
Schema-agnostic SPARQL-driven Faceted Search Benchmark Generation

Claus Stadlera, Simon Bina, Lisa Wenigea, Lorenz Bühmanna, Jens Lehmanna,b,c

aInstitute for Applied Informatics, Goerdelerring 9, Leipzig, Germany
bUniversity of Bonn, Endenicher Allee 19a, Bonn, Germany
cFraunhofer IAIS, Zwickauer Straße 46, Dresden, Germany

Abstract

In this work, we present a schema-agnostic faceted browsing benchmark generation framework for RDF data and SPARQL
engines. Faceted search is a technique that allows narrowing down sets of information items by applying constraints
over their properties, whereas facets correspond to properties of these items. While our work can be used to realise
real-world faceted search user interfaces, our focus lies on the construction and benchmarking of faceted search queries
over knowledge graphs. The RDF model exhibits several traits that seemingly make it a natural foundation for faceted
search: all information items are represented as RDF resources, property values typically already correspond to meaningful
semantic classifications, and with SPARQL there is a standard language for uniformly querying instance and schema
information.

However, although faceted search is ubiquitous today, it is typically not performed on the RDF model directly. Two
major sources of concern are the complexity of query generation and the query performance. To overcome the former,
our framework comes with an intermediate domain-specific language. Thereby our approach is SPARQL-driven which
means that every faceted search information need is intensionally expressed as a single SPARQL query. In regard to
the latter, we investigate the possibilities and limits of real-time SPARQL-driven faceted search on contemporary triple
stores. We report on our findings by evaluating systems performance and correctness characteristics when executing a
benchmark generated using our generation framework.

All components, namely the benchmark generator, the benchmark runners and the underlying faceted search framework,
are published freely available as open source.

Keywords: Faceted Search, Benchmark, SPARQL, RDF, Benchmark Generator, Triple Store

1. Introduction

Faceted browsing is ubiquitous on the Web today. Most
if not all major online shops and media platforms provide
at least some faceted browsing features to navigate their
products or – more specifically – the data records about
them. Typical examples include support for filtering videos
by length, music by genre, or more generally, products by
relevant features. Faceted search is a technique that facili-
tates exploratory search by allowing for narrowing down
sets of information items by applying constraints over their
property values, whereas facets correspond to properties
of these items. However, many of these faceted search
interfaces are based on systems that require tailoring of
datasets – i.e. manual specification of what facets and val-
ues to show to users and how the input data relates to them.
Such approaches circumvent flexible ad-hoc exploration of
datasets.

In contrast, the RDF model exhibits several traits that
seemingly make it a natural foundation for faceted search:

Email addresses:
cstadler@informatik.uni-leipzig.de (Claus Stadler),
jens.lehmann@iais.fraunhofer.de (Jens Lehmann)

all information items are represented as RDF resources,
property values typically already correspond to meaningful
semantic classifications, and with SPARQL there is a stan-
dard language for uniformly querying instance and schema
information. Furthermore, RDF was designed to enable
the construction of knowledge graphs (KG) that capture
relations between items of arbitrary type thereby exploiting
web technology.

The idea of Semantic Faceted Search (SFS) systems
is exactly to utilise the flexibility of the RDF model for
faceted search. However, although several SFS systems
with different features and degrees of expressivity have
been proposed, there are only few works on benchmarking
faceted search performance on RDF. Among the work
concerned with benchmarking, to the best of our knowledge,
each of the existing approaches is tied to a specific schema.
Conversely, none is schema-agnostic, i.e. can operate on
an arbitrary given schema. However, w.r.t. usability, it is
beneficial to know in advance whether faceted search can
be interactively performed on a given dataset, which limits
acceptable response times to roughly one second.

Additionally, most of the available SFS systems are
primarily designed as applications in contrast to libraries,

Preprint submitted to Elsevier November 26, 2020

which makes re-use and evaluation of existing tools difficult.
Furthermore, SFS are generally not interoperable due to
the lack of common APIs or intermediate languages. Yet,
SPARQL as a query language facilitates interoperability
between RDF stores and is suitable to express the infor-
mation needs of faceted search (cf. Section 4). Hence, in
this work we focus on the generation of benchmarks for
assessing performance and correctness of triple store per-
formance w.r.t. given datasets and SPARQL query loads
generated from simulated interaction with a real-world SFS
engine. In contrast to other benchmarks that assess triple
stores, our goal is to specifically study the performance of
triple stores w.r.t. workloads of SPARQL queries tied to
the faceted search paradigm.

This work builds upon the ideas presented in [1] which
describes several types of possible interactions with a SFS.
There, the outcome was a set of manually crafted query
templates for simulating a faceted search user session on
a specific schema. In this work we present significant
advances featuring a comprehensive automatic benchmark
generator that explores a dataset in a schema-agnostic
way based on a library of functions that advance the state
of a faceted search session in various ways. The state of
such a session determines the set of SPARQL queries that
are generated. Thus, the sequences of SPARQL queries
obtained by repeatedly advancing the session state form a
generated benchmark.

