
DBpedia Archivo: A Web-Scale Interface for
Ontology Archiving under Consumer-Oriented

Aspects

Johannes Frey, Denis Streitmatter, Fabian Götz,
Sebastian Hellmann[https://global.dbpedia.org/id/3eGWH], and

Natanael Arndt[0000−0002−8130−8677]

InfAI & Leipzig University, AKSW {lastname}@informatik.uni-leipzig.de
https://infai.org/kilt/

Abstract. While thousands of ontologies exist on the web, a unified sys-
tem for handling online ontologies – in particular with respect to discov-
ery, versioning, access, quality-control, mappings – has not yet surfaced
and users of ontologies struggle with many challenges. In this paper, we
present an online ontology interface and augmented archive called DB-
pedia Archivo, that discovers, crawls, versions and archives ontologies on
the DBpedia Databus. Based on this versioned crawl, different features,
quality measures and, if possible, fixes are deployed to handle and sta-
bilize the changes in the found ontologies at web-scale. A comparison to
existing approaches and ontology repositories is given.

Keywords: Ontology Archive · Ontology Repository · Ontology Crawl-
ing

1 Introduction

Phrases such as “A little semantics goes a long way”1 or “Let a thousand ontolo-
gies blossom” [7] have shaped the landscape of ontologies on the Semantic Web.
Ontologies are the common language spoken on the Semantic Web, they repre-
sent schema knowledge and provide a common point of integration and reference
while the value of an ontology grows with its use. As the conceptual framework
to globally interlink distributed knowledge, ontologies provide the backbone of
the Semantic Web.

While thousands of ontologies exist on the web, a unified system for han-
dling online ontologies has not yet surfaced and both publishers and users of
ontologies struggle with many uncertainties and challenges. The main discussion
and effort so far in the Semantic Web community is unbalanced and focused on
authoring and publication of ontologies and linked data in general with serious
consequences. The community produced several guidelines, rules, methodologies
and tooling for publishers neglecting users and clients. However, the variety in-
creases uncertainty by offering too many choices, increases effort and complexity

1 http://www.cs.rpi.edu/∼hendler/LittleSemanticsWeb.html

https://global.dbpedia.org/id/3eGWH
https://infai.org/kilt/
http://www.cs.rpi.edu/~hendler/LittleSemanticsWeb.html


2 Frey et al.

through the need to understand and implement several guidelines and provides
no or unclear incentives or rewards to the publisher to comply with them.

As a consequence, the consumer is left to deal with the resulting hetero-
geneity, quality issues and failures. The majority of problems and challenges fall
into the categories access and quality. We have identified several Usage Chal-
lenges which we enumerate in parentheses for reference in the remainder of the
paper. Major physical access problems are caused by link rot (UC1) and incor-
rect Linked Data deployments (UC2), but most crucially there is no established,
stable citation or dependency system for ontologies like Maven or DOI (UC3) -
ontologies or parts of it can change or disappear anytime. Additionally, hetero-
geneity increases the complexity to access ontologies. There can be no, unclear or
inconsistent versioning (UC4a), the versioning nomenclature can substantially
vary (UC4b) and guarantees w.r.t. backward-compatibility usually remain un-
clear (UC4c). Various formats to serialize OWL ontologies exist (eg. OWL-XML,
RDF-XML, Manchester Syntax, Turtle; UC5). In case that an application/con-
sumer succeeded to retrieve an ontology (version) several quality problems can
prevent proper processing/usage. Parsing of the RDF snapshot can fail (UC6),
problems w.r.t. licensing can prevent the usage at all (UC7) due to missing,
unclear, heterogeneous (several properties and license IDs) or too restrictive or
improper licensing. Finally, the fitness for use can be limited due to low quality
metadata (eg. missing labels, title; UC8) or logical inconsistencies (UC9).

In this paper, we present a web-scale ontology interface called DBpedia
Archivo (acronym for ontology archive), that discovers, crawls and versions on-
tologies and archives as well as augments them on the DBpedia Databus [5].
The primary purpose of this interface is to help users/consumers to discover,
access and validate/assess the quality/usability of ontologies in a unified way,
while reducing the challenges and effort to spot and deal with the mentioned
issues, such that they can focus on building stable and reliable applications.
Nevertheless, we also aim to support both the consumer and the publisher by
augmenting the ontology (e.g reporting quality metrics, generating documenta-
tion). We envision in the mid/long-term, that with the help of Archivo we foster
the adherence to standards (publicly showing issues, basic quality control for
access to Archivo) and strengthening incentives for publishers (bad metadata
e.g. no dct:title, dct:description results in worse findability and presentation in
Archivo), such that the overall quality of the ontologies in the Web of Data
emerges, which in return would benefit users and applications.

We argue, that a crucial factor for the success of the web were working web
browsers and search engines that increased user numbers and views and created
incentives to publish correct and high quality websites. Following this line, as a
novel paradigm, DBpedia Archivo (see fig. 1) proposes a consumer/application-
oriented approach to the Semantic Web.

