology [31]. Also, the graph used to com-

pute the OTT techniques has been the DBpedia ontology itself.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 12 / 35

https://doi.org/10.1371/journal.pone.0252862

Logs. We have been able to mine logs of the DBpedia SPARQL endpoint of 14 different ran-

dom days during 2017. The log entries are split into fourteen files. Each file includes every

SPARQL request against the endpoint within a single day. The main features of the log files are

provided in Table 1.

We have computed class mentions using the criteria described at the beginning of this sec-

tion. The scripts used to perform such a mining task are publicly available in a GitHub reposi-

tory [32].

Each line in the logs contains data related to a single request to the endpoint. The version of

the logs that we were able to compute was filtered and anonymized to preserve users’ privacy.

We could use the following information for each entry:

• Hashed IP from where the request was performed.

• HTTP request. SPARQL queries are embedded in GET requests.

• Timestamp of the request truncated to hour precision.

• HTTP status code (200 OK, 404 Not found, 5XX server error. . .).

When mining logs, there is not a perfect technique to distinguish between human and

machine search sessions, or even to properly perform the task of identifying a single search ses-

sion. Also, the most accurate approaches use to rely on information that is not available in the

version of the logs that we have been able to analyze, such as user agent, more precise time-

stamps, or user identifiers. For instance, authors in [27] distinguish between queries per-

formed by humans, which they call organic, and queries performed by automatics processes,

which they call robotic queries. The SPARQL logs that they use do not contain IPs, but they do

include user-agents. They use this field to detect browser user-agents, which are usually con-

nected to organic queries, and some other agents linked to known applications used by

humans.

In our scenario, we combined the information of hashed IP and timestamp to detect hosts

that seem to have a human-like amount and rate of requests. We picked an arbitrarily low

amount of requests by hour within a single day. Any IP showing a request rate under that

threshold was classified as belonging to organic agents. The chosen threshold has been 2.

We are aware that there are several situations in which this heuristic and this arbitrary

threshold may cause false positives and false negatives, such as the following ones:

• A true human agent produces too many requests within a single day, which discards not just

the requests of that day but also every log entry related to the same IP.

• A machine agent produces a low enough number of requests every day.

Table 1. Statistics about the DBpedia SPARQL logs used.

Log size 58.771GB

N˚ of entries in the log 74,281,130

N˚ of MH entries 74,187,809

N˚ of HH entries 93,321

N˚ of total class mentions 80,562,206

N˚ of direct class mentions 42,788,969

N˚ of instance mentions 33,609,979

N˚ of class mentions inferred by domain/range 4,163,258

https://doi.org/10.1371/journal.pone.0252862.t001

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 13 / 35

https://doi.org/10.1371/journal.pone.0252862.t001
https://doi.org/10.1371/journal.pone.0252862

• An IP is linked to different routers on different days due to, for instance, Dynamic Host

Configuration Protocol (DHCP) changes.

The mentioned issues are hard to prevent without more precise information about each log

entry. However, the threshold has been chosen to pick IPs with high chances of belonging to

human agents by sacrificing recall but yet having a representative sample of human-related

entries.

OTT metrics. In this section, we describe how we computed techniques over a subgraph

containing just T-BOX statements. This subgraph is the version of the DBpedia ontology cor-

responding to the time in which the logs were generated.

The authors in [16] use Degree, Betweenness, Bridging Centrality, Harmonic Centrality,

and Radiality to measure class importance by applying them to graphs containing only T-BOX

statements. In our paper, we used the same approach for those techniques. Except for Degree,

whose complexity is linear to the number of nodes, all the aforementioned techniques need

the computation of the shortest paths between all the nodes in the graph. This requires at least

a computation time of O(V � (V + E)) [16], being V the number of nodes and E the number of

edges. Thus, these algorithms are hard to compute in a source such as the analyzed section of

the English chapter of DBpedia, with more than 110M triples.

Also, we have applied HITS and PageRank over the DBpedia ontology. The damping factor

for the PageRank execution was set to α = 0.85, which is the most usual configuration of

PageRank [33].

AAT metrics. We have applied HITS, PageRank, IC, and ClassRank over the whole KG.

Even if Degree’s complexity is low enough to execute this technique as AAT, we have not

included its computation in this paper because of its similitude with IC. While IC only consid-

ers links class-instance, Degree computes every incoming or outgoing link to rank a class.

However, for the top positions of that ranking, the vast majority of those links are the

instance-class relations accounted by IC, which leads to nearly identical results of these two

techniques.

To build the ranking of classes of PageRank, we filtered all the A-BOX elements in the

obtained PageRank vector and sorted the remaining T-BOX terms in decreasing order w.r.t. to

its score. The damping factor for the PageRank execution was set to the standard value α =

0.85.

The ClassRank scores are built on top of the PageRank ones described in the previous para-

graph, so the setting α = 0.85 was used. When executing ClassRank, the set of target classes is

known a priori. As a consequence, there was no need to perform class discovery in stage 2 of

Algorithm 1. The property rdf:type was the only class-pointer considered. Since the only prop-

erty linking an A-BOX term with any element in the DBpedia ontology is rdf:type, this is a

straightforward decision in the context of our experiment. The same decision was taken to

compute IC, i.e., the only property that we considered to link an instance to its class is rdf:type.

Also, since the set of classes to classify is known a priori, the value that makes sense for Class-

Rank’s security threshold is θ = 0. We do not want to discard any class of the DBpedia ontology

from the results.

In section 3.3, we described an adaptation of OTT approaches with IC scores. We have

applied this adaptation to all the techniques mentioned in section 4.2.1, but we have also com-

puted an adaptation of PageRank, HITS, and ClassRank over the KG to combine their scores

with IC scores.

Reference rankings. In Table 2, we include the top-20 elements of each reference list. The

whole lists are publicly available [34].

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 14 / 35

https://doi.org/10.1371/journal.pone.0252862

4.2.2 Wikidata. Wikidata, as well as DBpedia, is a well-known general-purpose LD

source. However, these two projects have some crucial differences that affect our

experimentation.

Wikidata models two types of elements within its KG: entities and properties. Entities are

represented with an ID starting by Q and followed by an integer (ex: Q5 stands for human;

Q6256 stands for country). Properties are identified with a ‘P’ and an integer (ex: P31 stands

for instance of; P279 stands for subclass of). Within the entities, we can conceptually make a

distinction between classes (such as ‘Q6256—country’) and instances (such as ‘Q30—United
States of America’).

However, there is no distinction in the way these two elements are managed. Both classes

and instances are maintained by community editions and Wikidata does not provide a list of

classes. It categorizes as a class any element in the KG that is an object in a triple with the prop-

erty ‘P31—instance of’ or a subject/object in a triple with ‘P279—subclass of’ [35].

With this criterion, we have found 2,477,094 classes. The subgraph of elements linking

those elements contains 13,791,207 triples. In opposition to the DBpedia’s case, this T-BOX

subgraph is too big to apply some of the techniques mentioned in section 3.1. Specifically,

Betweenness, Radiality, Harmonic Centrality, and Bridging Centrality would require huge

computational power and execution time.

Wikidata barely uses any property of any external ontology. All the needed properties are

defined within its own ontology and referenced with a ‘P’ ID. The class-instance relation is not

expressed with rdf:type, but with the equivalent property ‘P31—instance of’.
Logs. Wikidata made public some SPARQL logs with random samplings of valid queries in

different time frames [36]. All these logs have been anonymized to preserve users’ privacy.

Each log entry contains the original SPARQL query with variable names and most of the

Table 2. Top20 elements for HH and EH entries in DBpedia.

