
The New DBpedia Release Cycle: Increasing
Agility and Efficiency in Knowledge Extraction

Workflows

Marvin Hofer1[0000−0003−4667−5743], Sebastian
Hellmann1 [https://global.dbpedia.org/id/3eGWH] , Milan

Dojchinovski1,2[0000−0003−4844−4260], and Johannes Frey1

1 Knowledge Integration and Language Technologies (KILT/AKSW)
DBpedia Association/InfAI, Leipzig University, Germany

lastname@informatik.uni-leipzig.de
2 Web Intelligence Research Group

FIT, Czech Technical University in Prague, Czech Republic
milan.dojchinovski@fit.cvut.cz

Abstract. Since its inception in 2007, DBpedia has been constantly re-
leasing open data in RDF, extracted from various Wikimedia projects
using a complex software system called the DBpedia Information Ex-
traction Framework (DIEF). For the past 12 years, the software received
a plethora of extensions by the community, which positively affected the
size and data quality. Due to the increase in size and complexity, the
release process was facing huge delays (from 12 to 17 months cycle),
thus impacting the agility of the development. In this paper, we describe
the new DBpedia release cycle including our innovative release workflow,
which allows development teams (in particular those who publish large,
open data) to implement agile, cost-efficient processes and scale up pro-
ductivity. The DBpedia release workflow has been re-engineered, its new
primary focus is on productivity and agility, to address the challenges
of size and complexity. At the same time, quality is assured by imple-
menting a comprehensive testing methodology. We run an experimental
evaluation and argue that the implemented measures increase agility and
allow for cost-effective quality-control and debugging and thus achieve
a higher level of maintainability. As a result, DBpedia now publishes
regular (i.e. monthly) releases with over 21 billion triples with minimal
publishing effort.

Keywords: DBpedia · knowledge extraction · data publishing · quality
assurance

1 Introduction

Since its inception in 2007, the DBpedia project [8] has been continuously releas-
ing large, open datasets, extracted from Wikimedia projects such as Wikipedia
and Wikidata [15]. The data has been extracted using a complex software sys-
tem known as the DBpedia Information Extraction Framework (DIEF). Over

2 M. Hofer et al.

the past years the system has received a plethora of extensions and fixes by the
community which resulted in creating monolithic releases.

Until 2017, The DBpedia release process has been primarily focused on data
quality and size, however, it neglected other two important and desirable goals:
productivity and agility (cf. [3] for balancing the magic triangle on quality, pro-
ductivity and agility The release process was facing massive delays (from 12 to
17 months) with increasing costs of development and lower productivity due to
the sole focus on quality and the increased size and complexity. The releases
were so large and complex that the DBpedia core team failed to produce them
for almost three years (2017–2019). Note that this was not a performance nor
scalability related issue. The DBpedia release workflow has been re-engineered,
its new primary focus is on productivity and agility, to address the challenges
of size and complexity. At the same time, the quality aspects are assured by
implementing a comprehensive testing methodology.

In this paper, we describe the new DBpedia release cycle including our in-
novative release workflow, which allows development teams (in particular those
who publish large, open data) to implement agile, cost-effective processes and
scale up productivity. As a result of our innovation DBpedia now produces over
21 billion triples per month with minimal publishing effort.

The paper is organized as follows. First, in Section 2, we summarize the
two biggest challenges as a motivation for our work, followed by an overview of
the release workflow described in Section 3. The main process innovations and
conceptual design principles are described in Section 4. The implemented testing
methodology is described in Section 5 and the results from several experiments
showing the impact, capabilities and the gain from the new release cycle are
presented in Section 6. Section 7 reports on technologies that relate to ours.
Finally, Section 8 concludes the paper and presents future work directions.

2 Background and Motivation

1. Agility. Data quality is one of the largest and oldest topics in computer
science independent of current trends such as Big Data or Knowledge Graphs
and has a vast amount of facets to consider [16]. Data quality, often defined as
“fitness for use”, poses many challenges that are frequently neglected or delayed
in the software engineering process of applications until the very end, i.e. when
the application is demonstrated to the end-user. In this paper, we will refer
to this phase of the process as the “point-of-truth” since it marks an important
transition of data (transferred between machines and software) to information.
At this point, results are presented in a human-readable form so that humans
can evaluate them according to their current knowledge and reasoning capacity.
We argue that any delay or late manifestation of such a “point-of-truth” impacts
cost-effectiveness of data quality management and stands in direct contradiction
to the first and other principles of the agile manifesto: “Our highest priority is to
satisfy the customer through early and continuous delivery of valuable software.”
[2]. Our release cycle counteracts the delay by introducing frequent, fixed time-

The New DBpedia Release Cycle 3

Fig. 1. The DBpedia release cycle.

based releases in combination with automated delivery of data to applications
via the DBpedia Databus (cf. 4.1).

2. Efficiency. We focus on efficiency as a major factor of productivity. Data
quality follows the Law of Diminishing Returns [11] (similar to Pareto-Efficiency
or 80/20 rule), meaning that initially decent quality can be achieved quickly,
while complex errors become increasingly much harder to find and fix, up to a
point where adding more resources (e.g. human labor or development power)
produces similar or worse results3. In our experience, there is no exception
to the law of diminishing returns in data. It affects all data projects, be
they collaboratively edited such as Wikidata, semi-automatic such as DBpedia
or fully automated machine learning approaches. Additionally, data quality
does usually not depend primarily on the effort invested (e.g. by a
large community) but on the efficiency of the development process
and the ability to effectively improve data in a sustainable manner.
Measures to increase efficiency are traceability of errors (Section 4.2) combined
with testing (Section 5).