At a glance, with DBpedia Archivo we make the following contributions:

1. Discovery (including user suggestions), crawling, versioning, archiving and
evaluation of ontologies with a high degree of homogenization and au-
tomation,



DBpedia Archivo: A Web-Scale Ontology Interface 3

Fig. 1: Interface and platform model of Archivo

2. unified, stable, referenceable identifiers for each ontology version, so
that ontology consumption becomes stable and applications, experiments
and research with a specific version of an ontology, can be reproduced at
any time,

3. unified time-based and Semantic Versioning enabling auto update appli-
cations with custom trade-off between latest changes and stability (user
controlled up-to-dateness),

4. the augmented archive includes add-ins and extensions which enhance the
use of an ontology, among others, generated documentation, quality re-
porting with a consumer-oriented star rating and results of validation and
test steps.

In the following section we provide an overview on related work. In the sub-
sequent section we briefly introduce the conceptual ideas of Archivo and its
platform model. Section 4 describes the implementation. In Section 5 we intro-
duce an automatically verifyable consumer rating. An evaluation of an initial
crawl of ontologies based on our rating as well as a comparison of Archivo to
existing ontology repositories is given in Section 6.

2 Related Work

Related work can be separated into three areas: archiving and versioning tools
for ontologies, ontology repositories (which are compared in depth to Archivo in
Section 6) and ontology validation and testing tools.

2.1 Archiving and Versioning

The Memento protocol [19] allows to discover and browse old versions (Me-
mentos) of web resources. The Internet Archive provides a prominent service,



4 Frey et al.

WaybackMachine2, a generic archive for web resources (including a subset of
ontologies from the web) accessible using Memento. Moreover, Memento is used
and adapted by the TailR system [11], a self-deploy/service archiving system for
Linked Data resources and the Triple Pattern Fragment Server which can
be used to serve and query archived Linked Data [21] with lower infrastructural
efforts. Unfortunately, Memento is currently not (widely) adopted for ontology
publication and to the best of our knowledge, there is no support for Memento in
ontology tools, yet. Archivo offers with SPARQL and Linked Data well-known,
standardized and with the help of DataID metadata a unified way to discover,
access but also query (relevant) versions of an ontology but additionally serves
as a central point to discover (archived) ontologies. Realization of Memento on
top of Archivo is possible and subject to future work.

SemVersion [22] proposes a methodology and Java API for RDF (and on-
tology) versioning inspired by CVS. It offers a structural and a form of semantic
diff between two versions, achieved by performing structural diffs on semantic
closures (RDF(S) entailment). The semantic diff of Archivo based on (OWL)
axiom diffs goes a step further. Quit [2] implements an RDF versioning and
collaboration system on top of Git. It provides unified access via SPARQL 1.1
on each version of an ontology and the versioning history. Both systems focus
on ontology development rather than the consumer perspective.

D2V is a tool to manage and visualize user-defined changes in RDF data. In
[17] it is demonstrated for ontology evolution measuring specific types of changes
(e.g. added properties / labels or deprecated classes). While D2V allows very flex-
ible, use-case/dataset specific-analysis of changes, Archivo’s additional Semantic
Versioning aims at making the trade-off between unified and flexible/fine-grained
change reports with 3 types of changes (major, minor, patch).

Vocol [6] is an integrated environment based on Git and several services to
enable collaborative vocabulary development. The workflow consists of 3 activi-
ties: modeling, population and testing (syntactic and semantic validation, com-
petency questions), deployment of ontologies (machine- and human-readable).
While some of the features (semantic diff and validation, documentation genera-
tion, custom tests for ontologies) are similar to Archivo, Vocol was designed for
publishers, consumers depend on them to take advantage of the system.

2.2 Ontology Repositories and Platforms

There have been ample efforts to provide a platform, repository, library or other
web services to deal with storage, search, retrieval of ontologies, some of which
do not exist or work properly anymore. For reasons of brevity, we only mention
approaches which are, to the best of our knowledge, still active and functional.
We refer the reader to [4] for a time travel to a decade ago.

In our scope we identify 4 major characteristics of such systems. An archive
persists ontologies (and its versions). A catalog associates a list of ontologies
with thorough metadata. As index we denote a system that allows to search

2 https://archive.org/web/

https://archive.org/web/


DBpedia Archivo: A Web-Scale Ontology Interface 5

components (e.g. classes) of ontologies. A development platform is a workspace
with integrated tools to create and handle ontologies.

OntoMaven [13] is a distributed ontology archiving approach based on the
maven philosophy. Ontologies and its dependencies are organized in mvn ar-
tifacts. As a consequence transitive imports can be resolved and downloaded
locally. A set of mvn plugins supports several aspects of ontology development
lifecycles, e.g. import, creation of documentation and reports, consistency tests
and versioning. Although we were not able to find any announced public repos-
itory, the ontology organization structure is very similar to the one of DBpedia
Databus [5] Archivo is based on.

OBOFoundry [18] is an ontology developer initiative in the biological and
biomedical domain which manually curates a catalog of approved ontologies. The
registering of new ontologies follows a set of design principles (e.g. naming con-
vention, versioning strategy) which are verified semi-automatically. The foundry
operates its own PURL service to offer stable identifiers.