Human Hosts Every Host

Pos. Class Mentions Class Mentions

1 dbo:Album 1,342 dbo:Place 16,567,840

2 dbo:Company 667 dbo:Airport 16,082,487

3 dbo:Place 603 dbo:CareerStation 4,264,500

4 dbo:Airport 568 dbo:Band 4,065,636

5 dbo:Person 551 dbo:Person 3,228,266

6 dbo:Country 354 dbo:MusicalArtist 2,703,628

7 dbo:SoccerPlayer 319 dbo:Organisation 2,240,076

8 dbo:Settlement 301 dbo:PopulatedPlace 1,958,866

9 dbo:City 225 dbo:Company 1,934,215

10 dbo:RadioStation 178 dbo:Language 1,851,015

11 dbo:Film 166 dbo:Artwork 1,780,684

12 dbo:Writer 146 dbo:Device 1,774,061

13 dbo:OfficeHolder 145 dbo:Settlement 1,442,655

14 dbo:MilitaryConflict 129 dbo:VideoGame 1,126,766

15 dbo:Software 117 dbo:Album 1,014,906

16 dbo:MusicalArtist 114 dbo:Film 957,870

17 dbo:IceHockeyPlayer 113 dbo:OfficeHolder 841,060

18 dbo:VideoGame 108 dbo:City 834,053

19 dbo:Drug 108 dbo:SpTeamMember 828,302

20 dbo:Scientist 91 dbo:Writer 774,113

https://doi.org/10.1371/journal.pone.0252862.t002

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 15 / 35

https://doi.org/10.1371/journal.pone.0252862.t002
https://doi.org/10.1371/journal.pone.0252862

literals substituted by generic placeholders. There is also some metadata associated with the

query. Wikidata classifies each entry as either ‘robotic’ or ‘organic’. A query is labeled as

robotic when its user agent is not a web browser or when there is a non-human rate of queries

coming from the same IP in a time span. Otherwise, the query is considered organic.

This label let us build the HH and EH rankings without further computations of the rest of

the metadata. We used organic queries to elaborate the HH ranking and both organic and

robotic queries for the EH ranking.

The logs used in this experimentation are the most recent ones at the moment of this writ-

ing [37]. They contain a random sample of queries performed between 2018-02-26 and 2018-

03-25. A summary of the log’s content is offered in Table 3.

Properties in Wikidata are a more closed vocabulary compared to classes. Even if any Wiki-

data user can propose a new property, this proposal needs to be discussed and accepted by the

Wikidata community. At the moment of this writing, a total of 8882 properties have been

defined in Wikidata. Though, some of those properties are not used any longer or have been

removed.

Not all the properties include domain and range restrictions in their definition. Also, some

of these restrictions aim to be pure information for Wikidata users instead of actual ontological

restrictions that may invalidate some triples when used wrong. Properties usually define

domain and range restrictions as choice lists. For instance, ‘P106—occupation’ is defined to be

used in triples whose subject should be an instance of one class in a list of 8 elements, which

includes ‘Q5—human’, ‘Q729—animal’, or ‘Q21070598—narrative entity’.
These domain and range definitions in some cases, and the absence of constraints in some

others, do not make it possible to count class mentions in the logs via domain or range infer-

ences. Then, when mining the Wikidata logs, we only count as class mentions 1) mentions to

the class URI itself, and 2) mentions of its instances’ URIs.

OTT metrics. The high number of classes on Wikidata and the size of its T-BOX subgraph

discard the computation of too complex techniques such as Betweenness, Radiality, Harmonic

Centrality, and Bridging Centrality.

The set of techniques applied over the T-BOX subgraph of Wikidata consist of Degree,

HITS, and PageRank. PageRank damping factor was set to α = 0.85.

AAT metrics. We have applied HITS, PageRank, IC, and ClassRank over the whole KG.

Also, we have produced computed the adaptation with IC scores of HITS, PageRank, and

ClassRank. As usual, the PageRank damping factor was set to α = 0.85.

We have computed several settings of ClassRank’s class-pointers PC against Wikidata. Since

‘P31—instance of’ is equivalent to rdf:type, the most straight-forward setting is using PC =

{‘P31—instance of’}, so classes are scored w.r.t. pure instance-class relations. However, in

opposition to the DBpedia case, there are many different properties linking instances and clas-

ses in Wikidata, which let use different PC settings.

Table 3. Statistics about the Wikidata SPARQL logs used.

Log size 50,358 GB

N˚ of entries in the log 24,417,813

N˚ of MH entries 23,545,258

N˚ of HH entries 872,555

N˚ of total class mentions 105,939,034

N˚ of direct class mentions 22,094,776

N˚ of instance mentions 83,844,258

https://doi.org/10.1371/journal.pone.0252862.t003

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 16 / 35

https://doi.org/10.1371/journal.pone.0252862.t003
https://doi.org/10.1371/journal.pone.0252862

A class-pointer could be any property defined to be used in triples where the object is a

class. However, properties in Wikidata are not defined strongly enough to find class-pointer

candidates by checking their constraint definitions. Also, some properties that could be auto-

matically detected as class-pointer candidates are not used as so in the KG. For example,

‘P413—position played on team’, which is supposed to point to classes standing for special roles

in different sports, is just used to point to classes 71.22% of the times.

Then, to obtain a list of class-pointer candidates, we computed the actual usage of every

property p in the whole KG to obtain a ratio rp ¼
Ucp
Up

, where Up is the number of times that p is

used in any triple, and Ucp
the number of times in which p points to a class. Then, we sort the

properties in descending order w.r.t. r. The list of properties and its associated ratio is available

on-line [38]. We tested every combination of properties above a certain ratio, starting at 1.0

(the property always point to classes) and finishing at 0.5 (the property point to classes half of

the times), with decrements of 0.01 for each test.

In this paper, we do not include the results of all these configurations, but just the one that

we found optimal, i.e., that aligns better with the reference rankings. The best ratio for Wiki-

data has been r = 0.99. The resulting list of class-pointers with r = 0.99 is shown in Table 4.

In this experimentation, we seek to rank every Wikidata element that fits in Wikidata’s defi-

nition of what a class is. Then, since the set of classes is known a priori and provided to the

algorithm, the configuration of the security threshold should be θ = 0.

Reference rankings. The most important classes in Wikidata according to class usage with

EH and HH entries are shown in Table 5. When comparing these rankings with the rankings

produced by each technique we have discarded some special nodes from Wikidata, which are

important from a structural point of view due to Wikimedia’s organizational model, but rarely

used by end-users in SPARQL queries. The discarded nodes include elements such as

‘Q56005592—Wikimedia help page’, ‘Q35252665—Wikimedia namespace’ and some other

Wikimedia organizational elements.

Table 4. Properties with a class ratio�0.99.

P31- instance of P8006- footedness P4680- constraint scope

P279- subclass of P4882- segmental innervation P1354- shown with features

P1750- name day P6884- target muscle P548- version type

P1622- driving side P1913- gene dupl. assoc. with P4390- mapping rel. type

P8030- size designation P4954- may prevent P1914- gene ins. assoc. with

P3358- positive prog. pred. P922- magnetic ordering P2894- day of week

P8225- is metaclass for P2352- applies to taxon P2597- Gram staining

P6437- day of regular release P660- EC enzyme classif. P21- sex or gender

P5102- nature of statement P1480- sourcing circumstances P6216- copyright status

P6106- uses capitalization for P2443- stage reached P556- crystal system

P873- phase point P1310- statement disputed by P4794- season starts

P2308- class P4649- id. of subj. in context P6224- level of description

P1910- decreased expression in P1642- acquisition transaction P91- sexual orientation

P3357- negative diag. pred. P4850- perm. food additive P8127- tournament format

P2577- admissible rule in P1917- posttranslat. mod. P4224- category contains

P6118- season ends P8431- course P3150- birthday

P8115- eligible recipient P1915- gene inv. assoc. with P404- game mode

P970- neurological function P1918- altered reg. leads to P105- taxon rank

P3294- encoding P5439- research measurement P7937- form of creat. work

https://doi.org/10.1371/journal.pone.0252862.t004

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 17 / 35

https://doi.org/10.1371/journal.pone.0252862.t004
https://doi.org/10.1371/journal.pone.0252862

4.3 Results

To evaluate the similarity of two rankings R and L using different weights for their top posi-

tions, we tested several configurations of p in RBO(R, L, p). We used Eq 9 to obtain p values for

different prefix sizes with a fixed importance of 0.9. In every case, the margin error to calculate

p with the script described in section 4.1.2 was set to α = 0.00001.

Note that each p configuration solves Eq 9 for several pairs of WRBO(1 : d) and d. For

instance, p’ 0.876343 is an adequate value for d = 10 and WRBO(1 : d) = 0.9, but it is also valid

for d = 6 and WRBO(1 : d) = 0.8. We fixed WRBO(1 : d) = 0.9 just to provide understandable val-

ues of p instead of testing arbitrary increments.

In this paper, we have run RBO comparing the reference rankings against the rest of the

metrics with several d values for WRBO(1 : d) = 0.9. Starting at d = 20, we have performed com-

parisons incrementing d in 20 spots each time until the arbitrary depth of 500, whenever this

was possible. However, the relatively low number of positions in DBpedia’s HH ranking

requires to choose a smaller maximum depth to explore. When building the reference rank-

ings, some elements receive the same number of mentions. These ties, as explained in section

4.1.2, can cause that the number of ranks in a ranking can be lower than the number of total

elements.

