
MINDS: A Translator to Embed
Mathematical Expressions Inside

SPARQL Queries

Damien Graux1(B) , Gezim Sejdiu2 , Claus Stadler3 ,
Giulio Napolitano4 , and Jens Lehmann4,5

1 ADAPT SFI Centre, Trinity College Dublin, Dublin, Ireland
grauxd@tcd.ie

2 Deutsche Post DHL Group, Bonn, Germany
g.sejdiu@gmail.com

3 Leipzig University, Leipzig, Germany
cstadler@informatik.uni-leipzig.de

4 Fraunhofer IAIS, Sankt Augustin, Germany
giulio.napolitano@iais.fraunhofer.de

5 Smart Data Analytics, Bonn University, Bonn, Germany
jens.lehmann@cs.uni-bonn.de

Abstract. The recent deployments of semantic web tools and the expan-
sion of available linked datasets have given users the opportunity of build-
ing increasingly complex applications. These emerging use cases often
require queries containing mathematical formulas such as euclidean dis-
tances or unit conversions. Currently, the latest SPARQL standard (ver-
sion 1.1) only embeds basic math operators. Thus, to address this short-
coming, some popular SPARQL evaluators provide built-in tools to cover
specific needs; however, such tools are not standard yet. To offer users
a more generic solution, we propose and share MINDS, a translator of
mathematical expressions into SPARQL-compliant bindings which can be
understood by any evaluator. MINDS thereby facilitates the query design
whenever mathematical computations are needed in a SPARQL query.

1 Introduction

During the past two decades, semantic web technologies for the web have been
developed and it is now possible to produce, share, analyze and interlink large
knowledge graphs (sometimes containing billions of facts) structured using the
RDF w3c standard [12]. Additionally, the W3C has standardized SPARQL [14],
the de facto query language dedicated to RDF which has been more recently
improved to add new features, see e.g. [19] for its current version. Furthermore,
several projects have been created where SPARQL public endpoints are openly
available to access data such as DBpedia [9] or YAGO [16]. As a consequence,
to leverage these resources the Semantic Web community has been developing
more and more complex use cases involving several endpoints which are then

c© The Author(s) 2020
E. Blomqvist et al. (Eds.): SEMANTiCS 2020, LNCS 12378, pp. 104–117, 2020.
https://doi.org/10.1007/978-3-030-59833-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59833-4_7&domain=pdf
http://orcid.org/0000-0003-3392-3162
http://orcid.org/0000-0002-3441-1372
http://orcid.org/0000-0001-9948-6458
http://orcid.org/0000-0002-6842-7575
http://orcid.org/0000-0001-9108-4278
https://doi.org/10.1007/978-3-030-59833-4_7

MINDS: Mathematical Expressions Inside SPARQL Queries 105

queried together using federated SPARQL queries to build or extract knowledge
from combinations of multiple endpoints. In addition, these use cases some-
times require the computation of mathematical formulas which combine values
according to specific patterns, to either filter or return the results. However, in
the current version of the standard1, only the four basic mathematical operators
are available (+, −, ∗, /) and some basic predefined functions, such as CEIL
or FLOOR. To address this lack in the standard, some popular evaluators allow
extensions to the SPARQL language to cover popular mathematical functions
(e.g. trigonometric operations). Nonetheless, this results in queries especially
built to be executed in a specific system and which therefore cannot be shared
among users.

To gain in interoperability, we propose and share MINDS: a translator to
embed Mathematical expressions INsiDe Sparql queries. Our implementation
is openly available under the terms of the Apache License version 2.0 from:

https://github.com/SmartDataAnalytics/minds

MINDS translates the given mathematical expressions into a list of SPARQL-
compliant bindings i.e. BIND((. . .)AS ?var). This approach allows thereby the
obtained SPARQL queries to be executed by any kind of evaluator while facili-
tating the task of query design.

The rest of this article is structured as follows. First, we review the related
work in Sect. 2 and next, we motivate our approach with an example requiring
mathematical formulas in Sect. 3. Then, we describe MINDS in Sect. 4, before
presenting in Sect. 5 some accuracy results about our methods and some com-
parisons against existing SPARQL evaluators. In Sect. 6, we present various use
cases implying the use of MINDS. Finally we conclude in Sect. 7.