BioPortal [23] is another prominent catalog in the biomedical domain. It
offers storage for ontology submissions and archiving to registered users and per-
forms indexing on the latest submission. Moreover, it offers developer platform
features such as user access rights and mappings between ontologies.

Linked Open Vocabularies [20] (LOV) is a semi-automatically curated cata-
log of vocabularies. It offers a search index on the terms defined in the vocabu-
laries, a SPARQL Query endpoint and provides persistent access to the history
of vocabularies. New vocabularies are discovered by analyzing (re)use of terms
from archived ontologies or can be suggested by users.

Ontobee [12] creates an index for OBOFoundry and a portion of other on-
tologies. It serves the ontologies as linked data and provides search and browsing
interfaces. Another index in the biomedical domain is the Ontology Lookup
Service [10].

OntoHub [3] is an open ontology repository engine with versioning based
on Git following Open Ontology Repository Initiative (OOR) requirements. It
offers homogeneous formal representation of ontology axioms using DOL, testing
with HETS and competency questions. An instance of it operates ontohub.org
which is free to users and contains a plethora of ontologies, including imports
from other repositories.

2.3 Ontology Evaluation and Validation

The list of literature with rules and guidelines to follow is extensive. We would
like to list [9, 15, 24], the LD principles3, LOD Cloud4, LOV5 and refer to their
references for brevity. We picked the prominent Ontology Pitfall Scanner!
(OoPS!) [16], also used by Archivo, as a representative for the many existing
validation & evaluation approaches as it provides an excellent overview of other

3 https://www.w3.org/DesignIssues/LinkedData.html
4 https://lod-cloud.net/
5 https://lov.linkeddata.es/Recommendations Vocabulary Design.pdf

https://www.w3.org/DesignIssues/LinkedData.html
https://lod-cloud.net/
https://lov.linkeddata.es/Recommendations_Vocabulary_Design.pdf


6 Frey et al.

literature. OnToology [1] is a service (based on OOPS and other tools) to
create pull request for ontologies hosted on GitHub to deliver test reports and
documentation. It is similar to the ontology augmentation concept of Archivo,
however needs to be configured and managed by the repository owner/publisher.

ROBOT [8] deserves a special mention as a highly automatized and con-
figurable evaluator. The idea here is that sub-communities for certain domains
(e.g. biological and -medical) configure and deploy the tool for their commu-
nity. While similar (configure local needs, deploy local), Archivo follows a more
generic approach (configure local needs, deploy global).

3 Archivo Platform Model

3.1 Versioning and Persistence on the Databus

DBpedia Archivo is built on top of the DBpedia Databus [5], which is inspired
by Maven Central Repository. It uses the maven concepts publisher/group/ar-
tifact/version and ports them to a Linked Data platform, in order to manage
data pipelines and enable automatic publishing and consumption of data.

Archivo is a dedicated publishing agent on the Databus6. Similar to [13] arti-
fact IDs (represented as IRIs) are used as stable identifiers to reference an ontol-
ogy with no regard to its evolution (UC1 and UC3). A version string appended to
the artifact IRI forms a stable ID to resolve a particular version. An extension of
the DataID metadata vocabulary for artifact, version, and files allows for flexible
and fine-grained access using SPARQL. The concepts of time-based (UC4a/b)
and semantic versioning (UC4c) support increased stability of applications while
allowing automatic updates to some (user-configurable) degree.

Databus file identifiers form a stable abstraction layer independent of hosting
and similar to PURL by using dcat:downloadURL links in the metadata. Crawled
ontologies and metadata are persisted on the DBpedia download server7. Cre-
ating a mirrored archive of ontology versions such as Archivo is, of course, not
infallible. We consider it, however, a sufficiently reliable fall-back to improve
persistence of ontologies on the Semantic Web.

3.2 Evaluation Plugins and SHACL Library

DBpedia Archivo largely builds on the W3C SHACL8 standard. While minimal
basic validation as described in Section 5 is fixed (part SHACL, part code), the
remaining validation is done via a SHACL library that is partitioned into SHACL
test suites for specific purposes: 1) they can encode general validation rules (e.g.
from OOPS and tackle UC7), 2) they can capture specific requirements needed
by Archivo features such as the automatic HTML documentation generation

6 https://databus.dbpedia.org/ontologies
7 13 years in existence, backed up by libraries (TIB) and universities (Mannheim) who

are DBpedia Association members
8 https://www.w3.org/TR/shacl/

https://databus.dbpedia.org/ontologies
https://www.w3.org/TR/shacl/


DBpedia Archivo: A Web-Scale Ontology Interface 7

of LODE (UC8) (cf. next section), 3) they can be sub-community or use case-
specific down to individual user projects. While at the time of writing few SHACL
test suites exist, we allow online contribution and extension (Validation as a
Platform) for Archivo to run in the hope to give consumers a central place to
encode their requirements and also discuss and agree on more universal ones.