The total number of classes to rank in the DBpedia ontology is 827. With HH entries, there

are many ties due to classes with few mentions or no mention at all in the logs (there are

unmentioned 583 elements). This situation produces a ranking with just 62 spots.

For this reason, just for the case of DBpedia’s HH entries, we start the evaluation at the min-

imum prefix length of 10 and made increments of 5 spots until the arbitrary depth of 60.

The results of comparing the metrics introduced in this paper against the importance rank-

ing of DBpedia’s EH logs are shown in Fig 1. The results against DBpedia’s HH logs are shown

Table 5. Top20 elements for HH and EH entries in Wikidata.

Human Hosts Every Host

Pos. Class Mentions Class Mentions

1 Q5- human 312,245 Q5- human 26,902,123

2 Q55983715- organisms [. . .] 261,714 Q55983715- organisms [. . .] 3,296,393

3 Q515- city 215,273 Q6256- country 1,651,146

4 Q644371- international airport 209,245 Q3624078- sovereign state 1,553,641

5 Q6256- country 32,584 Q13442814- scholarly article 1,341,577

6 Q3624078- sovereign state 30,257 Q16521- taxon 1,306,359

7 Q28640- profession 21,421 Q11424- film 1,301,887

8 Q7270- republic 13,213 Q3947- house 1,279,807

9 Q12737077- occupation 11,975 Q48264- gender identity 1,231,213

10 Q20181813- colonial power 9,960 Q4369513- sex of humans 1,228,445

11 Q63791824- Baltic Sea countries 9,111 Q427626- taxonomic rank 1,013,172

12 Q43702- federal state 8,813 Q340169- communication medium 955,023

13 Q11173- chemical compound 8,519 Q3100180- rank 908,404

14 Q619610- social state 8,297 Q13578154- rank 907,632

15 Q4209223- Rechtsstaat 8,221 Q3331189- version, ed., or translat. 826,798

16 Q15079663- r. t. railway line 8,072 Q10876391- Wikipedia lang. edition 791,432

17 Q45- Portugal 7,548 Q515- city 773,382

18 Q11900058- explorer 7,493 Q7432- species 741,928

19 Q13442814- scholarly article 6,423 Q16970- church building 702,134

20 Q48264- gender identity 6,214 Q253019- Ortsteil 699,386

https://doi.org/10.1371/journal.pone.0252862.t005

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 18 / 35

https://doi.org/10.1371/journal.pone.0252862.t005
https://doi.org/10.1371/journal.pone.0252862

in Fig 2. The results against Wikidata’s EH logs are shown in Fig 3. Finally, the results against

Wikidata’s HH logs are shown in Fig 4.

Each figure contains two graphs. On the left side, we show the result of the techniques men-

tioned in section 3 in its raw version. On the right side, we show the adaptations of those tech-

niques with IC scores according to the formula explained in Section 3.3. The top-performing

metrics of each group are included in both sides to show the distance between any technique

and the best results. IC is shown on the right graphics because the comparison between IC and

any adapted technique is quite relevant. Any adapted approach outperformed by IC should be

avoided, as it would be demanding extra computational cost to obtain worse results than

pure IC.

Fig 1. Comparison of techniques against EH log in DBpedia.

https://doi.org/10.1371/journal.pone.0252862.g001

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 19 / 35

https://doi.org/10.1371/journal.pone.0252862.g001
https://doi.org/10.1371/journal.pone.0252862

The Wikidata results shown in Figs 3 and 4 include two different executions of Class-

Rank. We have named ClassRank P31 the configuration in which PC = {‘P31—instance
of’}, and ClassRank r.99 the configuration in which PC includes the properties shown in

Table 4.

In this paper, we focus on the comparison between the metrics’ results and the reference

rankings at specific prefix depths. To allow further analysis, we have published all of our

results. The complete rankings obtained during the experimentation are available on-line

[39].

Fig 2. Comparison of techniques against HH log in DBpedia.

https://doi.org/10.1371/journal.pone.0252862.g002

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 20 / 35

https://doi.org/10.1371/journal.pone.0252862.g002
https://doi.org/10.1371/journal.pone.0252862

5 Discussion

5.1 Best performing techniques

As can be seen in Figs 1–4, there is not a metric outperforming all the rest in every case. How-

ever, ClassRank and Adapted ClassRank are the approaches performing better at mostly any

source and prefix depth configuration.

According to [40], when comparing two techniques, improvements of less than 5% could

be discarded and attributed to the nature of the samples chosen in the experiments; improve-

ments between 5% and 10% are noticeable; improvements greater than 10% can be considered

material.

Fig 3. Comparison of techniques against EH log in Wikidata.

https://doi.org/10.1371/journal.pone.0252862.g003

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 21 / 35

https://doi.org/10.1371/journal.pone.0252862.g003
https://doi.org/10.1371/journal.pone.0252862

In Fig 5, we show a comparison between ClassRank and the best non-ClassRank score (i.e.,

excluding any ClassRank configuration or Adapted ClassRank) for each source and prefix

depth. The ClassRank performance curves used to make comparison in DBpedia logs are the

ones labeled with ‘ClassRank’ in Figs 1 and 2. The curves used for Wikidata are the ones labeled

‘ClassRank P31’ in Figs 3 and 4. In Fig 6, Adapted ClassRank scores are compared with the

best non-ClassRank score for each source and prefix depth.

Whit the criteria proposed in [40], one can see that both ClassRank and Adapted ClassRank

perform materially better than any other metric for every depth explored in Wikidata logs.

This is even more noticeable for HH Wikidata. As shown in Fig 4, for depth between 40 and

260, both metrics have an improvement greater than 100% over the rest of the approaches.

Fig 4. Comparison of techniques against HH log in Wikidata.

https://doi.org/10.1371/journal.pone.0252862.g004

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 22 / 35

https://doi.org/10.1371/journal.pone.0252862.g004
https://doi.org/10.1371/journal.pone.0252862

With DBpedia logs, even if ClassRank variants are the best-performing ones at most of the

depths, this advantage is not that clear. As one can see in Fig 1, with EH entires Adapted

PageRank OTT performs materially better than ClassRank. Between depth 40 and 140, Class-

Rank performs noticeably better than the rest of the approaches. From this depth, ClassRank

performs slightly better than the second best-performing approach, which is Adapted PageR-

ank ATT. However, the distance with this curve is always inferior to 5%. In depths beyond

380, ClassRank is slightly outperformed by Adapted Betweenness, and beyond 420 by Adapted

Radiality as well.

We can observe similar circumstances with DBpedia’s HH entries. ClassRank is slightly

outperformed by Adapted PageRank OTT at depth 10. Then, ClassRank performs noticeably

better than the rest of the approaches at depth 15. From this point, ClassRank keeps being the

best-performing approach, but with advantages lower than 5% over the second one at every

depth.

The high top of DBpedia’s rankings are the only regions explored in which any technique

noticeably outperforms ClassRank. That situation happens with d = 10 for HH entries and

Fig 5. Performance comparison of ClassRank against any other non-ClassRank metric at every source and prefix depth.

https://doi.org/10.1371/journal.pone.0252862.g005

Fig 6. Performance comparison of Adapted ClassRank against any other non-ClassRank metric at every source and prefix depth.

https://doi.org/10.1371/journal.pone.0252862.g006

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 23 / 35

https://doi.org/10.1371/journal.pone.0252862.g005
https://doi.org/10.1371/journal.pone.0252862.g006
https://doi.org/10.1371/journal.pone.0252862

with d = 20 for EH entries. Several factors related to the topology of DBpedia Ontology cause

this.

First of all, this ontology is structured as a tree in which owl:Thing is the root and has many

direct children. Many classes do not have any children at all and, when they do, their subtrees

are not deep. This structure causes owl:Thing to be ranked in the first position of most OTT

metrics, with a great distance to the class ranked 2nd. On the other hand, the IC scores have

lesser score differences in the top positions of the rank. Then, when the OOT metrics are

adapted, IC has a more significant influence on the top spots of the adapted metrics. Also,

among those classes that do have a populated subtree, we can find elements such as dbo:Place,

dbo:Organisation, or dbo:Person. These nodes are general enough to have a subtree of classes,

boosting its rank in OTT approaches, such as Degree or PageRank. At a time, these nodes are

direct classes of many instances, which increases the chances of being mentioned in SPARQL

logs.