For this purpose, we built a comprehensive framework
for SPARQL-driven faceted search named Facete. The
most essential components are the framework core and the
benchmark generator. To test the validity of our framework,
a faceted search framework application for end-users is also
available. The latter features a text-based user interface.
The framework’s core features a model for faceted search
queries together with several translations to SPARQL
queries in order to satisfy essential information needs of the
faceted search paradigm. The model and the translations
are detailed in Section 4. The benchmark generator and the
user application are both built on the same core and thus
make use of the same model for faceted search queries and
the corresponding SPARQL query generation capabilities.
As a result, in the context of this work the user application
serves as a demonstrator that our system indeed allows for
real-world SPARQL-driven faceted search and thus testifies
to the relevance of the described system. Furthermore, the
user application not only enables a user to browse facets,
facet values and matching values of a given dataset but
it also allows for viewing the underlying SPARQL query
strings which are the same ones the benchmark generator
emits. Although the focus lies on the Facete benchmark
generator, the Facete user application can be seen as a
complementary interactive verification and debugging tool
that allows one to manually inspect the generated queries.
Note that the framework’s core is independent of any user
interface. Whereas many related works on faceted search
have strong ties to graphical user interfaces, in this work we
describe a model-driven approach to faceted search. This

model is intended to enable (SPARQL-driven) exploratory
search over RDF data also for machines. Our benchmark
generator is one such implementation.

In detail, our contributions are as follows:

• A formal description of a model for faceted search
with corresponding translations to SPARQL queries
that satisfy faceted search information needs. Most
notably, we detail the construction of SPARQL
queries that intensionally capture facet counts, facet
value counts and matching values under a given set
of constraints.

• Implementation of these techniques in the core of
the SPARQL-driven faceted search framework Facete
which is used as a building block to realise the bench-
mark.

• Design and implementation of a schema-agnostic
benchmark generation framework within Facete1,
which allows for highly configurable query genera-
tion based on customisable distributions of transition
types on arbitrary datasets.

• Performance and correctness evaluation of contempo-
rary triple stores with regard to the faceted browsing
paradigm.

• As a side contribution, we also present a text mode
user interface for faceted search which is also built
on the Facete framework’s core. This demonstrates
that the engine is suitable for real-world applications
and the generated SPARQL queries actually conform
to the faceted search paradigm.

The remainder of the paper is structured as follows:
First, in Section 2 we present related work and position
our approach in it. Afterwards, in Section 3 we introduce
RDF and SPARQL and on this basis formalise fundamental
notions for faceted search query generation as used in our
benchmarking framework. Subsequently, in Section 4 we
first propose a model for faceted search and detail the gen-
eration of SPARQL queries from it. The actual benchmark
generation is described in Section 5, where we first present
the conceptual grounding followed by a description of the
implementation. Our findings when executing an exem-
plary benchmark generated by our system are reported on
in Section 6. Finally, we conclude in Section 7 and also
point out directions for future work.

2. Related Work

There are two lines for evaluating faceted search sys-
tems in general: Performance benchmarking and usability
studies. The latter requires a user interface and the former

1https://github.com/hobbit-project/facete3

2

https://github.com/hobbit-project/facete3

is typically tied to a specific user interface and/or a specific
dataset and is thus difficult to generalise.

There is a considerable amount of benchmarks avail-
able to test the general performance of triple stores (e.g.,
LUBM [2], SP2 [3], BSBM [4], WatDiv [5] and Geograph-
ica [6]). However, specifically for benchmarking faceted
search performance on triple stores, to date, there exists
only FacetBench2 and [1].

Our work is based on [1], which discusses fundamental
considerations for faceted search benchmarking. However,
the benchmark that resulted from that work is a set of
manually written SPARQL query templates that resem-
ble faceted search queries and that are tied to a specific
schema. In this work, we have fully automated the process
of benchmark generation, as detailed in Section 5.

Performance benchmarking aside, there is a large body
of research for faceted search systems in general and the
more recent semantic faceted search systems, especially
w.r.t. user interfaces and query formulation. We do not
consider user interfaces in this work other than grounding
our benchmark in hypothetical user interactions that could
be done through a user interface.

The first faceted search approaches were developed in
the 1990s for information retrieval systems. They combined
the paradigms of structured retrieval and similarity-based
ranking by leveraging the benefits of constraint-based query-
ing over large data sources. Since then, the approach has
proven to be tremendously useful for search applications.
Hence, faceted browsing is ubiquitous on the Web today.
Most if not all major online applications provide at least
some faceted browsing features to navigate the metadata
records of their items [7]. This is why this approach has
not only been applied for unstructured text documents,
but also for knowledge graph data.

Two high-level approaches can be identified for Seman-
tic Faceted Search (SFS) systems: whether SPARQL is
used as a protocol to communicate with a backend, and
whether pre-computed indexes are used.

Furthermore, a distinction between SPARQL-based and
SPARQL-driven can be made: We refer to an approach
that answers a faceted search information need as SPARQL-
driven if that approach’s result is intensionally specified
using a single SPARQL query. As a consequence, SPARQL-
driven approaches allow indirectly operating on the faceted
search result sets by means of SPARQL query transfor-
mations such as slicing, filtering or the addition of extra
joins.

A selection of SFS user interfaces, including our Facete
user application, is depicted in Figure 1. Interesting ap-
proaches in the category of index-based systems are Broc-
coli [8] and Grafa [9]. However, they do not use SPARQL to
communicate with the database system. Instead, the former
uses a custom engine, and the latter is based on setting up
a Lucene3 index. Both systems allow for very fast response

2https://github.com/GeoKnow/GeoBenchLab/tree/master/FacetBench
3https://lucene.apache.org/

times even when large portions of the data match the facet
selection. Some further prototypes facilitate indexing and
faceted browsing of RDF data [10, 11, 12, 13, 14, 15, 16, 17]
as well. But since these systems require an index at runtime,
they offer limited flexibility regarding the kinds of queries
that can be posed. Hence, entity types or facet combina-
tions are hard-wired into the application and can neither
be easily adapted to changing user needs nor different kinds
of data models [18].