3.3 Feature Plugins

Feature plugins in DBpedia Archivo augment a certain aspect of the ontology,
e.g. generate documentation, visualization or automatic mappings. While a com-
plete overview is out of scope of this paper, we integrated the Live OWL Doc-
umentation Environment (LODE) [14] into Archivo, which generates a uniform
HTML documentation for each version of all archived ontologies. Adding more
features is straightforward. Pre-generated results make them universally avail-
able for all ontologies and absolve publishers and consumers to find, learn and
deploy such ontology tools.

4 Archivo Implementation

The guiding principle for Archivo’s implementation follows Jon Postel’s law: “Be
conservative in what you do, be liberal in what you accept from others”. Being
“liberal” in the context of Archivo has clear limits. While we accept ontologies
in different formats, work around small mistakes (e.g. also recognizing incorrect
dc:license triples instead of dct:license) (UC8) and even use recovering parsers
that can skip syntax errors (UC6), we decided to be strict in all aspects that
directly contradict the automatic processing of ontologies and therefore either
heavily impact their usefulness or require meticulous archaeological excavation
work to use and archive them. Since we invested the time to implement the
most common retrieval and processing methods, our guideline is “If DBpedia
Archivo can not process it in an automatic and deterministic manner,
it is likely infeasible to be processed” based on the assumption that the Se-
mantic Web was created for machines. One prominent example here is the miss-
ing license declaration in the FOAF RDF/XML document9. While the HTML
documentation includes the license using RDFa10, it only yielded 348 triples,
compared to 631 in RDF/XML. While staying “liberal”, there is no optimal
automatic choice on what to accept: half the ontology with license, full ontology
without license. Our strategy is that we are liberal at the launch of Archivo to
allow old/unmaintained (but potentially already widely used) ontology versions
to be archived but we will become more restrictive (no archiving of new ontology
(versions) that do not fulfill baseline criteria) after an establishing phase. The
strictness in such cases stems from the rationale that these non-automatic and
non-deterministic ontologies will eventually cause an immeasurable and un-
acceptable amount of effort in the downstream network of consumers.

9 http://xmlns.com/foaf/spec/, Supplement: https://github.com/dbpedia/Archivo/
tree/master/paper-supplement

10 the subject of the license statement is the HTML document

http://xmlns.com/foaf/spec/
https://github.com/dbpedia/Archivo/tree/master/paper-supplement
https://github.com/dbpedia/Archivo/tree/master/paper-supplement


8 Frey et al.

4.1 Ontology Discovery and Indexing

Fig. 2: Overview of iterative ontology discovery and archiving

The goal of the discovery and indexing phase is to create a distinct set (index)
of non-information URIs/resource (NIR) of ontologies for each iteration as input
for further crawling and processing. We devised four generic approaches to feed
Archivo with ontology candidates (crawling candidate IRIs) and implemented
them as a proof-of-concept.

Ontology repositories: One straightforward way of retrieving ontology
URIs is by querying already existing ontology repositories. The repository with
the broadest collection of very popular ontologies of the Linked Open Data
Cloud is Linked Open Vocabularies (LOV) [20], which we used in this paper.
LOV provides a simple API which contains (among other metadata) candidates
for non-information URIs.

Vocabulary Usage Analysis via VoID: Another approach to discover
ontology candidates is by analyzing vocabulary usage in the data. Our goal
here is in particular to cover all vocabularies used by datasets uploaded onto
the Databus, which already contains several datasets besides DBpedia, such as
Geonames, Caligraph, MusicBrainz and the German National Library, just to
name a few. As the Databus provides a controlled and harmonized environment,
we generate a virtual class-based and property-based partition11 for all RDF
files on the bus, thus retrieving a list of all classes and properties.

Discovery via Links to External Ontologies: As Archivo already cre-
ates a controlled and harmonized ontology archive, we can exploit the refined
collection of ontologies from the previous iteration to discover further ontology

11 cf. Section 4.5 of VoID: https://www.w3.org/TR/void/#class-property-partitions

https://www.w3.org/TR/void/#class-property-partitions


DBpedia Archivo: A Web-Scale Ontology Interface 9

candidates. For this purpose, we extract a list of all subject, predicate and object
IRIs from the ontologies itself to create more leads to properties/classes/ontology
files.

Manual suggestion: Automatic discovery is able to capture and persist
most of the currently available ontologies in a forward-progressing manner. In
addition manual/external suggestions of ontology candidate IRIs are accepted
via web form12 to increase Archivo’s coverage and to offer an on-demand archiv-
ing function (UC3). Moreover, we consider this feature helpful for ontology en-
gineers to test and receive feedback already during the development phase.