These factors, combined with the relatively low number of elements in the DBpedia Ontol-

ogy, make some adapted approaches to perform even better than ClassRank at the very top of

DBpedia’s rankings. However, this works just for few nodes, such as the mentioned once. The

deeper we go into the ranking, the better perform ClassRank and, in general, the metrics

which were originally AAT.

It is hard to determine in which conditions ClassRank performs better than Adapted Class-

Rank and vice-versa. In Fig 7, we show the comparison between ClassRank and Adapted Class-

Rank. As one can see, the general case is that ClassRank outperforms its adapted version.

Nevertheless, in most of the cases, the relative difference between these two approaches is

lower than 5%. The only exceptions to these situations occur in the top positions of each refer-

ence ranking. Adapted ClassRank performed materially or noticeably better than ClassRank

until the top 100 of Wikidata EH, and until top 20 for Wikidata HH. In opposition, ClassRank

performed materially or noticeably better until top 20 of both DBpedia EH and HH. With this

data, it cannot be concluded whether ClassRank outperforms Adapted ClassRank in general

terms.

5.2 General performing of techniques in different sources

Most of the scores of any technique for any depth and source are, in general, far from 1, which

would mean a perfect alignment between a reference ranking and the ranking produced by a

Fig 7. Performance comparison of ClassRank against Adapted ClassRank at every source and prefix depth.

https://doi.org/10.1371/journal.pone.0252862.g007

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 24 / 35

https://doi.org/10.1371/journal.pone.0252862.g007
https://doi.org/10.1371/journal.pone.0252862

given approach. The highest similitude between any reference ranking and any tested metric is

reached by Adapted Betweenness with DBpedia’s EH entries, scoring 0.781 for a prefix depth

of 500. However, except for DBpedia EH, no other reference ranking produce any measure

above 0.5.

That means that there is not such a technique able to precisely capture the notion of impor-

tance observed in log’s class usage. The probable cause of this is that there is not either a perfect

mathematical relation between a graph’s structure and the actual usage of its nodes in a

SPARQL endpoint. Nevertheless, log usage information is not always available, so it is worth it

to keep working on metrics able to find the best possible relationship between a graph’s struc-

ture and its actual usage.

With DBpedia, the lowest scores occur at the top positions of the rankings. The higher is

the ranking prefix, the better is the final score. All the performance curves in Figs 1 and 2 have

a linear or asymptotic-like shape with a constant improvement. That can be explained by the

fact that the number of classes to rank is nearly covered by the max prefix length chosen.

Then, when exploring regions of the ranking deep enough, even for pure randomness, it is eas-

ier to find classes shared by the reference list and the list under evaluation. That boosts RBO

scores when considering wider prefixes.

In opposition, a prefix depth of 500 represents just 0.0002% of the Wikidata classes. Then,

the chances of getting shared classes between the list compared due to randomness dramati-

cally decrease. With Wikidata’s large number of classes to rank, there is not a general tendency

with performance curves. Even within the same graphic, we observe linear, asymptotic, and

parabolic-like curves. As shown in Figs 5 and 6, with a large number of classes to rank, Class-

Rank materially outperforms any other metric at every measured prefix depth.

5.3 EH vs HH results

It seems that, in general, the correlation between the graph’s structure and the class usage in

SPARQL endpoints is higher with robotic agents. For a given metric, prefix depth, and source,

the general case is that the HH score is lower than the EH score. Also, the general case is that

the difference between these two scores is material, i.e., higher than 10%.

However, as discussed in the previous section, ClassRank and Adapted ClassRank outper-

form the rest of the techniques for EH and HH entries. This is, among the evaluated algo-

rithms, ClassRank seems to be the approach that captures better the notion of importance w.r.

t. class usage by both types of traffic (organic and robotic).

5.4 OTT, AAT and adapted metrics

With the notion of class importance adopted in this paper, the general case is that AAT tech-

niques outperform OTT ones. There are very few exceptions to this observation. The most

salient exception happens 1) with DBpedia HH entires, where HITS OTT outperforms HITS

AAT until depth 35, and 2) with Wikidata, where HITS AAT scores are worse than some OTT

approaches for some prefix values. This former exception takes place from depth 140 with EH

entries and from depth 80 with HH entries.

Not computing the A-BOX section of the graph led to a loss of valuable knowledge about

the KG’s topology. The adaptation of OTT metrics with IC scores is proposed to use, in a com-

putationally cheap way, a salient feature of the graph, which are class-instance relations. It is

remarkable that the general case for every raw metric X is that the adapted version of X outper-

forms raw X. That is probably because IC scores perform better than almost any other raw

metric. The only exception to this is ClassRank, which is also the only technique that is not

clearly outperformed by its adapted version.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 25 / 35

https://doi.org/10.1371/journal.pone.0252862

It is worth mentioning that, in every case, ClassRank and Adapted ClassRank tend to

describe performance curves of similar shape and, except for the top positions and the Wiki-

data EH log, they have score points nearly swapped. That means that, in general, the adapta-

tion with IC scores does not have a noticeable impact over ClassRank. The probable reason for

this is that several top-ranked classes appear in the tops of both IC and ClassRank. Since the

top positions of the rankings have a determinant impact on RBO scores, the inclusion of IC’s

well top-ranked elements boosts the results of most of the metrics. That improvement does not

happen when adapting ClassRank because those key classes are already top-ranked in raw

ClassRank.

5.5 Configuration of class-pointers

The possibility to configure the set of class-pointers PC to be used during the execution of

ClassRank is more linked to the concept of relevance than importance, as it is a user’s choice

to let the algorithm focus on some specific aspects of the KG.

We have been able to test different PC settings with Wikidata. However, due to the high

amount of potential class-pointers in this source, we have not tested every possible configura-

tion of properties, but just those described in section 4.2.2. As can be seen in Figs 3 and 4, even

the best PC setting performed materially worse than the straight-forward configuration PC =

{‘P31—instance of’}. Custom and more user-centered configurations of PC could achieve better

results.

Also, it is worth mentioning that even if ClassRank r.99 performed worse than ClassRank
P31, both ClassRank r.99 and Adapted ClassRank r.99 performed better than any other raw or

adapted approach (excluding other ClassRank configurations).

5.6 Computational cost vs performance

In Table 6, we have included the computational cost of every technique evaluated in our

experimentation.

As one can see, Degree and IC are the cheapest techniques to execute, as they perform sim-

ple counting actions over the target nodes.

The execution of PageRank and HITS’s base operation is generally based on eigenvector

computations. Even if the complexity of this is linear w.r.t to the number of nodes and edges,

Table 6. Computational cost of the techniques evaluated.

Technique Complexity

Degree O(n + e)

Betweenness O(n � (n � e))

Bridging Centrality O(n � (n � e))

Harmonic Centrality O(n � (n + e))

Radiality O(n � (n + e))

Instance Counting O(n + ei)

PageRank O((n + e) �
log n
�

) �

HITS O(e � k)

ClassRank O(nc+ ei + (n + e) �
log n
�

)

n = number of nodes; e = number of edges; ei = number of instantiation edges;

nc = number of classes; k = maximum number of HITS iterations

� According to [41], PageRank can be computed in � rounds, being
log n
�

the reset probability of PageRank, and having

each round a complexity of O(n + e)

https://doi.org/10.1371/journal.pone.0252862.t006

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 26 / 35

https://doi.org/10.1371/journal.pone.0252862.t006
https://doi.org/10.1371/journal.pone.0252862

both approaches require several iterations until they converge and reach a result, increasing

the complexity compared to Degree and IC. ClassRank has a complexity similar to PageRank

because it requires PageRank scores. Once those scores are computed, the complexity of the

rest of the algorithm is linear w.r.t. the number of nodes and target edges.

Betweenness, Bridging Centrality, Harmonic Centrality, and Radiality have complexities

higher than quadratic w.r.t. numbers of nodes, as they all need to compute the shortest path

between any pair of nodes in the target graph. This complexity makes them suitable for small

or moderate-sized structures, but sometimes prohibitive in big networks.

The adapted techniques have not been included in Table 6 because they all have the same

computational complexity as their raw version. That is because the adaptations purely consist

of normalizing and averaging the original scores with IC scores, and IC has the lowest compu-

tational cost of all the analyzed techniques.