2 Related Work

In this section, we provide an overview of the related work regarding mathe-
matical formulas inside SPARQL queries. Due to the SPARQL standard lack-
ing the specification of something essential as basic math functions2, different
approaches have emerged to serve this need.

In fact, some SPARQL evaluators do not give the possibility of computing
mathematical functions inside queries at all. This is for instance the case with
4store [7], RDF3X [13] or SPARQLGX [5] which are nonetheless popular evalu-
ators from the literature renown for their performance. However, arguably, the
research focus of these systems was on optimization of joins and indexes and less
on feature completeness.

Currently, all practical relevant SPARQL evaluators offer the opportunity
of computing mathematical functions inside the BIND elements and projections.
1 https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#expressions.
2 Currently, the SPARQL 1.2 Community Group which aims to advance SPARQL

functionalities, is describing several mathematical operators that could be added in
the next iteration of the standard. https://github.com/w3c/sparql-12/.

https://github.com/SmartDataAnalytics/minds
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#expressions
https://github.com/w3c/sparql-12/

106 D. Graux et al.

While the SPARQL standard defines the built-in functions as part of the syntax3,
the widely adopted approach by evaluator developers is to take advantage of the
Function Call rule, which allows arbitrary IRIs to be used as function names.
Hence, function extensions typically require no changes to the SPARQL syntax.
However, the lack of standardization implies two drawbacks:

– Firstly, the namespaces, local names and signatures of functions may vary
between SPARQL engines, which makes it tedious –if not prohibitive– to
exchange backends.

– Secondly, the means of computation of a function and therefore the results
may differ between evaluators.

All popular SPARQL evaluators –often used to serve public endpoints– such
as Virtuoso [4], Jena-Fuseki [8], GraphDB4 and Stardog5 feature mathemati-
cal functions, yet, using different IRIs. For instance, Virtuoso uses the bif:
namespace, whereas Stardog reuses the XPath function namespace6. Using such
an approach of naming differently similar function/operator7 implies a loss of
interoperability, especially, it make the design of federated SPARQL queries far
more complex. Finally, some evaluators implement GeoSPARQL [2] giving then
access to spatial functions for use in SPARQL queries such as finding a distance
or computing a convex hull.

Compared with existing evaluators which provide sometimes built-in math-
ematical functions, MINDS chooses to use approximations when necessary in
order to remain fully compliant with the SPARQL language.

3 Motivating Example

To have a better understanding of when mathematics may be needed in SPARQL
queries, we consider a use case based on the geographical position of fossils found.
Having a dataset recording the found fossils, we want to list the fossils:

a. found in the last ten years;
b. located 100 km around a specific position;
c. older than 1 000 years.

For clarity reasons, we will consider a simplified dataset recording Cartesian
positions, a 14C-ratio and the discovery year. Each fossil is then represented by
an identifier using the following structure:

3 https://www.w3.org/TR/sparql11-query/#grammar.
4 https://ontotext.com/products/graphdb/.
5 https://www.stardog.com/.
6 https://www.w3.org/2005/xpath-functions/math#.
7 Implementations for built-in STDEV in Virtuoso, Fuseki, Stardog, Sesame: https://

gist.github.com/albertmeronyo/c6ab285d0b73b05392e2f9b8a5bbea82.

https://www.w3.org/TR/sparql11-query/#grammar
https://ontotext.com/products/graphdb/
https://www.stardog.com/
https://www.w3.org/2005/xpath-functions/math#
https://gist.github.com/albertmeronyo/c6ab285d0b73b05392e2f9b8a5bbea82
https://gist.github.com/albertmeronyo/c6ab285d0b73b05392e2f9b8a5bbea82

MINDS: Mathematical Expressions Inside SPARQL Queries 107

:fossilId :type :fossil .
:fossilId :abscissa "XXX" .
:fossilId :ordinate "YYY" .
:fossilId :foundIn "year" .
:fossilId :c14rate "ratio" .