Subsequent to the aforementioned discovery steps we crawl/check every can-
didate IRI. The best effort crawling tries to download multiple RDF files via
different HTTP-accept headers (in case a robots.txt is not disallowing access for
the Archivo crawler) (UC2 and UC5). At the time of writing two additional
rules are in place for considering an ontology/vocabulary as valid candidate for
inclusion into Archivo: 1) the NIR needs to resolve to an RDF document rapper
can read, 2) we require the existence of an entity identified by the NIR which
is typed as owl:Ontology or skos:ConceptScheme (which should carry addi-
tional metadata and makes the ontology spottable in reliable way) in the triples
output of the failure-tolerant parser. If multiple valid serialization candidates
exist, we give preference to the serialization having the highest triple count (this
will archive the correct FOAF version without license). Finally, the NIR is ap-
pended to the index and the chosen serialization is passed over for a release on
the Databus. If the spotted NIR doesn’t match with the candidate IRI it started
with, the retrieved NIR becomes a new NIR and the process starts again (see
Figure 2). The crawling candidate IRIs representing properties and classes with
a slash URI scheme require a special treatment in case the resolution does not
return the ontology itself. We use skos:inScheme and rdfs:isDefinedBy as
pointers to a new candidate IRI.

4.2 Analysis, Plugins and Release

Analysis and Integration of Feature Plugins: In every new snapshot, we
augment the original ontology file with a parsed ntriples, turtle and owl ver-
sion to simplify the access (UC5 and UC6). Additionally, to the plugins and val-
idation methods described in section 3, the reasoner Pellet13 is used for checking
the consistency (UC9) of the ontology and determining the OWL profile. Fur-
thermore an OOPS report (UC8) is generated to detect common pitfalls of the
ontology. All reports are stored alongside the original snapshot with appropriate
DataID metadata to augment the snapshot.

Release on the Databus: To deploy an ontology on the Databus we use
its non-information URI as the basis for the Databus identification. The host
information of the ontology’s URI serves as the groupId and the path serves as
the name for the artifactId. Archivo’s lookup component14 with Linked Data

12 http://archivo.dbpedia.org/add
13 https://github.com/stardog-union/pellet
14 http://archivo.dbpedia.org/info?o=

http://archivo.dbpedia.org/add
https://github.com/stardog-union/pellet
http://archivo.dbpedia.org/info?o=


10 Frey et al.

interface allows to resolve the mapping from a non-information URI to the stable
and persistent Databus identifier.

4.3 Versioning and Persistence

Time-based snapshots: For all verified non-information URIs in the index,
Archivo looks for new versions a few times each day. To reduce the amount of
transferred data, Archivo uses the HTTP-headers E-Tag, Last-Modified and
content-length to detect via a HEAD-request if the respective ontology re-
source could have changed. If any of the headers changed (or if none of the head-
ers is available), the vocabulary is downloaded and checked locally for changes.

The local diff is performed by converting the downloaded source with rap-
per15 to canonical N-Triples, sorting them and comparing them with comm16

to determine if any triple was added or deleted. This process requires the new
version to be parseable without errors. In case a change could be verified the
new snapshot is released with using the fetch timestamp as version label.

Semantic Versioning: If a change in the set of triples was detected, a set
of (description) logic axioms is generated for both the old and new version of the
ontology and those axioms are compared to each other. In case of no changes
in the axioms, no structural ontology change was done (e.g. added only labels,
or ontology metadata) the change is classified as patch. If only new axioms
were added, we consider this as a new minor version. If new classes/properties
are added, this usually leads to no backward-compatibility problems for existing
applications, but there are cases (e.g. adding a deprecated or disjoint relation
to a class) which might have consequences in combination with A-boxes. Any
deletion of already existing axioms (thus including renaming) is considered as
major change potentially seriously affecting backward-compatibility. This se-
mantic versioning “overlay” allows a more fine-grained update decision than the
binary “take it or leave it” (UC4a-c). Users can refine the trade-off with custom
solutions based on the semantic versioning and axiom diffs. We plan that more
sophisticated versioning overlays can augment the Archivo snapshots with open
contributions via Databus mods (see Section 7).

5 A Consumer-Oriented Ontology Star Rating

Following the argumentation of Section 4 our proposed rating system is “liberal”
to a certain degree of heterogeneity, but strict in the sense that it awards low rat-
ings to ontologies that defy automatic or deterministic processing. The proposed
star rating differs from written rules and guidelines in human language in these
aspects: 1) stars are formalized and algorithmically verifiable and can be tested,
2) they are executed over the known, ontological part of the Semantic Web cap-
tured in Archivo and are meant to be delivered to consumers to quickly assess

15 http://librdf.org/raptor/rapper.html
16 https://linux.die.net/man/1/comm

http://librdf.org/raptor/rapper.html
https://linux.die.net/man/1/comm


DBpedia Archivo: A Web-Scale Ontology Interface 11

the technical usability and soundness 3) they are centrally available, frequently
executed, debatable and extendable. They allow capturing and crowd-sourcing
of consumer needs. We included short references to other approaches from [16]17

(integrated, see below), [8]18 and [9](VocUse, partly applicable). From DBpedia
Archivo perspective, some requirements become redundant such as the HTML
documentation, which can be generated, if the appropriate SHACL test is suc-
cessful. Others become more strict (machine readability).