3 DBpedia Release Cycle Overview

The DBpedia release cycle is a time-driven release process triggered on a regular
basis (i.e. monthly). The DIEF framework (in a distributed computational envi-
ronment) is executed and data is extracted on the latest Wikipedia dump. The
basis of the release cycle relies on the DBpedia Databus platform, which acts
as a data publishing middleware and is responsible for maintaining information
about published data by organizing collection of files as groups and artifacts. The
DBpedia Databus is the core component which helps data publishers to publish
and promote their data, additionally, it supports data consumers in searching
and retrieving data assets. The published file metadata is stored in the Databus
repository and is accessible via SPARQL.

3 meaning overall less output per unit

4 M. Hofer et al.

Data groups and artifacts. The process creates five core data groups, each
generated by a different extraction process4: i) generic–information extracted by
the generic extractors, ii) mappings–information extracted using user specified
mapping rules, iii) text–extracted Wikipedia article’s content and iv) ontology–
the DBpedia ontology and v) wikidata–extracted and mapped structured data
from Wikidata [6]. Each data group consists of one or more versioned data
artifacts which represent a particular dataset in different formats, content (e.g.
language) and compression variants. In other words, an artifact is a collection
of multiple files, which can be addressed with a unique Databus identifier. The
artifact IRIs have hierarchical structure and follow a pattern. For example:

https://databus.dbpedia.org/dbpedia/mappings/instance-types/2020.04.01
Where ’dbpedia’ refers to a publisher, ’mappings’ refers to a group, ’instance-
types’ refers to an artifact and ’2020.04.01’ refers to its version.

Publishing agents. A publishing agent acts on behalf of a person or organiza-
tion and publishes data on the Databus. A Databus account is created and as-
signed to each agent. The initial set of data groups are published on the Databus
by the MARVIN publishing agent5. In addition to the MARVIN agent, there is
also the DBpedia agent, which publishes cleaned data artifacts, i.e. syntacti-
cally valid. The configuration files used to generate the MARVIN and DBpedia
releases are available as a public git repository6.

Cleansing, validation and reporting. The data (i.e., triples) published by
the MARVIN agent is then picked up and parsed by the DBpedia agent to
create strictly valid RDF triples without any violations (including warnings and
errors) based on Apache Jena7. Finally, syntactically cleaned data artifacts are
published by the DBpedia agent. While the data is syntactically valid, other
data quality issues might persist. For example, the IRIs of particular subjects,
predicates and objects do not conform to a predefined schema, the data can be
structurally incorrect and does not conform to the ontology restrictions, or the
release might be incomplete (e.g. missing artifacts). A large-scale validation is
done for each release and the error reports are delivered to the community for a
review. Figure 1 depicts the overall DBpedia data release cycle.

The complete new DBpedia release approach has been deployed in February
2020. Releases are created every month, except the text group, which is released
every three months, due to its complexity. We have deployed a light-weight
dashboard (see http://release-dashboard.dbpedia.org/) which summarizes the
releases, including the extraction process progress, extraction logs and overall
statistics. Table 1 provides statistics for different DBpedia data groups for three
releases; from Oct 20168, Aug 20199 and Apr 202010. ’2016.10.01’ is the last
monolithic legacy release, which we added for comparability. Note that we do

4 https://databus.dbpedia.org/dbpedia/

5 https://databus.dbpedia.org/marvin/

6 https://git.informatik.uni-leipzig.de/dbpedia-assoc/marvin-config

7 https://jena.apache.org

8 https://databus.dbpedia.org/vehnem/collections/dbpedia-2016-10-01

9 https://databus.dbpedia.org/vehnem/collections/dbpedia-2019-08-30

10 https://databus.dbpedia.org/vehnem/collections/dbpedia-2020-04-01

The New DBpedia Release Cycle 5

Table 1. Size metrics (i.e. triples count) for DBpedia data groups and release periods.

Version Generic Mappings Text Wikidata

2016.10.01 4,524,347,267 730,221,071 9,282,719,317 738,329,191
2019.08.30 4,109,424,594 953,187,791 - -
2020.04.01 3,736,165,682 1,075,837,576 11,200,431,258 4,998,301,802

not provide numbers for ’text’ and ’wikidata’ data groups for the ’2019.08.30’
due to the incompleteness of these releases.

The numbers from Table 1 show that the amount of triples in the ’mappings’,
’text’ and ’wikidata’ data groups is constantly increasing over time. By contrast,
the ’generic’ data group provides less triples. This is primarily due to the strict
testing procedures which have been put in place and as a consequence, invalid
statements have been not included in the release. Note that the numbers are also
impacted by the configuration of the DIEF system (e.g. enabled extractors) for
different releases. Compared to the Wikidata statistic11, the DBpedia ’wikidata’
extraction produces five times the amount of statements published by itself,
mainly because of reification and materialization processes during the extraction
(e.g. transitive instance types).