As faceted search is concerned with the construction
of intensional descriptions that match items by their (in-
direct) properties, it is in close relation with description
logic and first-order logic (FOL), which provide well stud-
ied varying degrees of expressivity. Likewise, query-based
faceted search is the paradigm introduced with [19] where
an intermediate language is used to express faceted search
information needs, and LISQL is a proposed language for
that purpose. Note, that although SPARQL is compara-
tively powerful, certain constructs that can be concisely
expressed in FOL, such as “for-all” quantifications are
cumbersome (yet possible) to express in SPARQL. An-
other interesting proposal for an intermediate language is
SQUALL [20] which introduces a controlled natural lan-
guage with a translation to SPARQL. Building upon this
work, Sparklis [21] adds additional functionalities to the
faceted search architecture. Besides providing out-of-the-
box SPARQL endpoint support it uses a controlled language
to combine query builder capabilities with faceted search
to produce SPARQL queries. This approach facilitates an
impressive trade-off between expressivity and usability, as
on the one hand, it was capable of solving complex tasks
of the QALD Statistical question answering over RDF dat-
acubes challenge4 as well as providing an intuitive user
interface. Sparklis and SemFacet [22, 23] both support
aggregation over attributes of the matching values which is
a prerequisite for many data analytics tasks. We emphasise
that the approach to query construction that underpins the
computation of facet and facet value counts under a given
set of constraints vastly differs from the one for aggrega-
tion of an attribute’s values, since the query pattern has
to be assembled in a different way. We give one possible
construction in Section 4.

Furthermore, [22] introduces a conceptual decoupling
of a graphical user interface from query generation by
introducing an abstract model for a (basic) faceted search
interface. Our work follows the same spirit, however, we
put more emphasis on faceted search information needs: In
our conceptual model a hypothetical user interface answers
faceted search information needs from a given faceted search
session state.

Systems that are not directly faceted search applica-
tions but make use of some of that functionality are (visual)
query builders. Again, one can in general distinguish be-
tween formal languages which may have a visual notation,

4http://qald.aksw.org/index.php?x=challenge&q=6

3

https://github.com/GeoKnow/GeoBenchLab/tree/master/FacetBench
https://lucene.apache.org/
http://qald.aksw.org/index.php?x=challenge&q=6

Table 1: Feature comparison of selected Semantic Faceted Search systems. Assessments are based on their user interfaces and project websites.
“Advertised faceted search” API refers to whether a project’s web pages or at a minimum the source code’s test cases indicate the existence of a
programmatic or web API that may enable reuse of SFS functionality in custom Semantic Web applications.

Feature Broccoli Grafa OptiqueVQS Sparklis SemFacet Facete

SPARQL interoperability 7 7 3 3 7 3
Tree-shaped queries 3 7 3 3 3 3

Facet counts 3 3 3 3 7 3
Facet value counts 3 7 7 3 7 3

Aggregation functions 7 7 3 3 3 7
Concept disjunction 7 7 7 3 7 7

Negative existential quantification 7 7 7 3 7 7
Source code available 7 3 3 7 3 3

Advertised faceted search API Web5 (Lucene) programmatic6 7 7 programmatic7

5 Documentation at http://broccoli.informatik.uni-freiburg.de/api-desc/ (retrieved 2020-09-29)
6 Test cases of https://gitlab.com/ernesto.jimenez.ruiz/OptiqueVQS (retrieved 2020-09-29)
7 Landing page of https://github.com/hobbit-project/facete3 (retrieved 2020-09-29)

(a) Broccoli: Fast non-SPARQL-based SFS for tree-shaped
queries

(b) SemFacet: SPARQL-based SFS for tree-shaped queries
with aggregation and ranking support

(c) Sparklis: Allows for construction of complex expressions
based on a controlled natural language while featuring a user
interface suitable for non-expert users.

(d) Facete: SPARQL-based SFS for tree-shaped queries. Built
using the technology presented in this paper.

Figure 1: Depiction of different SFS tools

4

http://broccoli.informatik.uni-freiburg.de/api-desc/
https://gitlab.com/ernesto.jimenez.ruiz/OptiqueVQS
https://github.com/hobbit-project/facete3

and query builder systems, that may offer user interfaces
with varying degrees of sophistication. Examples of query
builder systems are OptiqueVQS [24], QueryVOWL [25]
and Virtuoso’s iSPARQL8.

Table 1 summarises features of selected SFS systems,
including Facete. Tree-shaped queries (arising from traver-
sal along properties) and facet (value) counts are relevant
features supported by most SFS systems and therefore in
the primary scope of our benchmark generation framework.

Ongoing research is the efficient combination of query
containment and query caching approaches with the goal
of improving SPARQL query performance. For SFS, this
would allow for the injection of (pre-computed) indexes as
well as their on-demand creation [26, 27].

3. Preliminaries: RDF and SPARQL

The Resource Description Framework (RDF) is a W3C
standard for data interchange9. The most fundamental
notions are as follows: Let there be pairwise disjoint sets
of IRIs I, blank nodes B and literals L. Further, let the
set of RDF terms be T := I ∪B ∪ L. The set of concrete
RDF terms is denoted by IL := I ∪ L. An RDF graph G
is defined as G ⊆ (I ∪B)× I × T , whereas the elements of
this set are called RDF triples.