When choosing a metric to measure class importance, both the performance and the

computational cost should be considered. Different contexts may lead to different decisions

regarding whether it is preferable to prioritize performance or cost. However, some techniques

could be discarded when they perform worse than their competitors w.r.t. to both decision

parameters.

Even though IC is the simplest approach, it outperforms any other raw technique except

ClassRank and, as one can see in Fig 1, PageRank AAT in a section of DBpedia EH ranking.

Also, it is worth mentioning that, in most of the cases, the adapted version of those algorithms

does not outperform IC scores. Again, the only exception to this is Adapted ClassRank and, as

it is shown in Figs 1 and 2, PageRank AAT and HITS AAT is some sections of DBpedia logs.

Since the complexity of HITS, PageRank, and ClassRank is similar, but ClassRank seems to

outperform HITS and PageRank, we will discuss the differences between ClassRank and IC. In

Table 7, we show the top 20 elements in DBpedia according to ClassRank and IC.

Table 7. Top 20 of ClassRank and Instance Counting.

Rank ClassRank Instance Counting

1 dbo:Person dbo:Person

2 skos:Concept dbo:CareerStation

3 dbo:CareerStation dbo:SportsTeamMember

4 dbo:Settlement dbo:Settlement

5 dbo:SoccerClub dbo:PersonFunction

6 dbo:SoccerPlayer dbo:Village

7 dbo:SportsTeamMember dbo:TimePeriod

8 dbo:Country dbo:Album

9 dbo:City dbo:Insect

10 dbo:PersonFunction dbo:SoccerPlayer

11 dbo:Village dbo:Film

12 dbo:AdministrativeRegion skos:Concept

13 dbo:TimePeriod dbo:OfficeHolder

14 dbo:Insect dbo:Company

15 dbo:Album dbo:Plant

16 dbo:OfficeHolder dbo:MusicalArtist

17 dbo:Film dbo:Single

18 dbo:Company dbo:Building

19 dbo:MusicGenre dbo:Town

20 dbo:MusicalArtist dbo:Athlete

https://doi.org/10.1371/journal.pone.0252862.t007

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 27 / 35

https://doi.org/10.1371/journal.pone.0252862.t007
https://doi.org/10.1371/journal.pone.0252862

As one can see, the rankings contain elements related to very similar domains (mainly arts,

sports, geopolitical divisions, and people). Fourteen classes appear at the top-20 of both lists,

and some of them even have an identical rank. That makes sense since many incoming links

coming from many instances ensure high importance with IC, but, frequently, they also cause

high importance with ClassRank due to accumulated PageRank scores of that many instances.

A couple of missing elements in the top-20 of IC raises a clue about the kind of classes in

which these two techniques heavily disagree: dbo:SoccerClub and dbo:Country. With Class-

Rank, dbo:SoccerClub ranks 5th and dbo:SoccerPlayer ranks 6th. The different soccer players are

connected to their club, so some of the importance accumulated by all soccer players goes to

their respective teams. With this, even if there are much fewer instances of clubs (21,955) than

players (117,619), these two classes can achieve a similar final score of importance. By contrast,

dbo:SoccerClub descends to position 34th with IC.

The case of dbo:Country is more revealing. Instances of countries are frequently key ele-

ments to link different topics in cross-domain KGs such as DBpedia. Many kinds of individu-

als can be linked to their country, such as smaller administrative divisions, people,

geographical entities, or events. With ClassRank, that accumulated importance is good enough

to rank 8th. dbo:Country is one of the top seeds according to the reference rankings as well (9th

with HH and 21st with EH). By contrast, dbo:Country descends to 145th with IC.

Similar examples are dbo:MusicalGenre (19th with ClassRank vs 223rd with IC), dbo:Legisla-
ture (42nd vs 192nd), and dbo:Language (24th vs 85th). In general, we can say that IC and Class-

Rank produce rankings that tend to be quite similar. However, ClassRank can capture the

importance of classes that do not have too many instances when those instances are really

important elements of the KG.

6 Related work

RDF summarization can be performed using a wide range of different techniques based in dif-

ferent dimensions of the target graph. Even if most of the current techniques rely at some

point on concepts of node importance or relevance, some techniques, such as pattern-minning

methods [42] or quotient summaries [43, 44] may not use importance metrics.

However, along this section, we will focus in those publications that explore node impor-

tance as a main goal or as a previous step to achieve another goal (commonly graph

summarization).

6.1 Importance or relevance of entities or classes in KGs

Several authors have already used centrality metrics to determine entity importance or rele-

vance in KGs.

In [16], a study of different techniques to detect class importance is performed. They check

the performance of Degree, Betweenness, Bridging Centrality, Harmonic Centrality, Radiality

and Ego Centrality against a gold standard built using DBpedia logs in the same manner that

we do in this paper. Also, they propose the adaptation of the aforementioned metrics to make

use of instance information which has been evaluated in our document. The study is a prelimi-

nary stage in order to support graph summarization processes. There are two main differences

between this study and ours. First, the authors do nos experiment with spectral measures such

as PageRank. Second, they use Spearman correlation coefficient to determine the similarity

between the rankings, so the top and the tail of each ranking have the same weight on the final

results.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 28 / 35

https://doi.org/10.1371/journal.pone.0252862

Authors in [12] perform another general study of class importance as a previous step for

ontology summarization. Again, all the techniques used are applied over the ontologies, not

using A-BOX knowledge at any point.

In [13], another case of measuring class importance for ontology summarization is pre-

sented. They propose two methods, one inspired in Degree, which is defined in [45], and

another one inspired in Closeness. However, those methods require some user input, such as

relevant domain-specific relations in ontologies or weights for certain elements.

RDFDigest+ is a tool to perform RDF/S Knowledge Base exploration using summaries [14].

It allows the user to choose and combine many different centrality algorithms to identify the

most important nodes. It also uses information related to the instances of each schema ele-

ment. In [46], the same authors expose zoom and extend operations for RDFDigest+, which

enable the user to get ontology summaries with different detail level in an efficient way. They

perform a stage of class importance detection in which HITS, PageRank, and Betweenness are

used. They also apply the adaptation of these approaches with IC scores proposed in [16].

In [47], the authors perform a study of several cross-domain KGs quality, including DBpe-

dia and four more sources. One of the features studied is class coverage for different knowl-

edge domains. They manually classify each class to belong to the different domains. Then, they

measure the importance that each class provides to each domain by counting their instances.

In [48], PageRank is applied over a graph of Wikipedia linked entries. Each entry is repre-

sented by its DBpedia URI, so they produce a ranking of DBpedia entities based on the Wiki-

pedia link graph. In combination with other methods, the results are being used for entity

summarization [49, 50]. In order to merge the information of different Wikipedia chapters,

the authors compute a ranking of Wikipedia entities using their Wikidata URI, which is

unique for all the languages. In these works, PageRank is used as a base metric to rank entities

in a KG. However, they use a voting method w.r.t. different Wikipedia chapters. Thus, this

technique cannot be applied over KGs whose elements are not linked (directly or indirectly) to

Wikipedia pages.

In [51], an approach to rank classes in DBpedia is presented. As well as ClassRank, this

work is also based on aggregation of PageRank scores. Nevertheless, these scores are not

obtained from DBpedia’s structure, but each entity receives the PageRank score of its associ-

ated page in Wikipedia. Then, this technique cannot be applied over KGs whose entities are

not linked to Wikipedia. Also, the authors combine the aggregation of PageRank scores with

some other parameters such as Instance Counting.

In [52], PageRank is applied over the DBpedia link structure to mine significant concepts.

Given an element in DBpedia, the authors track its most related concepts by exploring its

neighborhood in the graph, and they rank those results according to inverse PageRank. They

consider that the most related elements are the ones with a lower PageRank score. The authors

argue that elements with low PageRank are not so well connected because they are too specific

of a given topic. Hence, those URIs in the neighborhood of a concept c with low PageRank

may have higher chances of being semantically closer to c than those with high PageRank,

which may be too transversal.