4 Conceptual Design Principles

Two design principles have driven the design and implementation of the new
DBpedia release cycle: i) time-driven data releases enable more frequent and
regular DBpedia releases, and ii) traceability and issue management enables
more efficient linking of issues with tests and tracking their causes.

4.1 Time-driven vs. quality-driven data releases

While many of the principles of the agile manifesto are applicable, the most rele-
vant principle “Working software is the primary measure of progress”[2] can not
be applied directly to data. As motivated in Section 2, the judgment of whether
”data works” is withheld until the ”point-of-truth” on the customer/end-user
side. From our own past experience and from conversations with related de-
velopment teams, it is a fallacy that the developer or data publisher has the
capacity to evaluate when ”data is useful”, following their own quality-driven
or feature-driven agenda. Since adopting an attitude of ”quality creep”12 bears
the risk of delaying releases and prevent data reaching end-users with valuable
feedback, we decided to switch to a strict time-based schedule for releasing fol-
lowing these principles:
1. Automated schedule vs. self-discipline. Releases are fully automated
via the MARVIN extraction robot. This alleviates developers from the decision

11 https://tools.wmflabs.org/wikidata-todo/stats.php

12 analogous to feature creep in software

6 M. Hofer et al.

when ”data is ready”. Else extensive testing of data might have an adverse ef-
fect. Developers are prone to ”fixing one more bug” instead of delivering data
for proper end-user feedback.
2. Subordination of software. The whole software development cycle is com-
pletely subordinate to the data release cycle with time-driven, automatic check-
out of the tested master branch.
3. Automated delivery. Data is published on the DBpedia Databus, which al-
lows subscription for data (artifacts/versions/files), which in term enables auto-
updated application deployment13 and therefore facilitating point-of-truth feed-
back opportunities earlier and continuously.

4.2 Traceability and Issue Management

Any data issues discovered at the point-of-truth start a costly process of back-
tracking the error in reverse order of the pipeline that delivered it. The prob-
lem of tracing and fixing errors becomes even more complicated in Extract-
Transform-Load (ETL) procedures where the data is heavily manipulated and/or
aggregated from different sources. A quintessential ETL example is the DBpedia
system, which implements sophisticated ETL procedures for extraction and re-
finement of data from semi-structured mixed-quality and crowd-sourced sources
such as Wikipedia and Wikidata. Over the years, a huge community of users and
contributors has formed around DBpedia, that are reporting errors via different
communication channels such as Slack, Github and the DBpedia forum. A vast
majority of the issues are associated with i) a piece of data and ii) a procedure
(i.e. code) which has generated the data. In the past, the management of issues
has been done in an ad-hoc manner. Recently, we introduced a systematic, test-
driven approach for managing data and code-related issues using Linked Data.
In order to enable more efficient traceability and management of issues, we have
introduced two technical improvements:
1. Explicit association of data artifacts and code. Previously DBpedia
was grouped by language, which made backtracking difficult. Now every created
and published data artifact is explicitly associated, due to a one-time manual
mapping, with the procedure (i.e. code) which created the artifact. For example,
the “instance-types”14 artifact is associated with the “MappingExtractor.scala”
class which created the artifact (“View code” action on the Databus website)
This allows for easier tracking of errors and relates data to code. A query15 on
http://databus.dbpedia.org/sparql revealed that 26 code references exist and 12
are still missing for the wikidata group.
2. Semantic pinpointing for issue management. A major difficulty for
tackling data issues was to identify in which file and version the error occurred.
Team-internal discussions as well as submitted community issues did not have
the proper vocabulary to describe the datasets, exactly. Using Databus identi-
fiers, these errors can be pinpointed to the exact artifact, version and file.

13 via Docker, out of scope for this paper, see https://wiki.dbpedia.org/develop/datasets/latest-core-dataset-releases

14 https://databus.dbpedia.org/dbpedia/mappings/instance-types/2020.04.01

15 https://git.informatik.uni-leipzig.de/dbpedia-assoc/marvin-config/-/tree/master/paper-supplement/codelink

The New DBpedia Release Cycle 7

Table 2. Testing methodology levels.

Level Method Description

Software JUnit
Functional software tests on data parsers and extractor
methods.

Constructs Custom rules
IRI patterns and encoding errors, datatype and literal
conformity and vocabulary usage.

Syntax Syntax parsing
Syntax parsing of output files implemented with Jena with
customized selection of applicable errors and warnings.

Shapes SHACL
A mix of auto-generated and custom SHACL test suites for
domain and value range, cardinality and graph structure.

Integration
SPARQL Verifies completeness of the releases and overall changes of

over metadata quality metrics using Databus file/package metadata.

Consumer
SPARQL Use case and domain specific SPARQL queries at consumer side.
on graph Point-of-truth evaluation.

3. Test-driven approach for issue management (minidump). Testing
was mostly done after publishing (post-release) and reported issues were often
ignored as reproduction of the error were either untraceable or required a full ex-
traction (weeks) and difficult manual intervention. We created a test suite library
that can be executed post-release as well as on small-scale, extendable Wikipedia
XML dump samples (collection of Wikipedia pages), producing a small release,
i.e. a minidump. Tests on this minidump are executed on git push via continuous
integration (minutes), thus enabling the following workflow: 1. for each reported
data issue, a representative entity is chosen and added to the minidump. 2. a
specific test at the appropriate level (see next section) is devised. 3. the code
is improved so that the test passes. 4. post-release the same test is executed to
check whether the fix was successful at larger scale, also testing for side-effects
or breaking other parts of the software.