Consequently, a triple t is a three-tuple whose com-
ponents in order are referred to as subject, predicate and
object, abbreviated as s, p and o, respectively. Likewise, the
set of subjects, predicates and objects of an RDF graph G
are defined as the sets {X|(s, p, o) ∈ G} with X ∈ {s, p, o}.

The following excerpt from the RDF specification10

clarifies the purpose of these concepts: “Any IRI or literal
denotes something in the world [...]. These things are
called resources”; the term is synonymous with entity.
Blank nodes do not identify specific resources. Asserting
an RDF triple says that some relationship, indicated by
the predicate, holds between the resources denoted by the
subject and object. This statement corresponding to an
RDF triple is known as an RDF statement. Statements
involving blank nodes say that something with the given
relationships exists, without explicitly naming it.

Furthermore, the RDF specification also defines a basic
vocabulary together with basic entailment rules. Most
prominently, a triple with a predicate of rdf:type states
that the entity referred to in the subject position is an
instance of the one referred to in the object position.

Although RDF graphs are often depicted as conven-
tional labelled graphs, they are formally defined as ternary
relations which in turn correspond to directed labelled
pseudo graphs. Pseudo graphs allow for multiple edges to
exist between a given pair of nodes, as well as for the same
node to act as the start and end of an edge. Hence, algo-
rithms for graphs based on the conventional (V,E) model

8http://vos.openlinksw.com/owiki/wiki/VOS/VirtFCTFeatureQueries
9https://www.w3.org/RDF/

10https://www.w3.org/TR/rdf11-concepts/#resources-and-statements

with V a set of vertices, E a set of edges with E ⊆ V × V ,
are in general not applicable to arbitrary RDF graphs.

SPARQL (a recursive acronym for SPARQL Protocol
and RDF Query Language) is a W3C standard11 that de-
vises a protocol and language for querying and updating
RDF. Our benchmark generator will produce SPARQL
queries that correspond to faceted search and browsing
operations on an RDF graph. The generated benchmarks
can be executed on any system implementing SPARQL.
SPARQL is defined in terms of operations on RDF datasets,
which are comprised of a default graph and a set of named
graphs. However, for the purpose of this work we define
RDF dataset to be synonymous to RDF graph. The fol-
lowing is based on [28], which succinctly captures essential
notions of SPARQL formally. Note that the succinctness
comes at the cost of certain deviations from the W3C
specification. A minor difference is that the semantics of
SPARQL are defined in terms of bags (a.k.a. multisets)
in the W3C specification whereas [28] uses sets. The na-
ture of this deviation is akin to that of SQL and relational
algebra. A significant part of our work is concerned with
the syntactic construction of SPARQL queries that answer
faceted search information needs. For this purpose, we con-
sider the set semantics as an appropriate choice to convey
our ideas, however any practical implementation will use
bag semantics. Recent studies specifically about SPARQL
under bag semantics have been conducted in [29] and [30].

Assume a set of variables V that is distinct from T .
A member of the set (I ∪ B ∪ V) × (I ∪ V) × (T ∪ V) is
called a triple pattern and it is also the basic form of a
graph pattern. A special case is ε which stands for an empty
graph pattern. A SPARQL condition is constructed using
elements of the set V ∪ I ∪L, logical connectives (¬, ∧, ∨),
inequality symbols (6=, <, ≤, ≥, >), the equality symbol
(=), and unary predicates such as bound and isBlank.

We define vars(e) as the set of all variables occurring
in a condition e.

Let R and S be graph patterns and e a SPARQL con-
dition. The syntax of SPARQL graph pattern expression
is inductively defined as

ε | R | R AND S | R UNION S | R FILTER e

where each expression is again a graph pattern.
We also use vars(gp) to refer to the set of variables

occurring in the graph pattern gp; more precisely its triple
patterns and conditions. For this work, we only consider
SPARQL evaluation over RDF graphs. The semantics of
a graph pattern expression is then defined in terms of an
evaluation function [[·]]G : GP → Ω that yields w.r.t. an
RDF graph G for a given graph pattern a set of solution
bindings Ω. A set of solution bindings is also referred to as
(a query’s) result set.

A solution binding µ : V → T is a partial function
from variables V to RDF terms T . We use dom(µ) to

11https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

5

http://vos.openlinksw.com/owiki/wiki/VOS/VirtFCTFeatureQueries
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf11-concepts/#resources-and-statements
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

denote the domain of µ, i.e. the subset of V where µ is
defined. Furthermore, for a triple pattern t let µ[t] yield
the triple where the variables of t have been appropriately
assigned. Two solution bindings µ1 and µ2 are compatible,
denoted by compatible(µ1, µ2), iff for any common variable
v ∈ dom(µ1) ∩ dom(µ2) it holds that µ1(v) = µ2(v). The
evaluation functions for the most common operations used
in this work are defined as follows:

• [[ε]]G = {µ0} where dom(µ0) = ∅

• [[t]]G = {µ | dom(µ) = vars(t) ∧ µ[t] ∈ G}

• [[R AND S]]G = [[R]]G ./ [[S]]G

• [[R UNION S]]G = [[R]]G ∪ [[S]]G

• [[R FILTER e]]G = {µ | µ ∈ [[R]]G ∧ µ |= e}
i.e. µ is a model for the condition e

The semantics of epsilon is that of a single solution binding
µ0 whose domain is the empty set.