As a consequence, to list all the fossils, one might run this SPARQL query:
SELECT ?f WHERE { ?f :type :fossil}. In the rest of this Section, we will
refine step by step this query to add the restrictions specified above, emulating
the process of a query designer.

a – Found in the last ten years. This constraint implies the filtering of the
records according to the year of their discovery. Considering that the current
year is 2020, we will keep only fossils found after 2010 and we can ask:

SELECT ?f WHERE {
?f :type :fossil .
?f :foundIn ?Y .
FILTER((2020-?Y) <= 10) }

In this particular case, only a simple FILTER (involving a simple operation) is
required to refine the join.

b – 100 km around a position. Then, we want to return fossils found around
a specific position whose Cartesian coordinates are (Px,Py). To do so, we have
to compute Euclidean distances between this position and the fossils using the
classic formula: d =

√
Δx2 + Δy2. However, according to the standard, there

is no square operator and no square-root. Obviously, we can escape from these
issues easily by comparing d2 instead of d. Our SPARQL query thus becomes:

SELECT ?f WHERE {
?f :type :fossil .
?f :foundIn ?Y .
?f :abscissa ?x .
?f :ordinate ?y .
FILTER((2020-?Y) <= 10)
FILTER(((?x-Px)*(?x-Px) + (?y-Py)*(?y-Py)) <= 100*100) }

As one can see, the FILTER condition is getting longer –increasing the probability
of errors and typos for example– and in this example we only deal with simplified
data (for instance no unit conversions are needed).

c – Older than 1 000 years. The last condition only retains fossils which are
older than 1 000 years. However, the considered dataset does not share ages but
instead 14C-ratios r of fossils which can be used using radiocarbon dating –
considering the 14C half-life t1/2 i.e 5 700 years– to find the age t(r) according
to the following formula:

t(r) =
(

ln(r)
−0.693

)
. t1/2

108 D. Graux et al.

This expression involves the natural logarithm which is, however, not part of
the standard. Therefore, to compute this expression, the query designer has to
approximate the logarithm, using for example a decomposition in series:

∀y ∈]0,+∞[, ln(y) = 2
+∞∑

k=0

1
2k + 1

(
y − 1
y + 1

)2k+1

The FILTER can now by written: FILTER(5700*?LOG/(-0.693)<=1000) where
?LOG is a variable embedding the logarithm approximation whose result quality
depends on the number of terms used in the decomposition. Considering only
the first three terms (k ∈ [0, 2]) and the 14C-ratio ?rate of fossils, we have:

BIND(((?rate-1)/(?rate+1)) AS ?z)
BIND((?z) AS ?t0)
BIND(((1/3)*(?z*?z*?z)) AS ?t1)
BIND(((1/5)*(?z*?z*?z*?z*?z)) AS ?t2)
BIND((2*(?t0 + ?t1 + ?t2)) AS ?LOG)
FILTER(5700*?LOG/(-0.693)<=1000)

As a consequence, it appears that building this simple approximation for its
first three terms already leads to a rather complicated query.

Furthermore. As stated previously, the example has been simplified for the
sake of clarity. Firstly, the series approximation should indeed involve more terms
i.e. at least 5 (see Sect. 5 for more details about the approximation preciseness).
Secondly, when dealing with geographical data on Earth, latitude and longi-
tude coordinates are actually preferred to Cartesian ones. Thus, considering two
points P1(lat1, lon1) and P2(lat2, lon2), the distance d should be calculated using
the Haversine formula to calculate the great-circle distance:

a = sin2
(

Δϕ
2

)
+ cos ϕ1. cos ϕ2. sin2

(
Δλ
2

)

c = 2 . atan2
(√

a,
√

1 − a
)

d = R . c

, and

⎧
⎨

⎩

ϕ latitude in rad: lat.π
180

λ longitude in rad: lon.π
180

R the Earth radius: 6 371 km

Thereby, to compute d with this formula, several non-standard functions are
required: 7 trigonometric ones and 2 square-roots. If this very query were to be
evaluated, the designer would have to write herself the multiple decompositions
in series which would be tedious and a possible source of errors. In the next
Section, we introduce MINDS: our solution to help query designers when dealing
with mathematical expressions.