5 Testing Methodology

To cover the entire DBpedia knowledge management life cycle, from software
development and debugging to release quality checks, we implemented a robust
“Testing Methodology” divided into six different levels listed in Table 2. The first
level affects software development only. The following three levels (Constructs,
Syntax, and Shapes) are executed on the minidump as well as on the full re-
leases. In comparison, the legacy extraction process did include tests but only
covered the testing aspects of the Software and Syntax layers. The continuously
updated developer wiki16 explains in detail, which steps are necessary to 1. add
Construct and SHACL tests, 2. extend the minidumps with entities, 3. configure
the Apache Jena-based parser and 4. run the tests and find related code. Besides
the improvement in efficiency, the levels of testing were extended to cope with
the variety of issues submitted to the DBpedia Issue tracker17.

16 http://dev.dbpedia.org/Improve DBpedia

17 https://github.com/dbpedia/extraction-framework/issues?q=is%3Aissue+is%3Aopen+label%3Aci-tests

8 M. Hofer et al.

trigger:dbpedia_ontology a cv:IRI_Trigger ;

rdfs:label "DBpedia Ontology IRIs trigger" ;

cvt:pattern "^http://dbpedia.org/ontology/.*" .

validator:dbpedia_ontology a cv:IRI_Validator ;

rdfs:label "DBpedia Ontology validator" ;

cvv:oneOfVocab <dbpedia/ontology/dbo-snapshots.nt> .

<#dbpediaOntology> a cv:TestGenerator ;

cv:trigger trigger:dbpedia_ontology ;

cv:validator validator:dbpedia_ontology .

Listing 1: Test case covering the correct use of the DBpedia ontology.

5.1 Construct Validation

To investigate the layout and encoding conformity of produced data, we intro-
duce an approach that focuses on the in-depth validation of its pre-syntactical
constructs. This concept differs from Syntactical Validation, since it does not
rely on the complete syntactical correctness of the analyzed data, but checks the
conformity for its single constructs. A construct can be any character or byte
sequence inside a data serialization, typically a specific part in the EBNF gram-
mar [12]. In the case of RDF NTriples and DBpedia, interesting constructs are
IRIs or literals represented by the subject, predicate, or object part of a single
triple. Blank nodes are ignored as they follow unpredictable patterns. Moreover,
a single construct can be validated independently of inaccuracies in the rest of
the data. This method can be used to gain better test coverage metrics over
specific data parts, such as IRI patterns in RDF.

Assessing layout quality of an IRI is motivated by:
1. Linked Data HTTP requests are more lenient towards variation. RDF and

SPARQL are strict and require exact match. Especially it is relevant that
each release uses the exact same IRIs as before, which is normally not handled
in syntactical parsing.

2. optional percent-encoding, especially for international chars and gen/sub-
delims18 = ’!’, ’$’, ’&’, ’’’, ’(’, ’)’, ’*’, ’+’, ’,’, ’;’, ’=’

3. Valid IRIs with wrong namespace http://www.wikidata.org/entity/Q64 or
https://www.wikidata.org/wiki/Q64 or wrong layout (e.g. wkd:QQ64)

4. Correct use of vocabulary and correct linking
Complementary to Syntactical Validation, this approach provides a more fine-
grained quality assessment methodology and can be specified as follows:
Construct Test Trigger: A Construct Trigger describes a pattern (e.g., a reg-
ular expression or wildcard) that covers groups of constructs (i.e. namepsaces
for IRIs) and assigns them to several domain-specific test cases. Moreover, if a
trigger matches a given construct, then it triggers several validation methods
that were assigned by a test generator. These patterns are highly flexible, and
it is possible to define overlapping triggers.

18 https://tools.ietf.org/html/rfc3987

The New DBpedia Release Cycle 9

Construct Validator: To verify a group of triggered constructs, a Construct
Validator describes a specific reusable test approach. Several conformity con-
straints are currently implemented: regex - regular expression matching, oneOf
- matching a static string, oneOfVocab - is contained in the ontology or vocab-
ulary, and doesNotContain - does not contain a specific sequence. Further, we
implemented generic RDF validators, based on Apache Jena, to test the syntac-
tical correctness of single IRI and literal constructs.
Construct Test Generator: A construct test generator defines an 1 : n rela-
tion between a Construct Trigger and several Construct Validators to describe
a set of test cases.

For our approach, it was convenient to use Apache Spark and line-based
regular expressions on NTriples to fetch these specific constructs. Listing 1
outlines an example construct test case specification covering DBpedia ontol-
ogy IRIs, by checking the correct use of defined owl:Class, owl:Datatype, and
owl:ObjectProperties. The Construct Validation approach seems theoretically ex-
tensible to validate namespaces, identifiers, attributes, layouts and encodings in
other data formats like XML, CSV, JSON as well. However, we had no proper
use case to justify the effort to explore it.

5.2 Syntactical Validation

The procedure of Syntax Validation verifies the conformity of a serialized data
format with its defined grammar. Normally, RDF parsers distinguish between
different levels of ”syntactical correctness”, including errors and warnings. Errors
represent entirely fraudulent statements, in the sense of irreproducible informa-
tion, and a warning refers to an incorrect format of e.g., a datatype literal.