Thereby, the operators over sets of solution bindings
ΩR and ΩS are defined as:

• ΩR ./ ΩS := {µ = (µR ∪ µS) | µR ∈ ΩR ∧µS ∈ ΩS ∧
compatible(µR, µS)}

• ΩR ∪ ΩS := {µ | µ ∈ ΩR ∨ µ ∈ ΩS}

Furthermore, given a variable v ∈ V and set of variables
or terms x1..n ∈ (T ∪ V), we write

v NOT IN (x1 . . . xn)

as a short form of the condition (v 6= x1) ∧ . . . ∧ (v 6= xn).
A graph pattern is the main building block for a

SPARQL query, however it is not a SPARQL query itself.
The SPARQL query whose evaluation result is exactly that
of its graph pattern is:

SELECT * WHERE graph -pattern

The construction of appropriate graph patterns for real-
ising faceted search on RDF graphs is a major part of our
work. Although as a final step our approach requires group-
ing and aggregation over our constructed graph patterns,
additional formalisation of these aspects of SPARQL would
not contribute to further clarity. We therefore assume the
reader to be familiar with the DISTINCT keyword and basic
analytic queries such as:

SELECT ?p (COUNT (?o) AS ?c)

WHERE graph -pattern

GROUP BY ?p

In the following, we describe a model for representing
faceted search queries and a procedure for the construction
of appropriate SPARQL graph patterns from them.

4. Semantic Faceted Search Query Generation
Model

In this section we first introduce fundamental defini-
tions, especially that of a faceted query and a facet query
configuration. On this basis, we define the information
needs a faceted search system has to satisfy, namely match-
ing values, facet value counts, facet counts.

The purpose is to present human and/or machine agents
with statistics about available information items and their
relations under a given set of constraints. This serves as
a guide for data exploration because it provides a-priori
insights about the effects of adding additional constraints
or traversing along the predicates of an RDF graph. We
propose a model for faceted search that covers the first four
features of Table 1 and thus allows for SPARQL-driven com-
putation of facet counts and facet value counts for sets of
resources that are reachable from a starting set via traversal
of paths along the predicates of an RDF graph. From the
systems we surveyed, only Sparklis and our work exhibit all
four of these features. Our realisation of a SPARQL-driven
SFS system is based on the syntactic transformations of
faceted queries and facet query configurations to corre-
sponding SPARQL queries. The following descriptions are
the conceptual basis for task generation within our schema-
agnostic SFS benchmark generator. This means that the
benchmark generator described in Section 5 only has to
alter the state of faceted queries and facet query configura-
tions and the translations described in this section yield
the appropriate SPARQL queries.

Our approach treats every predicate of an RDF graph as
a facet. Consequently, facets are IRIs. In our model, the di-
rections fwd and bwd are used to indicate whether a triple’s
object or subject, respectively, corresponds to a facet’s
value. Furthermore, we require RDF graphs to be blank
node free: This can be achieved by replacing blank nodes
with IRIs, a process called Skolemisation. Skolemisation is
an application of RDF graph transformations, which – in
practice – can be accomplished using data materialisation
(extract-transform-load) and/or data virtualisation (query
rewriting) techniques. As a consequence, conceptually, our
approach can operate on an RDF graph G′ that results
from such a transformation of an RDF graph G. Renaming
facets, removing less relevant ones or computing new ones
can be accomplished using RDF graph transformations as
well. Hence, without loss of generality, on the level of SFS
query generation we do not have to take these aspects into
account.

4.1. Definitions

Definition 1 (relation pattern)
A SPARQL relation pattern is a pair srp = (gp, v̄) com-
prised of a graph pattern gp and a non-empty sequence of
variables v̄ := 〈v1 . . . vi . . . vn〉 with vi ∈ V . A variable may
have multiple occurrences in the sequence. We name the
set of variables {v ∈ v̄} distinguished variables. We write

6

pattern(srp) := gp. Note that we do not require vi to be
in vars(gp).

The reason for naming this a relation pattern is, that
given the SPARQL evaluation result Ω = [[gp]]G w.r.t. an
RDF graph G, the following relation can be constructed
from the sequence of variables, where T is the set of RDF
terms and nil a symbol indicating the absence of a value:

{(µ(v1), . . . , µ(vn)) | µ ∈ Ω} ⊆ (T ∪ {nil})n

We use the notation SRPn to refer to the set of
SPARQL relation patterns whose sequence of variables
has size n. For this work, we need the sets SRP 1 and
SRP 3 which we refer to as unary and ternary rela-
tion patterns, respectively. The corresponding SPARQL
query qsrpn is formed by a syntactic transformation to
SELECT DISTINCT v1 ... vn WHERE gp. Note that it is
not strictly necessary for the sequence of variables that are
added to the projection of the SPARQL SELECT query to
be unique. Repeated mentions of the same variable in the
projection is semantically equivalent to a single mention
due to the nature of bindings as partial functions from
variables to RDF terms.

Definition 2 (concept pattern)
A SPARQL concept pattern is a special case of a SPARQL
relation pattern whose sequence of distinguished variables
has size 1. The set of SPARQL concept patterns is thus the
set SRP 1. All notions of SPARQL relation patterns apply,
however additionally, given a concept pattern sc = (gp, 〈v〉),
we introduce dvar(sc) := v to conveniently refer to the
single distinguished variable directly.