4 MINDS: From a Math Formula to SPARQL Bindings

To tackle this gap in the SPARQL standard, and to help query designers in their
tasks, we developed a software called MINDS. In a nutshell, it allows users to
input a mathematical expression and obtain –only using standard operators
and keywords– the exact corresponding translation, or an approximation if a
decomposition in series has to be involved.

MINDS: Mathematical Expressions Inside SPARQL Queries 109

Fig. 1. Grammar of the expressions understood by MINDS.

Practically, we developed MINDS as an external software which can be run
when designing queries. It is written in Python [18] and its core currently rep-
resents about 500 lines of code. Technically, the given formula is parsed using
a dedicated implementation of the popular Lex and Yacc tools [11] for Python
named PLY8. Then, once the formula is split into tokens, the translating rules
are applied recursively to generate the final result. For instance, considering
again the example of Sect. 3, the “2020-?Y” expression will be translated into:

#math2sparql > 2020-?Y
BIND ((FLOOR((2020-xsd:double(?Y))*100)/100) AS ?result)

Compared to the solution presented in Sect. 3, the actual binding is already more
complicated: first, since it specifies that ?Y should be considered as a double; and
second, since it truncates the result to keep only two digits of precision with the
FLOOR keyword of the standard. Actually, this precision parameter can be set by
the user in MINDS, for instance to 5:

#math2sparql > precision = 5
#math2sparql > 2020-?Y
BIND ((FLOOR((2020-xsd:double(?Y))*100000)/100000) AS ?result)

Therefore, MINDS is still relevant to handle even simple expressions that are
cumbersome to express in SPARQL such as the d2 (i.e. a squared Euclidean
distance) of the previous Section:

#math2sparql > (?x-?Px)**2 + (?y-?Py)**2
BIND ((FLOOR((

(1*(xsd:double(?x)-xsd:double(?Px))*(xsd:double(?x)-xsd:double(?Px)))+

(1*(xsd:double(?y)-xsd:double(?Py))*(xsd:double(?y)-xsd:double(?Py)))

)*100)/100) AS ?result)

8 Python Lex-Yacc repository: https://github.com/dabeaz/ply.

https://github.com/dabeaz/ply

110 D. Graux et al.

Fig. 2. Series currently used by MINDS.

We furthermore describe in Fig. 1 the grammar which is understood by
MINDS. In particular, our translator is able to deal with the four basic operators
of SPARQL (i.e. + - * /) extended with the power operator (** in MINDS)
while respecting conventional priorities. Moreover, our solution also provides
several translation rules to deal with mathematical functions e.g. trigonometric
functions and even with functions of multiple variables e.g. atan2. Nonetheless,
these additional functions are not part of the standard and have to be expressed
only using allowed SPARQL operators: MINDS is then able to compute approx-
imations to translate into bindings these functions. Indeed, it uses when neces-
sary a series decomposition such as the ones listed in Fig. 2 and technically a new
binding is generated for each series so that the query evaluator might be able to
store the sub-result. For instance, considering x2 + exp(y + 3z) which involved
the computation of the exponential of a linear expression, MINDS returns:

#math2sparql > ?X**2 + exp (?Y + 3 * ?Z)
BIND ((0+(1)/1.0 # 1

+(1*(xsd:double(?Y)+3*xsd:double(?Z)))/1.0 # y + 3z
+(1*(xsd:double(?Y)+3*xsd:double(?Z))

*(xsd:double(?Y)+3*xsd:double(?Z)))/2.0 # (y+3z)2

2!

+(1*(xsd:double(?Y)+3*xsd:double(?Z))

*(xsd:double(?Y)+3*xsd:double(?Z))

*(xsd:double(?Y)+3*xsd:double(?Z)))/6.0 # (y+3z)3

3!

+(1*(xsd:double(?Y)+3*xsd:double(?Z))

*(xsd:double(?Y)+3*xsd:double(?Z))

*(xsd:double(?Y)+3*xsd:double(?Z))

*(xsd:double(?Y)+3*xsd:double(?Z)))/24.0 # (y+3z)4

4!