An approach to explain and use entity relatedness in KGs is presented in [53]. The authors

formalize the concept relatedness explanation between two entities as a subgraph containing

paths that link those two entities. Once they obtain an explanation, they are able to detect pairs

of entities in the KG sharing a similar notion of relatedness. This proposal focuses on the

detection and ranking of important paths between nodes. The authors compute the impor-

tance of each path using mainly properties (predicates) instead of entities. However, there is

also a stage of ranking entity importance PageRank-based.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 29 / 35

https://doi.org/10.1371/journal.pone.0252862

In [54], an approach to identify key concepts in ontologies is presented. This work uses a

notion of importance based on experts agreement. The algorithm presented combines purely

topological features of the ontology with cognitive concepts such as natural categories [55] or

popularity according to results in web search systems. The approach tries to detect the ele-

ments that best summarize the semantics of the target ontology. The experiments show a high

correlation between the approach’s results and the experts’ choices. This work differ from ours

in their human-based notion of importance and the type of ontologies evaluated, which are

small to moderate-sized (the biggest ontology used in the experiments contains 247 elements)

and domain-specific.

Freebase associates a score with ranking purposes to each one of its stored entities. How-

ever, this score is not computed with PageRank, but using a simpler formula based on link

counts of an entity in Freebase KG and its associated page in Wikipedia [56].

Wikidata Project maintains some special pages offering some metrics of the graph that are

frequently updated [57]. Among these results, link counts of the most used elements can be

found, but there are no reports about class importance or PageRank-like scores of any

element.

6.2 Alternative centrality measures based in PageRank

The idea of using personalized versions of PageRank to adapt the algorithm to different con-

texts was early suggested in [15], where the original authors of PageRank suggest an adaptation

called Personalized PageRank (PPR). In PPR, there is a set of restarting nodes which are the

only ones that the random walker can jump to when it gets bored of following links. PPR is

still widely used and several works propose ways to optimize its execution [58].

Since that proposal, many PageRank adaptations have been published. Probably the closest

adaptations to our domain are those that compute aggregations of PageRank scores. A repre-

sentative example of this strategy is BlockRank [59], which divides the target graph into several

disjoint blocks of smaller units. An illustrative use of BlockRank-like strategies is HostRank

[60], which was thought to be applied over web structures. Nevertheless, most BlockRank-like

approaches are not compatible with our domain, since in RDF graphs the very same entity

may be an instance of several different classes. Hence, hypothetical blocks formed by instances

of the same class would not be disjoint.

Most of the PageRank adaptations have been thought to measure the relevance of an ele-

ment in a KG w.r.t. a query [61]. These approaches are focused on information retrieval tasks

and tend to rank entities using notions of semantic relatedness between query and resource.

Some of them measure importance and are used in combination with other notions to produce

some result [1, 62]. Some others measure relevance, including strategies such as text similarity

or exploration of topic sub-graphs in the algorithm itself [63–67].

OntologyRank [1] is designed to rank Semantic Web Documents (SWD), such as ontolo-

gies or RDF files, which are linked to each other through their internal elements. The algo-

rithm uses the semantics of the properties to divide them into four different categories. Then,

it computes a version of PageRank where each link can be weighted w.r.t. each category.

Although it follows a strategy of aggregation of PageRank-like scores, OntologyRank is

designed to rank different SWDs instead of elements within a single SWD.

PopRank [62] is an adaptation of PageRank designed to be applied over a network of

objects. It combines two factors to obtain the popularity of an object: a weighted PageRank in

which every property has its own weight, and the PageRank of the database/web page which

contains the object (Web Popularity). PopRank is thought to assign a score to every entity in

the graph, i.e., there is no aggregation or grouping of individuals in some class or cluster, so

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 30 / 35

https://doi.org/10.1371/journal.pone.0252862

the algorithms have different domains of application. Also, PopRank has a stage in which

some training data should be provided by experts, which may be too costly in graphs with

many properties such as DBpedia or Wikidata.

ReConRank [63] is a PageRank adaptation designed to be applied over RDF domains that

combines the approaches of ResourceRank and ContextRank. ReConRank is closely related to

search and retrieval domains. The ranking of entities is not applied over the whole target

graph but over a sub-graph composed of certain elements that are related enough to some key-

words. The scores produced are a measure of relevance w.r.t. a query instead of importance.

RareRank [64] makes use of transition scores between entities, as well as PageRank does.

However, it proposes a Rational Research model to define transitions between elements aim-

ing to simulate a human strategy of jumping from one document to another. RareRank is

thought to be applied in semantic search of research documents. It relies on meta-data associ-

ated with scientific papers modeled in an ontological way, as well as topic relatedness com-

puted with Latent Dirichlet Allocation [68]. As well as ReConRank, RareRank produces scores

of relevance instead of importance. Also, the model of Rational Research should be adapted to

apply it in domains different from scientific documents.

DBpediaRanker [65] describes an algorithm to rank DBpedia entities w.r.t. a query. In this

case, the authors do not follow a PageRank-like approach, but they consider several different

notions of similarity. This includes textual similarity, proximity to a certain set of seed nodes,

or results supported by external resources, such as search engines or tagging systems. Thus,

although the main goal is also the ranking of RDF resources, this approach has a specific

domain of application and cannot be used to measure class importance.

TripleRank [66] is a HITS-based algorithm to rank entities w.r.t. a subject and a facet (pred-

icate) in RDF environments. TripleRank gives a notion of relevance w.r.t. some other graph

elements instead of importance per se.

DWRank [67] ranks ontology concepts in search and retrieval environments. It combines

three types of notions to rank a given element: text similarity with a query, hub score within its

own ontology using a reversed PageRank function, and authority of its ontology w.r.t. the rest

of ontologies. The goal of the algorithm is to rank ontology members, and it works purely with

T-Box elements, i.e., it does not use any instance information to produce its results.

7 Conclusions and future work

In this paper, we have evaluated different techniques to measure class importance in KGs

based on the KG’s structure. To compare the approaches, we have performed experiments

using a notion of importance based on class usage in SPARQL logs. We elaborated class rank-

ings sorting classes w.r.t. their number of mentions in the logs and measured the similarity of

those rankings with the ones produced by the evaluated techniques. This similarity has been

measured using Ranking Biased Overlap.

The experiments raise several conclusions. Approaches considering just T-BOX statements

are, in general, outperformed by techniques that compute A-BOX knowledge as well. Class-

Rank, a novel proposal, outperforms the rest of the evaluated approaches in terms of similarity

with the reference rankings. Instance Counting, which is the technique requiring less compu-

tational time among all the studies approaches, outperforms every other studied metric except

ClassRank and, in some cases, PageRank.

Also, it has been observed that a simple adaptation of any technique averaging its results

with IC scores improves the performance of the original technique. The only exception to this

is the adaptation of ClassRank scores, where it is unclear whether the adaptation with IC

improves the base ClassRank scores.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 31 / 35

https://doi.org/10.1371/journal.pone.0252862

A qualitative comparison of ClassRank and IC shows that they produce rankings with a

high proportion of shared elements. However, Instance Counting is not able to catch the

importance of really well-connected elements that do not have too many instances, such as the

class dbo:Country in DBpedia ontology.

The evaluated approaches have been compared against rankings of class usage with log

entries generated by organic agents and robotic agents. It has been shown that, in general, all

the evaluated techniques align better with the machine-related log entries. Nevertheless, in our

experiments, ClassRank outperforms the rest of the proposals for both organic and robotic

entries.

The results obtained by ClassRank in ou experiments are promising, but more test in differ-

ent types of sources are needed to contrast the conclusions reached in this paper. We consider

several lines of future work:

• Extend this evaluation to more Linked Data sources, both general-purpose or domain-

specific.

• Evaluate the performance of ClassRank using aggregated scores different from PageRank.

• Evaluate the performance of ClassRank as a relevance metric. We consider several options:

combined use of ClassRank with blocking techniques to rank a subgraph of elements; experi-

mentation with different sets of class-pointers related to a given topic or query; usage of

weights for the base PageRank scores and each class-pointer.

Author Contributions

Conceptualization: Daniel Fernández-Álvarez, Johannes Frey, Jose Emilio Labra Gayo, Daniel

Gayo-Avello, Sebastian Hellmann.

Formal analysis: Daniel Fernández-Álvarez.

Funding acquisition: Jose Emilio Labra Gayo.

Investigation: Daniel Fernández-Álvarez.

Methodology: Daniel Fernández-Álvarez, Daniel Gayo-Avello.

Software: Daniel Fernández-Álvarez.

Supervision: Jose Emilio Labra Gayo, Daniel Gayo-Avello, Sebastian Hellmann.

Writing – original draft: Daniel Fernández-Álvarez.

Writing – review & editing: Daniel Fernández-Álvarez, Johannes Frey, Jose Emilio Labra

Gayo.