5.1 Two Star Baseline

We consider the two star baseline as a minimal requirement for considering the
ontology as a legit participant in the Semantic Web. An ontology which does
not fulfill the baseline can’t earn any further stars.
? Retrieval and Parsing: All of the following criteria have to be fulfilled: (1)

The non-information URI resolves to a machine readable format or a machine
readable version is deterministically discoverable by other common means, (2)
download was successful, (3) uses a common format implemented by Archivo,
(4) at least one format was found that parses with no or few (negligible)
syntactical warnings (UC6). [OBO fp2, OOPS! P37, VocUse 2]

? License I19: A proper ontology declaration was found using a owl:Ontology

and some form of license could be detected. A high degree of heterogeneity
is permissible for this star regarding the used property/subproperty as well
as object: license URI (resolvable linked data or web link), xsd:string or
xsd:anyURI (UC7). [OBO fp1, OOPS! P38 P41, VocUse 4]

5.2 Quality Stars

On top of the two star baseline, Archivo implements additional criteria. The
main rationale behind these stars is to ease effort for client implementations by
homogenizing the retrieved data and the technical expectations a client can have
towards mirrored ontologies by Archivo.
? License II: We require a homogenized license declaration using dct:license

as object property with a URI (not string or anyURI). If a resolvable Linked
Data URI is used, we expect the URI to match the URI used in the machine
readable license (UC7). We discovered many irregularities such as trailing ‘/‘
which violate RDF requirements that URIs need to be exactly the same in
RDF as opposed to Linked Data resolution. In the future, we plan to tighten
up this criterion and expect machine readable license, which we will collect
on the DBpedia Databus in a similar manner as Archivo. [OBO fp1, OOPS!
P41, VocUse 4]

17 http://oops.linkeddata.es/catalogue.jsp
18 OBO, http://obofoundry.org/principles/fp-000-summary.html, link to automated

checks
19 SHACL test https://github.com/dbpedia/Archivo/blob/master/shacl-library/

license-I.ttl

http://oops.linkeddata.es/catalogue.jsp
http://obofoundry.org/principles/fp-000-summary.html
https://github.com/dbpedia/Archivo/blob/master/shacl-library/license-I.ttl
https://github.com/dbpedia/Archivo/blob/master/shacl-library/license-I.ttl


12 Frey et al.

Fig. 3: Distribution of violations per ontology using SHACL-based LODE tests

Table 1: Results for Archivo (July 2020) testing and rating
#Ont. Stars1 License-I2 License-II2 Consistency2 LODE3 Expressivity4

735 11/453/10/134/127 275/460/0 137/598/0 687/23/25 1/30/702/2 103/91/9/29/15/488
1Format: 0/1/2/3/4 Stars 2Format: True/False/Error 3Format: OK/Warnings/Violations/Error
4Format: OWL2 FULL/DL/QL/EL/RL/Tool Error

? Logical Fitness: Although logical requirements such as consistency are the-
oretically well-defined, from a consumer perspective this star is highly im-
plementation-specific. We measure the compatibility with currently available
reasoners such as Pellet/Stardog (more to follow) and run available tasks such
as consistency checks (UC9), classification, etc. since owl:disjointWith ax-
ioms are nice, unless they render the ontology unusable for reasoning.

5.3 Further Stars and Ratings

We practiced a large amount of self-discipline not to encode more stars with our
ideas and opinions as they didn’t pass our own relevancy criteria (Who needs
this?). Further stars and ratings could provide direct incentives for ontology
publishers such as the ability to generate HTML documentation with LODE
(tested with SHACL) or represent user needs, or could be of analytical nature,
such as adoption and re-usage (inbound links from other ontologies and data,
[9] VocUse 3 and 5).

6 Evaluation

6.1 Archivo & Rating Statistics

DBpedia Archivo consists of 735 ontologies in July 2020. The biggest fraction
of it (401) was discovered via the LOV-API, 268 were discovered from prefix.cc
and the rest was retrieved from the subjects, predicates and objects of the on-
tologies in Archivo itself (60) and user suggestions (6). Unfortunately the Usage
Analysis via VOID didn’t yield any new ontologies, but this feature was added



DBpedia Archivo: A Web-Scale Ontology Interface 13

at last, so the index already contained the used ontologies of datasets from the
Databus. Figure 3 shows the ratio of ontologies that share a class of violations
numbers. The diagram shows that, even though a small amount of ontologies are
quite badly curated, the biggest share of ontologies has quite low error numbers,
allowing a smooth generation of LODE documentation. Table 1 shows that more
than 60% of the ontologies have less than two stars. Almost every one star rating
is caused by a missing license. Since an open license is a fundamental require-
ment of open data, it is a bad sign for the usability of the available ontologies
on the web. With more than 90% of logical consistency the ontologies are sitting
pretty, but as mentioned this value can be highly implementation specific.