)AS ?sub1)

BIND ((FLOOR((

(1*xsd:double(?X)*xsd:double(?X)) +?sub1 # x2 + sub1
)*100)/100) AS ?result)

As expected, MINDS automatically converts the exponential part into an
approximation using the classic series of the exponential (see Fig. 2 for more

MINDS: Mathematical Expressions Inside SPARQL Queries 111

1

1
x

f(x)

lnx

k = 0
k ∈ 0, 2

k ∈ 0, 6

Fig. 3. Natural logarithm and its approximations.

1

1
x

f(x)

cosx

k = 0

k ∈ 0, 2

k ∈ 0, 3

k ∈ 0, 6

Fig. 4. Cosine and its approximations.

details); in this case only the first five terms of the series where considered. As
it will be described in Sect. 5, the more terms are involved the more precise the
results will be; nonetheless, it is also important to mention that MINDS allows
query designers to choose as a parameter this number of terms. Moreover, it is
able to understand any kind of combination using its recognized keywords and
it generates recursively the sub-bindings when necessary.

5 Precision Results

First of all, we want to pinpoint that the bindings generated by MINDS offer the
same orders of magnitude as the tested built-in functions in terms of execution
times. Indeed, the evaluation of a BIND expression or the call to an internal
method are both executed in sub-second times; for more details, we refer the
reader to the end of this Section, where external links of running queries on
various SPARQL endpoints are available.

Moreover, since MINDS uses approximations based on series for some math-
ematical functions (see Fig. 2 for details), we further describe in this Section the
accuracy of such a method before comparing MINDS with built-in functions of
popular SPARQL endpoints.

112 D. Graux et al.

1

1
x

f(x)

Logarithm

Exponential

Cosine

Sine

Fig. 5. Approximation drifts (first seven terms) from the theoretical functions.

Accuracy. First, we should remind that the number of terms used in the series
has an impact on the quality of the approximation. Here, we review the approx-
imation of the natural logarithm ln in Fig. 3, and of the cosine cos in Fig. 4.
In both cases, we draw the exact function as a reference in red, together with
several approximations: in blue only the first term of the series, in orange the
first three ones and in purple the first seven ones. Thereby, it is evident that by
considering only the first seven terms already provides more than 95% of accu-
racy for the logarithm in the interval [1,20] and the approximation for ln(100)
is still 80% accurate. However, with trigonometric functions (see e.g. the cosine
in Fig. 4), more terms are required. Nonetheless, to tackle this problem, MINDS
takes advantage of the periodicity of these functions and actually:

1. adds an additional binding to represent an approximated value of 2π i.e.
BIND((6.28318530718) AS ?2P);

2. replaces the expression ?f inside the sin or the cos function with the remainder
of the division of ?f by 2π i.e. (?f - ?2P * FLOOR(?f/?2P)).

This method allows MINDS to stay within an interval in which the accuracy
remains above 80% with the first seven terms. More generally, in Fig. 5, we
present the drifts between mathematical functions and their respective approxi-
mations using the first seven terms of their series. This representation allows the
query designers to determine the intervals where the proposed approximations
of MINDS still have an accuracy above a chosen threshold, letting them decide
the appropriate number of terms in the series to be generated.

Comparison with Built-in Functions. Since mathematical functions are not
part of the SPARQL standard [19], most of the popular systems providing end-
points have implemented their own versions of some functions (see Sect. 2 for
more details about these systems). In this study, we also present comparisons
between MINDS approximations and the built-in functions from some of these
systems, namely: Virtuoso9 [4], GraphDB10 and JenaFuseki11 [8].

9 https://virtuoso.openlinksw.com/.
10 https://ontotext.com/products/graphdb/.
11 https://jena.apache.org/documentation/fuseki2/.

https://virtuoso.openlinksw.com/
https://ontotext.com/products/graphdb/
https://jena.apache.org/documentation/fuseki2/

MINDS: Mathematical Expressions Inside SPARQL Queries 113

Fig. 6. Query involving Virtuoso’s built-in ln and approximations for different values.