References
1. Ding L, Finin T, Joshi A, Pan R, Cost RS, Peng Y, et al. Swoogle: a search and metadata engine for the

semantic web. In: Proceedings of the thirteenth ACM international conference on Information and

knowledge management. ACM; 2004. p. 652–659.

2. Alistair KD, Davies NJ, Omitola T. Search engine and link-based ranking algorithm for the semantic

web; 2017.

3. Rospocher M, Corcoglioniti F, Dragoni M. Boosting Document Retrieval with Knowledge Extraction and

Linked Data. Semantic Web. 2019; 10(4):753–778. https://doi.org/10.3233/SW-180325

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 32 / 35

https://doi.org/10.3233/SW-180325
https://doi.org/10.1371/journal.pone.0252862

4. Musto C, Narducci F, Lops P, de Gemmis M, Semeraro G. Linked open data-based explanations for

transparent recommender systems. International journal of Human-Computer Studies. 2019; 121:93–

107. https://doi.org/10.1016/j.ijhcs.2018.03.003

5. Sansonetti G. Point of interest recommendation based on social and linked open data. Personal and

Ubiquitous Computing. 2019; 23(2):199–214. https://doi.org/10.1007/s00779-019-01218-z

6. Paulheim H, Bizer C. Type inference on noisy rdf data. In: International Semantic Web Conference.

Springer; 2013. p. 510–525.

7. VrandečićD, Krötzsch M. Wikidata: a free collaborative knowledgebase. Communications of the ACM.

2014; 57(10):78–85. https://doi.org/10.1145/2629489

8. Suchanek FM, Kasneci G, Weikum G. Yago: a core of semantic knowledge. In: Proceedings of the 16th

international conference on World Wide Web. ACM; 2007. p. 697–706.

9. Foxvog D. Cyc. In: Theory and Applications of Ontology: Computer Applications. Springer; 2010. p.

259–278.

10. Lissandrini M, Pedersen TB, Hose K, Mottin D. Knowledge Graph Exploration: Where Are We and

Where Are We Going? SIGWEB Newsl. 2020;(Summer 2020). https://doi.org/10.1145/3409481.

3409485

11. Čebirić Š, Goasdoué F, Kondylakis H, Kotzinos D, Manolescu I, Troullinou G, et al. Summarizing

semantic graphs: a survey. The VLDB journal. 2019; 28(3):295–327. https://doi.org/10.1007/s00778-

018-0528-3

12. Pouriyeh S, Allahyari M, Liu Q, Cheng G, Arabnia HR, Atzori M, et al. Ontology Summarization: Graph-

Based Methods and Beyond. International journal of Semantic Computing. 2019; 13(02):259–283.

https://doi.org/10.1142/S1793351X19300012

13. Queiroz-Sousa PO, Salgado AC, Pires CE. A method for building personalized ontology summaries.

journal of Information and Data Management. 2013; 4(3):236.

14. Troullinou G, Kondylakis H, Stefanidis K, Plexousakis D. RDFDigest+: A Summary-driven System for

KBs Exploration. In: International Semantic Web Conference (P&D/Industry/BlueSky); 2018.

15. Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: bringing order to the web.

Stanford InfoLab. 1999;.

16. Pappas A, Troullinou G, Roussakis G, Kondylakis H, Plexousakis D. Exploring importance measures

for summarizing RDF/S KBs. In: European Semantic Web Conference. Springer; 2017. p. 387–403.

17. Borgatti SP, Everett MG. A graph-theoretic perspective on centrality. Social networks. 2006; 28(4):466–

484. https://doi.org/10.1016/j.socnet.2005.11.005

18. Wikidata statistics;. https://www.wikidata.org/wiki/Wikidata:Statistics/en Accessed: 2020-12-21.

19. DBpedia dumps of instance triples;. https://databus.dbpedia.org/dbpedia/mappings/instance-types/

2019.09.01 Accessed: 2020-12-21.

20. Cyganiak R. Prefix.cc: an online tool to get the usual namespace of common RDF prefixes;. http://

prefix.cc/ Accessed: 2020-12-21.

21. Kleinberg JM. Authoritative sources in a hyperlinked environment. journal of the ACM (JACM). 1999;

46(5):604–632. https://doi.org/10.1145/324133.324140

22. Berkhin P. A survey on pagerank computing. Internet Mathematics. 2005; 2(1):73–120. https://doi.org/

10.1080/15427951.2005.10129098

23. Sargolzaei P, Soleymani F. Pagerank problem, survey and future research directions. In: International

Mathematical Forum. vol. 5. Citeseer; 2010. p. 937–956.

24. Hagberg A, Swart P, Chult S D. Exploring network structure, dynamics, and function using NetworkX.

Los Alamos National Lab.(LANL), Los Alamos, NM (United States); 2008.

25. Fernández-Álvarez D. Python implementation of PageRank which adapts networkx to reduce memory

consumption;. https://github.com/DaniFdezAlvarez/classrank/blob/develop/core/external/pagerank/

wespageranker.py Accessed: 2020-12-21.

26. Fernández-Álvarez D. Python implementation of ClassRank;. https://github.com/DaniFdezAlvarez/

classrank Accessed: 2020-12-21.

27. Malyshev S, Krötzsch M, González L, Gonsior J, Bielefeldt A. Getting the most out of wikidata: Seman-

tic technology usage in wikipedia’s knowledge graph. In: International Semantic Web Conference.

Springer; 2018. p. 376–394.

28. Webber W, Moffat A, Zobel J. A Similarity Measure for Indefinite Rankings. ACM Trans Inf Syst. 2010;

28(4). https://doi.org/10.1145/1852102.1852106

29. Spearman C. The proof and measurement of association between two things. The Americanjournal of

Psychology. 1904; 15:72–101.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 33 / 35

https://doi.org/10.1016/j.ijhcs.2018.03.003
https://doi.org/10.1007/s00779-019-01218-z
https://doi.org/10.1145/2629489
https://doi.org/10.1145/3409481.3409485
https://doi.org/10.1145/3409481.3409485
https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1142/S1793351X19300012
https://doi.org/10.1016/j.socnet.2005.11.005
https://www.wikidata.org/wiki/Wikidata:Statistics/en
https://databus.dbpedia.org/dbpedia/mappings/instance-types/2019.09.01
https://databus.dbpedia.org/dbpedia/mappings/instance-types/2019.09.01
http://prefix.cc/
http://prefix.cc/
https://doi.org/10.1145/324133.324140
https://doi.org/10.1080/15427951.2005.10129098
https://doi.org/10.1080/15427951.2005.10129098
https://github.com/DaniFdezAlvarez/classrank/blob/develop/core/external/pagerank/wespageranker.py
https://github.com/DaniFdezAlvarez/classrank/blob/develop/core/external/pagerank/wespageranker.py
https://github.com/DaniFdezAlvarez/classrank
https://github.com/DaniFdezAlvarez/classrank
https://doi.org/10.1145/1852102.1852106
https://doi.org/10.1371/journal.pone.0252862

30. DBpedia logs description and download link;. https://github.com/DaniFdezAlvarez/classrank/tree/

develop/experimentation/doc/dbpedia/README.md#user-content-logs Accessed: 2020-12-21.

31. Download link to the version of the DBpedia ontology used in this experimentation;. https://github.com/

DaniFdezAlvarez/classrank/blob/develop/experimentation/doc/dbpedia/dbo.ttl Accessed: 2020-12-21.

32. Fernández-Álvarez D. Python script to mine SPARQL logs;. https://github.com/DaniFdezAlvarez/

classrank/tree/master/experimentation/query_mining Accessed: 2020-12-21.

33. Gleich DF. PageRank beyond the Web. SIAM Review. 2015; 57(3):321–363. https://doi.org/10.1137/

140976649

34. Complete DBpedia’s classes ranking according to mentions in SPARQL logs;. https://github.com/

DaniFdezAlvarez/classrank/tree/master/experimentation/doc/dbpedia#user-content-mining-logs

Accessed: 2020-12-21.

35. Wikidata statement on which of its items are considered classes;. https://www.wikidata.org/wiki/

Wikidata:WikiProject_Ontology/Classes Accessed: 2020-12-21.

36. Description of Wikidata’s public SPARQL logs;. https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_

Logs/en Accessed: 2020-12-21.