It is important to validate and clean the produced output of the DIEF, since
some of the used methods are bloated, deprecated and erroneous. Therefore,
the used Syntax Validation is configured to remove all statements containing
warnings or errors. This guarantees better interoperability in the target soft-
ware, which might use parsers considering some warnings as errors. The parser
is a wrapper around Apache Jena, highly parallelized and is configured as fault-
tolerant to skip erroneous triples and log exceptions correctly. The syntax clean-
ing process produces strictly valid RDF NTriples, on the one hand, and gener-
ates RDF syntax error reports, on the other. The original file is also kept on
MARVIN to allow later inspection. The error reports provide structured input
for community-driven and automated feedback. Finally, the valid NTriples are
sorted to remove duplicated statements. This can later be utilized to compare
iterations or modified versions of specific data releases.

5.3 Shape Validation

SHACL (Shapes Constraint Language)19 is a W3C Recommendation which de-
fines a language for validating RDF graphs against a set of conditions. These

19 edited by D. Kontokostas, the former CTO of DBpedia:
https://www.w3.org/TR/shacl/

10 M. Hofer et al.

<#Český_(rozcestnı́k)_cs> a sh:NodeShape ;

sh:targetNode <http://cs.dbpedia.org/resource/Český_(rozcestnı́k)> ;

assuring that the disambiguation extractor for Czech is active

notice that for some languages the disambiguation extractor is not

active (e.g. the case Czech)↪→

sh:property [

sh:path dbo:wikiPageDisambiguates ;

sh:hasValue <http://cs.dbpedia.org/resource/Český> ;

] .

Listing 2: SHACL test for existence of Czech disambiguation links.

conditions are provided as shapes and other constructs expressed in the form
of an RDF graph. SHACL is used within DBpedia’s knowledge extraction and
release process to validate and evaluate the results (i.e. generated RDF). The
defined SHACL tests are executed against the extracted minidump results (Sec-
tion 4.2).
Motivating example. Recently, the Czech DBpedia community identified that
the disambiguation links have not been extracted for Czech. The lack was discov-
ered by an application-specific integration test (next section). Upon fixing the
problem (configuration-related), a SHACL test (Listing 5.3) was implemented
which will in future detect non-existence of the “disambiguation links” dataset
on commit by checking a representative triple.

5.4 Integration Validation

Since software and artifacts possess a high coherence and loose coupling, addi-
tional methods are necessary to ensure overall quality control. To validate the
completeness of a final DBpedia release, we run SPARQL queries on the Databus
graph in order to check if all expected files are found. Listing 3 shows an example
query to acquire an overview of the completeness of the mappings group releases
on the DBpedia Databus20. Other application-specific tests exists, e.g. DBpedia
Spotlight needs 3 specific files to compute a language model21.

6 Experimental Evaluation

Section 3 and Table 1 has already introduced and discussed the size of the new
releases. For our experiments, we used the versions listed there and in addition
the MARVIN pre-release.

As a variety of methods (e.g. [7], a pre-cursor of SHACL) has been evaluated
on DBpedia before and is not repeated here. We focused this evaluation on the

20 all groups https://git.informatik.uni-leipzig.de/dbpedia-assoc/marvin-config/-/tree/master/test

21 SPARQL query at
https://forum.dbpedia.org/t/tasks-for-volunteers/163 Languages with missing redirects/disambiguations

The New DBpedia Release Cycle 11

SELECT ?expected ?actual ?delta ?versionStr ?versionIRI {

{SELECT ?expected (COUNT(DISTINCT ?distribution) AS ?actual)

((?actual-?expected) AS ?delta) ?versionIRI ?versionString {

VALUES (?artifact ?expected) {

(mapp:geo-coordinates-mappingbased 29)

(mapp:instance-types 80)

(mapp:mappingbased-literals 40)

(mapp:mappingbased-objects 120)

(mapp:specific-mappingbased-properties 40)

}

?dataset dataid:artifact ?artifact .

?dataset dataid:version ?versionIRI .

?dataset dcat:distribution ?distribution . }

}

FILTER(?delta != 0)

} ORDER BY DESC(?versionStr)

Listing 3: SPARQL integration test comparing expected file counts of artifacts
with the actually released number.

novel Construct Validation, which introduce a whole previously invisible error
class. Results are summarized, detailed reports will be linked to the Databus
artifacts in the future. For this paper, they are archived here22.
Construct Validation Tests. To validate the constructs of the triples pro-
duced by DIEF, we specified generic and custom domain-specific test cases.
With respect to the constructs in Section 5.1, we provide different test cases
for IRI compliance and literal conformity to increase the test coverage over the
extracted data. The IRI test cases focus on the encoding or layout of an IRI,
and check the correct use of several vocabularies. In case of extracted DBpedia
instance IRIs, the test cases validate the correctness considering that a DBpedia
resource IRIs should not include sequences of ’?’, ’#’, ’[’, ’]’, ’%21’, ’%24’, ’%26’,
’%27’, ’%28’, ’%29’, ’%2A’, ’%2B’, ’%2C’, ’%3B’, ’%3D’ inside the segment part and fol-
lows Wikipedia conventions. The vocabulary test cases, which will be automated
later, include tests for these schemas23: dbo, foaf, geo, rdf, rdfs, xsd, itsrdf,
and skos to ensure the use of the respective ontology or vocabulary specifica-
tion. Further, generic IRI and literal test cases are implemented to test their
syntactical correctness and to validate the lexical format of typed literals. The
full collection of specified custom Construct Validation test cases is versioned at
the DIEF git repository24.
Construct Validation Metrics. We define Construct Validation Metrics to
measure the error rate and the overall test coverage for IRI patterns, encoding
errors, datatype formats and vocabularies used in the produced data. The overall