In Table 1, we present the raw results of a SPARQL query which computes
on Virtuoso for several values (?V): the built-in natural logarithm (?BuilInLog)
using the bif: prefix and three bindings generated by MINDS varying the num-
ber of terms involved i.e. one, three and seven (see Fig. 6). We observe that
the accuracy measured corresponds to the one expected theoretically (as drawn
e.g. in Fig. 3 and 4). This observation implies that the Virtuoso engine executes
exactly the operations listed in the bindings (without rounding nor truncating).

More generally, since the built-in functions are specific addons provided by
the systems, the set of available mathematical functions may vary across them:
for instance, GraphDB provides very specific functions such as “hypot(x, y)”
which returns

√
x2 + y2 or “IEEEremainder(x, y)” which is the remainder

operation on two arguments as prescribed by the IEEE 754 standard. Fur-
thermore, currently (without MINDS), the query designers have to tune their
SPARQL queries for each evaluation engine. For example, we list here various
syntaxes to evaluate a logarithm:

Virtuoso.
SELECT * WHERE { BIND ((bif:log(1234))AS ?log) }

GraphDB.
PREFIX f: <http://www.ontotext.com/sparql/functions/>

SELECT * WHERE { BIND ((f:log(1234))AS ?log) }

Fuseki2.
PREFIX math: <http://www.w3.org/2005/xpath-functions/math#>

SELECT * WHERE { BIND ((math:log(1234))AS ?log) }

114 D. Graux et al.

Table 1. Virtuoso’s built-in natural logarithm vs some MINDS bindings.

?V ?BuiltInLog ?OneTerm ?ThreeTerms ?SevenTerms

0.1 −2.30259 −1.636363636363636 −2.148161762423083 −2.28612550677627

0.2 −1.60944 −1.333333333333333 −1.583539094650206 −1.608934294900188

0.5 −0.693147 −0.666666666666667 −0.693004115226337 −0.693147170256012

1 0.0 0 0 0

2 0.693147 0.666666666666667 0.693004115226337 0.693147170256012

3 1.09861 1 1.095833333333333 1.098607062425422

4 1.38629 1.2 1.375104 1.386202224193573

5 1.60944 1.333333333333333 1.583539094650206 1.608934294900188

6 1.79176 1.428571428571429 1.745899525991154 1.790187408711124

7 1.94591 1.5 1.876171875 1.942329693525345

8 2.07944 1.555555555555556 1.983078460261816 2.072740626022152

9 2.19722 1.6 2.072405333333333 2.186225968329208

10 2.30259 1.636363636363636 2.148161762423083 2.28612550677627

20 2.99573 1.80952380952381 2.545790028209391 2.880218635963087

50 3.91202 1.92156862745098 2.840323022038755 3.419833927257202

100 4.60517 1.96039603960396 2.950171566927436 3.64870669515376

Notice that it is possible to directly run these examples –based on the natural
logarithm12– on several systems, considering that these systems are used to
provide public SPARQL endpoints by a number of popular services, some of
which available at the following links:

– Virtuoso on the DBpedia endpoint ;
– GraphDB on the FactForge endpoint ;
– Fuseki2 on the ZBW Labs endpoint .

The three above hypertext links provides visualizations of the SPARQL queries
and automatically compute and display the results. They provide similar results
as the ones already presented in Table 1.

6 Use Cases

MINDSaims to be a generic tool which can be integrated into existing system for
SPARQL parsing or mapping to different transformations. To this aim we are
developing a number of use case implementations on different tools and systems.
We group such use cases into two different categories:

Integration
SPARQL–to–SQL rewriter – Sparqlify. Sparqlify13 is a SPARQL-SQL rewriter
that enables the definition of RDF views on relational databases and their
12 More examples online from https://smartdataanalytics.github.io/minds/ where

some other built-in functions are reviewed with other sets of values.
13 https://github.com/SmartDataAnalytics/Sparqlify.

https://smartdataanalytics.github.io/minds/
https://github.com/SmartDataAnalytics/Sparqlify

MINDS: Mathematical Expressions Inside SPARQL Queries 115

querying using SPARQL [15]. MINDSis being used for mathematical transforma-
tions into SPARQL bindings embedded into Sparqlify. Users will write SPARQL
queries following the instructions represented by MINDSand then Sparqlify will
take over the query rewriter into SQL syntax.