Definition 3 (path and step)
A facet path, in short path, is a possibly empty sequence
of steps. A step is an element of I × DIR × A, with I
the set of IRIs, DIR := {fwd, bwd} the set of directions
forwards or backwards, and A a set of aliases. A step
corresponds to a traversal along the set of those triples
in the RDF graph whose predicate matches that of the
step. For a step s = (predicate, direction, alias), we write
dir(s), predicate(s) and alias(s) to obtain its predicate,
direction and alias, respectively.

Note that steps are variable-free. Our approach includes
translation of paths to graph patterns where variable names
are allocated dynamically as to appropriately connect the
triple patterns contributed by each step. The alias influences
the variable allocation.

Let P and S be the sets of paths and steps, respectively.
We define two functions for obtaining a path’s parent path
and for extracting a path’s last step as follows:

parent : P → P ∪ {nil} with parent(〈s1...sn〉) :=
〈s1 . . . sn−1〉, parent(〈s〉) := 〈〉 and parent(〈〉) := nil.

lastStep : P → S ∪ {nil} with lastStep(〈s1...sn〉) := sn
and lastStep(〈〉) := nil.

Definition 4 (path variable mapping)
The path variable mapping ϕ : P → V is an injective func-
tion that maps paths to SPARQL variables. Consequently,

it must exhibit the property that for two given paths px and
py it holds that ϕ(px) = ϕ(py) → px = py. In practical
terms, ϕ yields for any path a variable that is unique to that
path, which in turn establishes a one-on-one relationship
between paths and variables.

Definition 5 (constraint)
A constraint c is a tuple (ψ|e), with e a SPARQL condition
and ψ : vars(e) → P a mapping of e’s variables to paths.
Furthermore, let vars(c) and paths(c) be the sets of all
variables and paths mentioned in c, respectively.

For a concrete constraint with a mapping, we write
c = (?variable1 → path1, ?variable2 → path2 |condition).

Definition 6 (constraint variable normalisation)
Let c = (ψ, e) be a constraint and ϕ be a path variable
mapping. We define

ψϕ := {ϕ(p)→ p|v ∈ dom(ψ) ∧ p = ψ(v)}

and
eϕ = e[{v 7→ϕ(p)|v∈vars(e)∧p=ψ(v)}]

The constraint cϕ := (ψϕ, eϕ) has thus all variable names
tied to the naming scheme of ϕ. This definition is used for
the subsequent graph pattern construction.

Definition 7 (faceted query)
A faceted (search) query fq is a tuple (b, C, f) with b a
SPARQL concept pattern, C a set of constraints, and f a
path, called focus path. The set of faceted queries is named
FQ. We refer to b as the base concept pattern which
intensionally describes an initial set of values which are
RDF terms. The actual set of values over an RDF graph
G – also called b’s extension w.r.t. G – is obtained by
evaluating b’s corresponding SPARQL query. Each item in
the (possibly empty) set of constraints C imposes further
restrictions on the initial set of values. The focus path
transitions from the remaining set of items to a related one.
Hence, a faceted query serves as the base for generating the
SPARQL query that upon evaluation over an RDF graph
G yields the set of values reachable via the focus path f
starting from those resources in G that match both the
base concept pattern b and the constraints in C. The most
common base concept is ((?s?p?o), 〈?s〉) which intensionally
describes all of an RDF graph’s subjects.

Definition 8 (facet query configuration)
Given a faceted query fq, a path p and a direction dir. A
facet query configuration fqc is a tuple (fq, p, dir). The
configuration serves as the base for generating the SPARQL
query that yields the facets and facet values in direction dir
at path p w.r.t. the items that match the faceted query fq.
In this context we refer to p as the facet source path. The
set of faceted query configurations is named FQC.

4.2. Faceted Search Information Needs

The key task of an SFS system is to derive appropriate
relations from faceted queries and facet query configura-
tions that satisfy the information needs of a user w.r.t.

7

(?root rdf:type ?x)

FILTER (?x = Character)

AND

((? ca1 character ?root) AND

(?ca1 genre ?ca2))

FILTER (?ca2 = Scifi)

AND

((? ca1 character ?root) AND

(?ca1 genre ?cb2))

FILTER (?cb2 = Fantasy)

Listing 1: Graph pattern that corresponds to the set of constraints
in Figure 2.

an RDF graph. We refer to these information needs as
matching values, facet value counts and facet counts. Given
a faceted query, the set of matching values can be ex-
pressed in terms of an appropriately constructed SPARQL
concept pattern. Facet value counts and facet counts are
expressed in terms of a SPARQL query based on a facet
query configuration. Note that counting requires grouping
and aggregation, which is supported by SPARQL queries
but not by graph patterns. Yet, facet value counts and
facet counts can be derived from a common intermediary
graph pattern which we refer to as the focus-facet-value
graph pattern. This is a SPARQL relation pattern with
exactly three variables that, in order, correspond to focus,
facet and facet value.

We introduce the letter τ with several subscripts to
denote procedures for the construction of a graph pat-
tern from their input. All constructions are w.r.t. a path
variable mapping ϕ. Specifically, we introduce the trans-
formations τϕp for paths, τϕC for sets of constraints and τϕb
for concept patterns.

Matching Values

The construction matchingValues : FQ→ SRP 1 takes
a faceted query as input and yields a corresponding
SPARQL concept pattern that intensionally describes the
set of matching values. In the following, we introduce the
concepts and definitions required to formally define this
construction at the end of Section 4.7.