37. Download link of the Wikidata’s SPARLQ logs used in this experimentation;. https://analytics.wikimedia.

org/datasets/one-off/wikidata/sparql_query_logs/2018-02-26_2018-03-25/2018-02-26_2018-03-25_

all.tsv.gz Accessed: 2020-12-21.

38. Download link of Wikidata’s candidate class-pointers;. http://data.weso.es/classrank/wikidata/wikidata_

classpointers_ratio.json Accessed: 2020-12-21.

39. Download link of Wikidata’s and DBpedia’s rankings with every metric;. https://github.com/

DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/ Accessed: 2020-12-21.

40. Jones KS. Automatic indexing. journal of documentation. 1974; 30(4):393–432. https://doi.org/10.1108/

eb026588

41. Sarma AD, Molla AR, Pandurangan G, Upfal E. Fast distributed pagerank computation. In: International

Conference on Distributed Computing and Networking. Springer; 2013. p. 11–26.

42. Spahiu B, Porrini R, Palmonari M, Rula A, Maurino A. ABSTAT: ontology-driven linked data summaries

with pattern minimalization. In: European Semantic Web Conference. Springer; 2016. p. 381–395.

43. Goasdoué F, Guzewicz P, Manolescu I. RDF graph summarization for first-sight structure discovery.

The VLDB journal. 2020; 2.

44. Manolescu I. Exploring RDF Graphs through Summarization and Analytic Query Discovery. In: DOLAP;

2020. p. 1–5.

45. Pires CE, Sousa P, Kedad Z, Salgado AC. Summarizing ontology-based schemas in PDMS. In: 2010

IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010). IEEE; 2010.

p. 239–244.

46. Troullinou G, Kondylakis H, Stefanidis K, Plexousakis D. Exploring RDFS kbs using summaries. In:

International Semantic Web Conference. Springer; 2018. p. 268–284.

47. Färber M, Bartscherer F, Menne C, Rettinger A. Linked data quality of dbpedia, freebase, opencyc, wiki-

data, and yago. Semantic Web. 2018; 9(1):77–129.

48. Thalhammer A, Rettinger A. PageRank on Wikipedia: Towards General Importance Scores for Entities.

In: The Semantic Web: ESWC 2016 Satellite Events, Heraklion, Crete, Greece, May 29—June 2, 2016,

Revised Selected Papers. Cham: Springer International Publishing; 2016. p. 227–240.

49. Thalhammer A, Rettinger A. Browsing DBpedia entities with summaries. In: European Semantic Web

Conference. Springer; 2014. p. 511–515.

50. Thalhammer A, Lasierra N, Rettinger A. LinkSUM: using link analysis to summarize entity data. In: Inter-

national Conference on Web Engineering. Springer; 2016. p. 244–261.

51. Kim Ek, Choi KS. Identifying global representative classes of DBpedia Ontology through multilingual

analysis: A rank aggregation approach. In: International Semantic Web Conference. Springer; 2016.

p. 57–65.

52. Boo VK, Anthony P. Agent for Mining of Significant Concepts in DBpedia. In: Knowledge Technology.

Springer; 2012. p. 313–322.

53. PirròG. Explaining and suggesting relatedness in knowledge graphs. In: International Semantic Web

Conference. Springer; 2015. p. 622–639.

54. Peroni S, Motta E, d’Aquin M. Identifying key concepts in an ontology, through the integration of cogni-

tive principles with statistical and topological measures. In: Asian Semantic Web Conference. Springer;

2008. p. 242–256.

55. Rosch E. Principles of categorization. Concepts: core readings. 1999; 189.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 34 / 35

https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/dbpedia/README.md#user-content-logs
https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/dbpedia/README.md#user-content-logs
https://github.com/DaniFdezAlvarez/classrank/blob/develop/experimentation/doc/dbpedia/dbo.ttl
https://github.com/DaniFdezAlvarez/classrank/blob/develop/experimentation/doc/dbpedia/dbo.ttl
https://github.com/DaniFdezAlvarez/classrank/tree/master/experimentation/query_mining
https://github.com/DaniFdezAlvarez/classrank/tree/master/experimentation/query_mining
https://doi.org/10.1137/140976649
https://doi.org/10.1137/140976649
https://github.com/DaniFdezAlvarez/classrank/tree/master/experimentation/doc/dbpedia#user-content-mining-logs
https://github.com/DaniFdezAlvarez/classrank/tree/master/experimentation/doc/dbpedia#user-content-mining-logs
https://www.wikidata.org/wiki/Wikidata:WikiProject_Ontology/Classes
https://www.wikidata.org/wiki/Wikidata:WikiProject_Ontology/Classes
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
https://analytics.wikimedia.org/datasets/one-off/wikidata/sparql_query_logs/2018-02-26_2018-03-25/2018-02-26_2018-03-25_all.tsv.gz
https://analytics.wikimedia.org/datasets/one-off/wikidata/sparql_query_logs/2018-02-26_2018-03-25/2018-02-26_2018-03-25_all.tsv.gz
https://analytics.wikimedia.org/datasets/one-off/wikidata/sparql_query_logs/2018-02-26_2018-03-25/2018-02-26_2018-03-25_all.tsv.gz
http://data.weso.es/classrank/wikidata/wikidata_classpointers_ratio.json
http://data.weso.es/classrank/wikidata/wikidata_classpointers_ratio.json
https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/
https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/
https://doi.org/10.1108/eb026588
https://doi.org/10.1108/eb026588
https://doi.org/10.1371/journal.pone.0252862

56. Färber M, Ell B, Menne C, Rettinger A. A Comparative Survey of DBpedia, Freebase, OpenCyc, Wiki-

data, and YAGO. Semantic Web journal, July. 2015;.

57. Download link of Wikidata’s and DBpedia’s rankings with every metric;. https://www.wikidata.org/wiki/

Wikidata:Database_reports Accessed: 2020-12-21.

58. Park S, Lee W, Choe B, Lee SG. A Survey on Personalized PageRank Computation Algorithms. IEEE

Access. 2019; 7:163049–163062. https://doi.org/10.1109/ACCESS.2019.2952653

59. Kamvar S, Haveliwala T, Manning C, Golub G. Exploiting the block structure of the web for computing

pagerank. Stanford University Technical Report. 2003;.

60. Broder AZ, Lempel R, Maghoul F, Pedersen J. Efficient PageRank approximation via graph aggrega-

tion. Information Retrieval. 2006; 9(2):123–138. https://doi.org/10.1007/s10791-006-7146-1

61. Roa-Valverde AJ, Sicilia MA. A survey of approaches for ranking on the web of data. Information

Retrieval. 2014; 17(4):295–325. https://doi.org/10.1007/s10791-014-9240-0

62. Nie Z, Zhang Y, Wen JR, Ma WY. Object-level ranking: bringing order to web objects. In: Proceedings

of the 14th international conference on World Wide Web. ACM; 2005. p. 567–574.

63. Hogan A, Decker S, Harth A. Reconrank: A scalable ranking method for semantic web data with con-

text. In: 2nd Workshop on Scalable Semantic Web Knowledge Base Systems; 2006.

64. Wei W, Barnaghi P, Bargiela A. Rational research model for ranking semantic entities. Information Sci-

ences. 2011; 181(13):2823–2840. https://doi.org/10.1016/j.ins.2011.02.028

65. Mirizzi R, Ragone A, Di Noia T, Di Sciascio E. Ranking the linked data: the case of DBpedia. In: Interna-

tional Conference on Web Engineering. Springer; 2010. p. 337–354.

66. Franz T, Schultz A, Sizov S, Staab S. Triplerank: Ranking semantic web data by tensor decomposition.

In: International semantic web conference. Springer; 2009. p. 213–228.

67. Butt AS, Haller A, Xie L. DWRank: Learning concept ranking for ontology search. Semantic Web. 2016;

7(4):447–461. https://doi.org/10.3233/SW-150185

68. Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. journal of machine Learning research. 2003; 3

(Jan):993–1022.

PLOS ONE Class importance in Knowledge Graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0252862 June 10, 2021 35 / 35

https://www.wikidata.org/wiki/Wikidata:Database_reports
https://www.wikidata.org/wiki/Wikidata:Database_reports
https://doi.org/10.1109/ACCESS.2019.2952653
https://doi.org/10.1007/s10791-006-7146-1
https://doi.org/10.1007/s10791-014-9240-0
https://doi.org/10.1016/j.ins.2011.02.028
https://doi.org/10.3233/SW-150185
https://doi.org/10.1371/journal.pone.0252862