6.2 System Comparison

We identified 7 other (ontology repository) systems which are either very similar
on a conceptual or technical level (e.g. LOV, OntoMaven) or are active systems
which serve a notable set of ontologies to users. While the type and primary
usage of the systems vary, we assessed them under a common set of features
along the 4 dimensions coverage, recency, access and quality (see Table 2). While
access and quality dimensions stem from the problem analysis, a sound strategy
for both a high coverage and recency w.r.t. archived ontologies seem natural
requirements from the perspective of users and tools demanding for one unified
solution to efficiently tackle the problems. We argue that such a system needs to
offer and be built on a high level of automation and homogenization (unified and
standardized/well known practices) to successfully tackle web-scale dimensions
and (if done correctly) optimize client side processes (decreased consumer side
effort and increased usage benefits). We selected features reflecting this.

Archivo is the only system offering a fully automatically processed and in-
vokable user inclusion request for an ontology (LOV requires a thorough review
by its community). Apart from LOV, which analyzes referenced ontologies, none
of the systems implemented a strategy to discover and include further ontologies
or even use multi-layered approaches like Archivo. Besides OBO foundry and
OntoMaven relying on a push-only approach, all systems use an automatic fetch
(update) mechanism to serve the latest version of an ontology. Archivo is the
only system providing Semantic Versioning and guaranteeing fully automatic
unified versioning, whereas Bioportal and LOV try to extract unified timestamp
versioning metadata but also partially rely on correct user input, OBO f. has a
publishing principle for unified versioning, which is aut. verified but seems not
enforced (review revealed non-uniform versioning labels). With regard to ontol-
ogy citation or dependency management of ontologies, Archivo and OntoMaven
(we were not able to find any hosted ontology though) qualify by providing uni-
fied and stable, abstract identifiers (independent of the archiving system and
ontology serialization) for ontologies and its version, while taking extra effort to
achieve persistent access to the ontology for these identifiers. Besides Bioportal
all systems try to reduce the variety of ontologies by supplying every ontology
in at least one unified format. Versioning/ontology system metadata access for
Archivo is designed to work via RDF and SPARQL, at the time of writing there



14 Frey et al.

Table 2: System (feature) comparison along the dimensions coverage,
r(ecentness), access and (q)uality.
dimension coverage r access q

system name TY DO IM DI UP UV SV ID PE OF MA TE

Archivo A I /- /
Bioportal all S -/ 1 - 2 - 1 - / -
LOV C,A,I I /- - / -
OBO foundry C S -/- - - - - -/-
Ontobee I S -/- - - - - - -/ -
Ontohub.org D I -/ 1 - 3 - - 4/-
OntoMaven repo A - -/ 1 - - - - 5/-
Ont. Lookup Svc. I S -/- - - - - - 6 / -

Dash represents no, white/black filled circle represent partial/full support; TY: system
type - (A)rchive, (C)atalog, (I)ndex, (D)evelopment Platform; DO: ont. domain focus
- (S)pecialized vs. (I)ndependent; IM: ont. import - fully automatized user inclusion
requests / file submissions of new ontologies; DI: aut. ont. discovery; UP: aut. update
of ont.; UV: unified ont. versioning labels; SV: aut. semantic versioning of ont.; ID:
stable ont. (version) id (IRI); PE: persistent ont. version access for id; OF: access to
ont. in one unified format; MA: system ont. metadata access - REST API / SPARQL;
TE: flexible aut. testing of ont. consistency and conformity.
1account/login required; 2per ontology setting; 3imported repos not in sync anymore; 4reported, not
accessible; 5depending on used mvn repository systems; 6not working due to missing void file

is only a very basic REST API (and Linked Data interface) available. Both
OBO f. and Archivo leverage a continuous, flexible / customizable testing sys-
tem which is coordinated and performed at a central place to report issues and
improve quality, in contrast to Ontohub and OntoMaven focussing on custom
tests from/for publishers.

The comparison clearly shows that Archivo addresses a gap and is, to the
best of our knowledge, the only system which tries to tackle the (most) user
challenges at web-scale and a consumer can rely on that the archived ontology
retrieved by a timestamp version resolves to the one that had been served by
the ontology authority/domain at that time (no uploader hijacking and curator
errors possible).

7 Future Work

On a conceptual level, we would like to develop Databus mods20 further in order
to allow users to augment the archived ontologies with modular contributions
(e.g. labels for another language, mappings, another validation report, custom
star ratings, etc.). This could strengthen the idea of a platform economy - users
contribute what they are in need of for other users. From a technical perspective
we plan to implement the Memento protocol for the Databus/Archivo and offer

20 http://dev.dbpedia.org/Databus Mods

http://dev.dbpedia.org/Databus_Mods


DBpedia Archivo: A Web-Scale Ontology Interface 15

ontology publishers to use Archivo as “plug and play Memento as a service”
for their ontologies, to support adoption of Memento and to not take away URI
ownership and traffic from the publishers. We also plan to integrate more ex-
isting ontology repositories to increase the coverage for other domains. We aim
to further enhance existing Databus tools, such that they improve support for
special aspects of ontology consumption (e.g. automatic client side conversion
of ontology formats and ontology import dependency rewriting with Databus
client).

Acknowledgments

This work was partially supported by grants from the Federal Ministry for Eco-
nomic Affairs and Energy of Germany (BMWi) for the LOD-GEOSS Project
(03EI1005E), as well as for the PLASS Project (01MD19003D).