Semantic Analytics Stack – SANSA. SANSA [10] is an open source14 data flow
processing engine for performing distributed computation over large-scale RDF
datasets. It provides data distribution, communication, and fault tolerance for
manipulating massive RDF graphs and applying machine learning algorithms on
the data at scale. SANSA uses Sparqlify as an underlying infrastructure for the
integration of existing SPARQL-to-SQL rewriting tools. By doing so, it enables
mathematical transformations as well via MINDSas a support add-on.

Usability
Blockchain – Alethio Use Case. Alethio15 is modeling an Ethereum analytics
platform that endeavors to provide transparency over the transaction pool of the
Ethereum network. Their 5 billion triple dataset contains large scale blockchain
transaction data modelled as RDF according to the structure of the Ethereum
ontology16. Alethio has been using SANSA as a scalable processing engine for
their large-scale data processing tasks, such as querying the data in real time
via SPARQL and performing related analytics [6,17]. MINDS was used through
SANSA integration and served as an easy-to-use mathematical function evalu-
ator, such as time-series of the latest exchange values, average transaction size
or even filtering some chains considering geometrical-mean of some included
parameters.

Geospatial Data – SLIPO. SLIPO17 was an EU Horizon2020 project which aimed
at developing linked data technologies for the scalable and quality-assured inte-
gration of Big Point of Interest (POI) datasets [1]. SLIPO used SANSA as a
scalable querying engine to deal with their large-scale POIs data [3]. In partic-
ular, SLIPO aimed at discovering areas of interests using POI datasets which
implies, for instance, searching road segments where amenities with some com-
mon parameters are located. To do so, MINDS is being used there to filter POIs
which are inside a convex hull.

7 Conclusion

In this article we introduced MINDS18, a translator of mathematical expressions
into SPARQL bindings. MINDS is also open source and shared on the Github
platform which, in addition, provides us with the needed tools to manage an
14 https://github.com/SANSA-Stack.
15 https://aleth.io/.
16 https://github.com/ConsenSys/EthOn.
17 http://www.slipo.eu/.
18 MINDS web-page: https://smartdataanalytics.github.io/minds/ which offers more

information and details about the software such as for instance tutorials, running
examples inside other SPARQL evaluators, accuracy charts.

https://github.com/SANSA-Stack
https://aleth.io/
https://github.com/ConsenSys/EthOn
http://www.slipo.eu/
https://smartdataanalytics.github.io/minds/

116 D. Graux et al.

open-source software i.e. a bug tracker, a way to integrate external contributions
or also a release generator. We do hope this tool will help query designers in
their tasks by providing in an instant the SPARQL compliant translation of
complicated mathematical expressions, while giving them the ability of adjusting
parameters in approximations.

Acknowledgments. This research was conducted with the financial support of the
European Union’s Horizon 2020 research and innovation programme under the Marie
Sk�lodowska-Curie under Grant Agreement No. 801522 at the ADAPT SFI Research
Centre at Trinity College Dublin. The ADAPT SFI Centre for Digital Media Technol-
ogy is funded by Science Foundation Ireland through the SFI Research Centres Pro-
gramme and is co-funded under the European Regional Development Fund (ERDF)
through Grant #13/RC/2106.

References

1. Athanasiou, S., Giannopoulos, G., Graux, D., Karagiannakis, N., Lehmann, J.,
Ngomo, A.C.N., Patroumpas, K., Sherif, M.A., Skoutas, D.: Big POI data integra-
tion with linked data technologies. In: EDBT, pp. 477–488 (2019)