22 https://git.informatik.uni-leipzig.de/dbpedia-assoc/marvin-config/-/tree/master/paper-supplement/reports

23 http://prefix.cc

24 https://github.com/dbpedia/extraction-framework/blob/master/dump/src/test/resources/dbpedia-specific-ci-
tests.ttl

12 M. Hofer et al.

Table 3. Custom Construct Validation test statistics of the DBpedia and MARVIN
release for the generic and mappings group (Gr). Displaying the total IRI counts, the
Construct Validation test coverage of IRIs, and construct errors (e.g. wrong IRI pattern
or vocab usage) of certain Databus releases.

Gr. Release Version IRIs Total Coverage Errors Error Rate

g
e
n
e
ri

c

DBpedia 2016.10.01 12,228,978,594 83.93% 15,823,204 0.15%

MARVIN 2019.08.30 11,089,492,791 90.98% 18,113,408 0.18%
DBpedia 2019.08.30 11,089,492,791 90.98% 18,113,408 0.18%

MARVIN 2020.04.01 10,527,299,298 89.59% 18,662,921 0.20%
DBpedia 2020.04.01 10,022,095,645 89.32% 18,652,958 0.21%

m
a
p
p
in

g
s DBpedia 2016.10.01 2,058,288,765 84.01% 6,692,902 0.39%

MARVIN 2019.08.30 2,686,427,646 85.99% 6,951,976 0.30%
DBpedia 2019.08.30 2,678,475,356 86.01% 6,875,930 0.30%

MARVIN 2020.04.01 3,020,660,756 86.24% 7,514,376 0.29%
DBpedia 2020.04.01 3,019,942,481 86.24% 7,505,332 0.29%

construct test coverage is defined by dividing the number of constructs that at
least trigger one test by the total amount of found constructs.

Coverage := Triggered Constructs / Total Constructs

The overall error rate (in percent) is determined by dividing the number of
constructs that have at least one error by the total number of covered constructs.

Error Rate := Erroneous Constructs / Covered Constructs

Test Results. The custom tests for the DBpedia ’generic’ and ’mappings’ re-
lease have an average of 87% IRI coverage (cf. Table 3). The test coverage can
be increased by writing more custom test cases, but concerning the 80/20 rule,
this could result in high efforts and the missing IRI patterns are presumably
used inside of homepage or external link relations. The new strict syntax clean-
ing was introduced on the ’2019.08.30’ version of the mappings release and later
applied to the ’generic’ release. It removes a significant amount of IRIs from the
’generic’ version (∼500 million) and only a fraction from the ’mappings’ release,
reflecting the different extraction quality of them both. Although strict parsing
was used and invalid triples are removed, the other errors remain, which we con-
sider a good indicator that the Construct Validation is complementary to syntax
parsing.

Table 4 shows four independent Construct Validation test cases.
XSD date literal (xdt). This generic triple test validates the correct format use
of xsd:date typed literals ("yyyy-mm-dd"^^xsd:date). Due to the use of strict
syntax cleaning, as shown in Table 4, subsequent release later than ’2016.10.01’
do not contain incorrectly formatted date type literals, loosing several million
triples. Removing warnings leads to better interoperability later.
RDF language string (lang). The DIEF uses particular serialization methods
to create triples that are often duplicated and contain deprecated code fragments.
The post-processing module had an issue to build correct rdf:langString serial-
izations by adding this IRI as explicit datatype instead of the language tag. Con-
sidering the N-Triples specification, this is an implicit literal datatype assigned

The New DBpedia Release Cycle 13

Table 4. Construct Validation results of the four test cases: XSD date literal (xdt),
RDF language string (lang), DBpedia ontology (dbo) and DBpedia Instance URIs
which contain a question mark (dbrq). We mention the total number of triggered
constructs (prevalence), the aggregated amount of errors, and the percentile error rate.

Gr. Test Version Prevalence Errors Error Rate

D
B

p
.

g
e
n
e
ri

c 2016.10.01 32,104,814 4,419,311 13.77%
xdt 2019.08.30 28,193,951 0 0%

2020.04.01 26,193,711 0 0%

2016.10.01 229,009,107 229,009,107 100%
lang 2019.08.30 353,220,047 353,220,047 100%

2020.04.01 0 0 0%

D
B

p
.

m
a
p
p
in

g
s 2016.10.01 419,745,660 6,686,707 1.594%

dbo 2019.08.30 496,841,363 6,857,202 1.381%
2020.04.01 567,570,166 7,500,707 1.322%