In order to define the construction of the SPARQL
query for facet value counts and facet counts, we use an
intermediary SPARQL relation pattern: The focus-facet-
value relation pattern is a ternary relation pattern that
relates each resource in the set of focus resources to appli-
cable (facet, facet value) pairs. Let ffv : FQC → SRP 3 be
a procedure that yields for a facet query configuration a
ternary relation pattern which we call the focus-facet-value
(ffv) relation pattern. We refer to the corresponding graph
pattern as ffv-gp. Without loss of generality, assume that
this relation pattern’s variables are named focus, facet and
value.

Character(root) ∧
∃ca1 (character(ca1, root) ∧
∃ca2 (genre(ca1, ca2) ∧ Scifi(ca2))

∃cb2 (genre(ca1, cb2) ∧ Fantasy(cb2))

Example 1: First-order logic formula representing the prior graph
pattern for matching the values of the faceted query

Definition 9 (facet value counts query)
The facet value counts for a given facet query configuration
fqc are intensionally described using the following SPARQL
query qfvc(fqc):

SELECT ?facet ?value (COUNT(DISTINCT ?focus)

AS ?facetValueCount)

WHERE ffv -gp

Definition 10 (facet counts query)
The facet counts for a given facet query configuration fqc
are intensionally described using the following SPARQL
query qfc(fqc):

SELECT ?facet

(COUNT(DISTINCT ?value) AS ?facetCount)

WHERE ffv -gp

Note that in the simplest case, the SPARQL relation
pattern (〈?s, ?p, ?o〉 , (?s, ?p, ?o)) qualifies as a focus-facet-
value relation pattern, however, as we show shortly, the
construction w.r.t. constraints becomes significantly more
complex.

In the remainder of this section, we present graph pat-
tern constructions from paths, constraints and SPARQL
concept patterns in order to ultimately enable translation
of faceted queries and facet query configuration to the
SPARQL relation patterns that answer the information
needs.

4.3. Considerations for Constraints

Before we describe the actual graph pattern construc-
tion, we first present some typical forms of constraints in
order to realise restrictions on facet paths. The basic form
of a constraint is to impose an equality restriction on a
path, such as (?x→ 〈(rdf : type, fwd,)〉 | ?x = Movie).

In order to express an existential restriction on a path,
we need a condition that evaluates to true for any value
reachable by the path. For this purpose we can use the
SPARQL condition BOUND(?x). Likewise, an (in)equality
restriction on an arbitrary path with an arbitrary con-
stant has the form (?x→ 〈s0 . . . sn〉 | ?x⊕ const), with ⊕
a placeholder for =, 6=, <, ≤, ≥, >. Range constraints can

8

c1 (?x → 〈 (rdf:type, fwd, x)〉 | ?x = Character)
c2 (?y → 〈 (character, bwd, a1) , (genre, fwd, a2)〉 | ?y = Scifi)
c3 (?y → 〈 (character, bwd, a1) , (genre, fwd,b2)〉 | ?y = Fantasy)

constraint id
constraint
variable

→ step 1 step 2 SPARQL condition

Figure 2: A set of example constraints

be built from a logical conjunction of two inequalities, such
as ?x ≥ min ∧?x < max with min, max ∈ L. In practice,
the most common case is that a constraint only affects
a single path. However, our model allows for constraints
involving multiple paths for improved expressivity: As an
example, the set of resources for which the birth date is
later than the death date can be expressed as a constraint
using
(?x→ 〈(birthDate, fwd,)〉 ,
?y → 〈(deathDate, fwd,)〉 | ?x >?y).

Steps and Aliases

Consider the RDF graph in Figure 3 and the constraints
in Figure 2, which describe characters of movies whose
genres include both sci-fi and fantasy. The constraints c2
and c3 in Figure 2 have the first step in common, i.e. the
same predicate, direction and alias. However, the second
step differs in alias. It is the use of different aliases that
allows for the specification of the set of movies that are both
sci-fi and fantasy. By assigning unique variables to every
distinct path using a path variable mapping ϕ (Def. 6), the
graph pattern shown in Listing 1 can be derived. Thereby,
all paths of all constraints are considered to start from
the empty path’s variable ϕ(〈〉), in this example named
?root. Note that a SPARQL query that projects only the
root variable of the graph pattern (roughly) corresponds
to the first-order logic formula shown in Example 1. First-
order logic formulas are often used in literature to capture
theoretical aspects of faceted search, however there are
certain differences to SPARQL (such as open vs closed
world assumption) for which a detailed discussion is out
of scope. In this work we focus on realising information
needs using SPARQL.

A set of constraints thus corresponds to a graph pattern
– or more precisely a SPARQL concept pattern – that in-
tensionally describes a set of resources. In the following we
first formalise the transformation of constraints to SPARQL
concept pattern, and subsequently extend the procedure
to faceted queries and facet query configurations.

4.4. Translating Paths to Graph Patterns

The main issue that needs to be tackled by the graph
pattern construction from paths is to correctly handle the
variable naming. For this purpose we use the path variable
mapping ϕ.

All paths are assumed to start from a common root vari-
able obtained from ϕ(〈〉). Each step in a path is assigned
a corresponding target variable and yields a triple pattern
that must be correctly connected to the target variable of

GenreMovie Character Person

Adventure

genre

character
Star Wars

character
Sindbad

Peter
Mayhew

portrayedByChewbacca

Minoton

Fantasy

Scifi

genre

genre

genre

portrayedBy

Figure 3: Example RDF graph. Dashed lines denote rdf:type

relations.

the previous step (or root). For any path p′ that is either p
itself or a transitive parent of p, the corresponding variable
of the resulting graph pattern can be obtained simply via
ϕ(p′).