2. Battle, R., Kolas, D.: Geosparql: Enabling a geospatial semantic web. Semant. Web
J. 3(4), 355–370 (2011)

3. Dadwal, R., Graux, D., Sejdiu, G., Jabeen, H., Lehmann, J.: Clustering pipelines
of large RDF POI data. In: Hitzler, P., Kirrane, S., Hartig, O., de Boer, V., Vidal,
M.-E., Maleshkova, M., Schlobach, S., Hammar, K., Lasierra, N., Stadtmüller, S.,
Hose, K., Verborgh, R. (eds.) ESWC 2019. LNCS, vol. 11762, pp. 24–27. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32327-1 5

4. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Networked
Knowledge-Networked Media, pp. 7–24. Springer, Berlin (2009)

5. Graux, D., Jachiet, L., Genevès, P., Layäıda, N.: SPARQLGX: Efficient distributed
evaluation of SPARQL with apache spark. In: Groth, P., Simperl, E., Gray, A.,
Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS,
vol. 9982, pp. 80–87. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46547-0 9

6. Graux, D., Sejdiu, G., Jabeen, H., Lehmann, J., Sui, D., Muhs, D., Pfeffer, J.:
Profiting from kitties on Ethereum: Leveraging blockchain RDF data with SANSA.
In: SEMANTiCS Conference (2018)

7. Harris, S., Lamb, N., Shadbolt, N.: 4store: The design and implementation of a
clustered RDF store. In: 5th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2009), pp. 94–109 (2009)

8. Jena, A.: Apache jena fuseki. The Apache Software Foundation (2014)
9. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,

Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A large-
scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 6(2),
167–195 (2015). http://jens-lehmann.org/files/2014/swj dbpedia.pdf

10. Lehmann, J., Sejdiu, G., Bühmann, L., Westphal, P., Stadler, C., Ermilov, I.,
Bin, S., Chakraborty, N., Saleem, M., Ngonga, A.C.N., Jabeen, H.: Distributed
semantic analytics using the SANSA stack. In: Proceedings of 16th International
Semantic Web Conference - Resources Track (ISWC’2017) (2017). http://svn.aksw.
org/papers/2017/ISWC SANSA SoftwareFramework/public.pdf

https://doi.org/10.1007/978-3-030-32327-1_5
https://doi.org/10.1007/978-3-319-46547-0_9
https://doi.org/10.1007/978-3-319-46547-0_9
http://jens-lehmann.org/files/2014/swj_dbpedia.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf

MINDS: Mathematical Expressions Inside SPARQL Queries 117

11. Levine, J.R., Mason, T., Brown, D.: Lex & Yacc. O’Reilly Media, Inc (1992)
12. Manola, F., Miller, E., McBride, B., et al.: RDF primer. W3C Recommendation

10(1–107), 6 (2004)
13. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF

data. VLDB J. Int. J. Very Large Data Bases 19(1), 91–113 (2010)
14. Prud’Hommeaux, E., Seaborne, A., et al.: SPARQL query language for RDF. W3C

Recommendation 15 (2008). www.w3.org/TR/rdf-sparql-query/
15. Stadler, C., Sejdiu, G., Graux, D., Lehmann, J.: Sparklify: A scalable software com-

ponent for efficient evaluation of SPARQL queries over distributed RDF datasets.
In: Ghidini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I., Hogan, A., Song,
J., Lefrançois, M., Gandon, F. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 293–308.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7 19

16. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A core of semantic knowledge.
In: Proceedings of the 16th International Conference on World Wide Web, WWW
2007, pp. 697–706. ACM, New York (2007). https://doi.org/10.1145/1242572.
1242667

17. Sui, D., Sejdiu, G., Graux, D., Lehmann, J.: The hubs and authorities transaction
network analysis using the SANSA framework. In: SEMANTiCS Conference (2019)

18. Van Rossum, G., Drake, F.L.: Python Language Reference Manual. Network The-
ory, Bristol (2003)

19. W3C SPARQL Working Group, et al.: SPARQL 1.1 overview (2013). http://www.
w3.org/TR/sparql11-overview/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1007/978-3-030-30796-7_19
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-overview/
http://creativecommons.org/licenses/by/4.0/

	MINDS: A Translator to Embed Mathematical Expressions Inside SPARQL Queries
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 MINDS: From a Math Formula to SPARQL Bindings
	5 Precision Results
	6 Use Cases
	7 Conclusion
	References