2016.10.01 853,927,831 0 0%
dbrq 2019.08.30 1,198,382,078 15,407 0.001286%

2020.04.01 1,354,209,107 0 0%

by their language tags. This bug was not recognized by later parsers (i.e. Apache
Jena), because the produced statements are syntactically correct. Therefore, to
cover this behavior we introduce a generic test case for this kind of literals. The
prevalence of this test is described by the pattern ’"*"^^rdf:langString’ and
the test validation is defined by an assertion that the pattern should not exist.
Moreover, if a construct can be tested, the test directly fails and so the preva-
lence of the test is equal to its errors. A post-processing bug fix was provided
before the ’2020.04.01’ release, and considering Table 4 was solved properly.
DBpedia Ontology URIs (dbo). To cover correct use of correct vocabular-
ies, some ontology test cases are specified. For the DBpedia ontology this test
is assigned to the ’http://dbpedia.org/ontology/*’ namespace and checks
for correctly used IRIs of the DBpedia ontology. The test demonstrates that
the used DBpedia ontology instances used inside the three ’mappings’ release
versions do not conform with the DBpedia ontology (cf. Table 4). By inspect-
ing this in detail, we discovered the intensive production of a non-defined class
dbo:Location, which is pending to be fixed. Error rate is lower in later releases,
as size increased.
DBpedia Instance URIs (dbrq). This test case checks one encoding criterion
of extracted DBpedia resource IRIs. Therefore, if a construct matches ’http://
[a-z\-]*.dbpedia.org/resource/*’ the last path segment is checked not to
contain the ’?’ symbol as this kind of IRIs should never carry a query part. As
displayed in Table 4, the incorrect extraction of the dbr IRIs considering the ’?’
symbol occurred for version ’2019.08.30’ and was then solved in later releases.
Test coverage of non-DBpedia datasets. To show the re-usability of the
Construct Validation approach, we analyzed a set of external RDF datasets27.
For these datasets our custom test cases achieved an average coverage around
10%. (cf. Table 5). The biggest part is covered by the custom vocabulary tests, es-

27 https://databus.dbpedia.org/vehnem/collections/construct-validation-input

14 M. Hofer et al.

Table 5. Custom Construct Validation statistics and triple counts of external RDF
NTriples releases on the Databus. Including IRI test coverage and the number of failed
tests based on the custom DBpedia Construct Validation.

Dataset Version Triples IRIs Total Coverage Errors Error Rate

CaliGraph [4] 2020.03.01 321,508,492 954,813,788 48.50% 30,478,073 6.58%
MusicBrainz [13] 2017.12.01 163,162,562 443,227,356 12.58% 23 0.00%
GeoNames25 2018.03.11 176,672,577 468,026,653 10.86% 321,865 0.63%
DBkWik [5] 2019.09.02 127,944,902 322,866,512 6.91% 18 0.00%
DNB26 2019.10.15 226,028,758 502,217,070 3.37% 14 0.00%

pecially foaf, rdf, rdfs and skos are commonly used across multiple RDF datasets.
Another useful test case represents the correct use of DBpedia IRIs inside these
datasets (inbound links). Almost in all external datasets, it could be recog-
nized that backlinked DBpedia instances or ontology IRIs are wrong encoded
or incorrectly used. In the case of RDF, this demonstrates that the introduced
test approach can validate links between independently produced Linked Open
datasets.
Limitations. Coverage of Construct Validation. As demonstrated the Construct
Validation can test for issues that are not covered by the Syntax or Shape Val-
idation. But for fine-grained testing, to reach a 100% IRI test coverage on an
extracted dataset, it is quite hard to define test cases for every used namespace
and vocabulary, concerning their encoding and layouts (e.g., external links).
Comparison of releases. The number of enabled extractors, produced artifacts,
extracted languages, new tests, and mappings can change in newer releases.
Therefore, it is challenging to compare evolving releases containing a different
set of files and single files that provide more or fewer triples.

7 Related Work

At the conceptual level, our work is very related to the “Engineering Agile Big-
Data” concepts described in [3] and inspired and based on those particular con-
cepts. Below we discuss the related works to ours and primarily in respect to i)
data release cycle and ii) data quality assessment.
Data Release Cycle. The release processes for different knowledge bases are
naturally different due to the different ways of obtaining the data. Wikidata, as
the most related open data release project, releases dumps on a weekly basis
and publishes them in an online file directory28 without machine-readable de-
scriptions. In comparison, DBpedia systematically releases data artifacts accom-
panied with machine-readable descriptions published on the DBpedia Databus
platform. This enables data consumers to develop intelligent consumer agents
which can easily find and retrieve relevant data artifacts.

Besides Wikimedia, there are other open data release initiatives such as
WordNet [9], BabelNet [10] and YAGO [14]. However, all these projects (with
exception Wikidata) do not provide regular time-driven (e.g. monthly, bi-annual

28 https://dumps.wikimedia.org/wikidatawiki/entities/

The New DBpedia Release Cycle 15

or annual) releases as DBpedia does. Their current release strategy is feature-
driven and a new data version is released as soon as a new feature or extension
has been implemented. This results in delayed and irregular releases. For exam-
ple, the release of YAGO 4.0 (release in March 2020) took almost three years
since the previous YAGO 3.1 release (in June 2017). Similarly, BabelNet29 per-
forms feature-driven releases, with the latest BabelNet 4.0 release from Feb 2018
and the previous 3.7 release from Aug 2016.
Data Quality Assessment. Further, we briefly mention two projects that
attempt Linked Data quality assessment by applying alternative facets.