References

1. Alobaid, A., Garijo, D., Poveda-Villalón, M., Santana-Pérez, I., Fernández-
Izquierdo, A., Corcho, Ó.: Automating ontology engineering support activ-
ities with OnToology. J. Web Semant. 57 (2019)

2. Arndt, N., Naumann, P., Radtke, N., Martin, M., Marx, E.: Decentralized
Collaborative Knowledge Management Using Git. J. Web Semant. 54 (2019)

3. Codescu, M., Kuksa, E., Kutz, O., Mossakowski, T., Neuhaus, F.: On-
tohub: A semantic repository engine for heterogeneous ontologies. Applied
Ontology 12(3-4) (2017)

4. d’Aquin, M., Noy, N.F.: Where to publish and find ontologies? A survey
of ontology libraries. J. Web Semant. 11 (2012)

5. Frey, J., Hofer, M., Obraczka, D., Lehmann, J., Hellmann, S.: DBpedia
FlexiFusion the Best of Wikipedia → Wikidata → Your Data. In: ISWC,
(2019)

6. Halilaj, L., Petersen, N., Grangel-González, I., Lange, C.: VoCol: An
Integrated Environment to Support Version-Controlled Vocabulary Devel-
opment. In: EKAW, (2016)

7. van Harmelen, F.: Semantic Web Research Anno 2006: Main Streams, Popu-
lar Fallacies, Current Status and Future Challenges. In: CIA, LNCS, vol. 4149,
Springer, Heidelberg (2006)

8. Jackson, R.C., Balhoff, J.P., Douglass, E., Harris, N.L., Mungall, C.J.,
Overton, J.A.: ROBOT: A Tool for Automating Ontology Workflows. BMC
Bioinform. 20(1) (2019)

9. Janowicz, K., Hitzler, P., Adams, B., Kolas, D., Vardeman, C.: Five
Stars of Linked Data Vocabulary Use. Semantic Web 5 (2014)

10. Jupp, S., Burdett, T., Leroy, C., Parkinson, H.E.: A new Ontology Lookup
Service at EMBL-EBI. In: SWAT4LS, (2015)



16 Frey et al.

11. Meinhardt, P., Knuth, M., Sack, H.: TailR: a platform for preserving
history on the web of data. In: SEMANTiCS, (2015)

12. Ong, E., Xiang, Z., Zhao, B., Liu, Y.: Ontobee: A linked ontology data
server to support ontology term dereferencing, linkage, query and integra-
tion. Nucleic Acids Research 45(D1) (2016)

13. Paschke, A., Schäfermeier, R.: OntoMaven - Maven-Based Ontology De-
velopment and Management of Distributed Ontology Repositories. In: Syn-
ergies Between Knowledge Engineering and Software Engineering, (2018)

14. Peroni, S., Shotton, D.M., Vitali, F.: The Live OWL Documentation Envi-
ronment: A Tool for the Automatic Generation of Ontology Documentation.
In: EKAW, LNCS, vol. 7603, Springer, Heidelberg (2012)

15. Polleres, A., Kamdar, M.R., Fernández, J.D., Tudorache, T., Musen,
M.A.: A more decentralized vision for Linked Data. Semantic Web 11(1)
(2020)

16. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: OOPS!
(OntOlogy Pitfall Scanner!): An On-line Tool for Ontology Evaluation. IJSWIS
10(2) (2014)

17. Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G.: D2V: A Tool for
Defining, Detecting and Visualizing Changes on the Data Web. In: ISWC
P&D, CEUR Workshop Proceedings, (2015)

18. Smith, B., Ashburner, M., Rosse, C., Bard, J.: The OBO Foundry: coordi-
nated evolution of ontologies to support biomedical data integration. Nature
biotechnology 25(11) (2007)

19. de Sompel, H.V., Sanderson, R., Nelson, M.L., Balakireva, L., Shankar,
H., Ainsworth, S.: An HTTP-Based Versioning Mechanism for Linked Data.
In: LDOW, CEUR Workshop Proceedings, (2010)

20. Vandenbussche, P., Atemezing, G., Poveda-Villalón, M., Vatant, B.:
Linked Open Vocabularies (LOV): A gateway to reusable semantic vocabu-
laries on the Web. Semantic Web 8(3) (2017)

21. Vander Sande, M., Verborgh, R., Hochstenbach, P., Van de Sompel,
H.: Toward sustainable publishing and querying of distributed Linked Data
archives. Journal of Documentation (2018)

22. Völkel, M., Groza, T.: SemVersion: An RDF-based ontology versioning
system. In: ICWI, (2006)

23. Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R.: BioPortal: en-
hanced functionality via new Web services from the NCBO to access and
use ontologies in software applications. Nucleic Acids Research 39 (2011)

24. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G.: The
FAIR Guiding Principles for scientific data management and stewardship.
Scientific Data 3 (2016)


	DBpedia Archivo: A Web-Scale Interface for Ontology Archiving under Consumer-Oriented Aspects