Due to the different nature, DBpedia implements software/minidump and
large-scale validation mechanism. Wikidata performs validation using the Shape
Expressions Language (ShEx)30 on top of the user generated input.

TripleCheckMate [1] describes a crowd-sourced data quality assessment ap-
proach by producing manual error reports of whether a statement conforms to
a resource or can be classified as a taxonomy-based vulnerability. Their results
showed a broad overview of examined errors but were tied to high efforts and
offered no integration concept for further fixing procedures. On the other hand,
RDFUnit is a test-driven data-debugging framework that can run automatically
generated and manually generated test cases (predecessor of SHACL) against
RDF datasets [7]. These automatic test cases mostly concentrate on the schema,
whether domain types, range values, or datatypes adhere correctly. The results
are also provided in the form of aggregated test reports.

8 Conclusion and Future Work

In this paper, we presented and combined several approaches (including time-
based, test-driven, and traceable development principles) for increasing the agility
and efficiency of knowledge extraction workflows and demonstrated it in the case
of the novel DBpedia release cycle. Considering that DBpedia is an enormous
open source project, we introduced a new set of extensive test methods, to of-
fer a convenient process for community-driven feedback and development. The
DBpedia Databus is used as a quality control interface, due to the utilization
of traceable metadata. The Construct Validation test approach provides a more
in-depth issue tracking checking for wrong formatted datatypes, inconsistent use
of vocabularies, and the layout or encoding of IRIs produced in the extracted
data. In combination with Syntactical and Shape Validation, this covers a large
spectrum of possible data flaws. Moreover, it was shown that the minidump-
based and large-scale test concept provides a flexible view to directly link tests
with existing issues. The described workflow builds a reliable and stable base for
future DBpedia (or other quality-assured data) releases. However, we presented
only a few specific examples of how testing and development of the release pro-
cess is improved. Therefore, the full potential of how the testing methodologies
increase agility and productivity can only be measured after their adoption by

29 https://babelnet.org/stats

30 https://shex.io

16 M. Hofer et al.

the community in the next years. As an overall result, the new DBpedia release
cycle produces over 21 billion triples per month with minimal publishing effort.
As future work, we will link all created evaluation reports to Databus artifacts,
similar to the explained code references (cf. 4.2). Further, we plan to extend the
usability of the release dashboard.

Acknowledgments: This work was partially supported by grants from the
Federal Ministry for Economic Affairs and Energy of Germany (BMWi) for the
LOD-GEOSS Project (03EI1005E) and the PLASS (01MD19003D) projects. We
thank Sören Auer and the German National Library of Science and Technology
(TIB) for providing servers to run the DBpedia knowledge extractions.

References

1. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowd-
sourcing linked data quality assessment. In: ISWC. pp. 260–276. Springer (2013)

2. Beck, K., Beedle, M., van Bennekum, A., et al.: Manifesto for agile software devel-
opment (2001), http://www.agilemanifesto.org/

3. Feeney, K., Davies, J., Welch, J., Hellmann, S., Dirschl, C., Koller, A., et al.: Engi-
neering Agile Big-Data Systems. River Publishers Series in Software Engineering,
River Publishers (2018). https://doi.org/10.13052/rp-9788770220156

4. Heist, N., Paulheim, H.: Entity extraction from wikipedia list pages. In: The Se-
mantic Web. pp. 327–342. Springer International Publishing, Cham (2020)

5. Hofmann, A., Perchani, S., Portisch, J., et al.: Dbkwik: Towards knowledge graph
creation from thousands of wikis. In: International Semantic Web Conference
(Posters, Demos & Industry Tracks) (2017), http://ceur-ws.org/Vol-1963/

6. Ismayilov, A., Kontokostas, D., Auer, S., Lehmann, J., Hellmann, S., et al.: Wiki-
data through the eyes of dbpedia. Semantic Web 9(4), 493–503 (2018)

7. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: WWW (2014)

8. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., et al.: DBpedia - a large-scale,
multilingual knowledge base extracted from wikipedia. SWJ 6(2) (2015)

9. Miller, G.A.: WordNet: An electronic lexical database. MIT press (1998)
10. Navigli, R., Ponzetto, S.P.: Babelnet: The automatic construction, evaluation and

application of a wide-coverage multilingual semantic network. Artificial Intelligence
193, 217–250 (2012)

11. Samuelson, P.A., Nordhaus, W.D.: Microeconomics. McGraw-Hill Irwin, Boston,
MA, 17th ed. edn. (2001)

12. Standard, E.S.S.: Ebnf: Iso/iec 14977: 1996 (e). URL http://www. cl. cam. ac.
uk/mgk25/iso-14977. pdf 70 (1996)

13. Swartz, A.: Musicbrainz: a semantic web service. IEEE Intelligent Systems 17(1),
76–77 (Jan 2002). https://doi.org/10.1109/5254.988466

14. Tanon, T.P., Weikum, G., Suchanek, F.: Yago 4: A reason-able knowledge base.
In: European Semantic Web Conference. pp. 583–596. Springer (2020)

15. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)

16. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality
assessment for Linked Data: A survey. Semantic Web Journal (2015)