Definition 11 (path to graph pattern translation)
In order to obtain a graph pattern gp ∈ GP from a path
p ∈ P we introduce the recursive translation procedure
τϕp : P → GP w.r.t. a path variable mapping ϕ.

The translation of paths to SPARQL graph patterns
τϕp w.r.t. a given path variable mapping ϕ is recursively
defined as follows:

1. τϕp (〈〉) := ε

2. τϕp (〈s1 . . . sn〉) := parent AND pattern
where

parent = τϕp (〈s1 . . . sn−1〉)

and

pattern =


(source predicate(sn) target),

if dir(sn) = fwd

(target predicate(sn) source),

if dir(sn) = bwd

with
target = ϕ(〈s1 . . . sn〉)

and
source = ϕ(〈s1 . . . sn−1〉)

9

4.5. Translating Constraints to Graph Patterns

Recall that a constraint c is a tuple (ψ|e), with e a
SPARQL condition and ψ : vars(e)→ P an association of
e’s variables to paths. Hence, a constraint is essentially a
SPARQL condition involving zero or more variables that
are mapped to paths. Given a path variable mapping ϕ and
the path to graph pattern translation τϕp , we can construct
the translation τϕC : C → GP of a single constraint c =
(ψ|e) ∈ C as follows:

Given a set of graph patterns {gp1, . . . , gpn}, we write

AND {gp1, . . . , gpn} := gp1 AND . . . AND gpn .

(Note that AND ∅ := ε.) Then

τϕC(c) := AND
{
τϕp (p)|p ∈ paths(c)

}
FILTER eϕ

This means that w.r.t. ϕ, the resulting graph pattern
is an AND conjunction from every path’s corresponding
graph pattern, with the condition appended as a SPARQL
FILTER graph pattern.

For a set of constraints C we can now define

τϕC(C) := AND {τϕC(c)|c ∈ C}

Note that although the definition of τϕC is succinct, it
may lead to redundancy in the constructed graph patterns,
such as shown in Listing 1, where the triple pattern (?ca1

character ?root) exists twice. This redundancy can be
eliminated in two ways: Semantics-preserving query opti-
misation techniques can be employed to post-process the
resulting graph pattern expressions. Alternatively, observe
that in our case, the construction is based on a conjunc-
tion of graph patterns connected with AND and FILTER.
Hence, it would be possible to alter the transformation
procedure such that triple patterns and conditions are first
collected in separate sets and to only afterwards connect
them with AND. This would yield a graph pattern that is
semantically equivalent to the one produced by τϕC without
the redundancy.

4.6. Multiple Conditions affecting the same Set of Paths

If a set of constraints C contains multiple members
which apply a condition to the same set of paths, there is
the following consideration:

Assume two constraints

c1 : (?x→ 〈(rdf:type, fwd, a)〉 |?x = Character)

c2 : (?y → 〈(rdf:type, fwd, a)〉 |?y = Movie).

We further assume that under a given ϕ the variables ?x
and ?y – which refer to the same path – are aligned to
the variable ?v. Converting the constraint’s path to a
graph pattern using τϕp and appending the conditions as a
SPARQL FILTER leads to the following graph pattern:

?root rdf:type ?v

FILTER (?v = Character)

AND

?root rdf:type ?v

FILTER (?v = Movie)

which is equivalent to

?root rdf:type ?v

FILTER (?v = Character ∧ ?v = Movie)

However, the pattern’s evaluation over any RDF graph
yields an empty set of solution bindings because the condi-
tion ?v = Movie ∧ ?v = Character is not satisfiable. It is
preferable that multiple constraints affecting the same set
of paths result in a disjunction of their conditions. In our
example this would lead to

?root rdf:type ?v

FILTER (?v = Movie ∨ ?v = Character)

In order to capture this formally, we introduce the
notion of disjunction reduction of a set of constraints, which
is relevant for Section 4.8. We use the term reduction
because if disjunctions of conditions are created then the
resulting set of constraints has fewer elements than the
original one.

Definition 12 (disjunction reduction)
The disjunction reduction ·∨ of set of constraints C, de-
noted by C∨, is obtained by deriving a single new constraint
for every subset of C that makes use of the same mapping
of variables to paths. The SPARQL condition of such a
derived constraint becomes the logical disjunction of the
conditions in that subset:

C∨ :=
{(
ψ,
∨
{e|(ψo, e) ∈ C ∧ ψo = ψ}

)
| (ψ,) ∈ C

}
Accordingly, C∨ϕ denotes a set of constraints whose vari-

ables were first aligned w.r.t. ϕ and that was subsequently
reduced using ·∨. For convenience, we “push” disjunction
reduction into the graph pattern construction τϕC to yield
τϕ∨C :

τϕ∨C (C) := τϕC(C∨)

The disjunction reduction is thus a post-processing of
sets of constraints based on the aforementioned practical
considerations. The translation of a set of constraints to a
conjunction of graph patterns using τϕC remains unchanged.

4.7. Translating Faceted Queries to SPARQL Concept Pat-
terns

We have almost all notions in place to construct the
graph pattern for a faceted query fq = (b, C, f). The only
part missing is the proper adjustment of variables in the
base SPARQL concept pattern b w.r.t. the variable map-
ping ϕ. Without loss of generality, we assume that the set
of variables occurring in b’s graph pattern is disjoint with
the set of variables that paths may be mapped to. Formally,
we make the assumption vars(pattern(b)) ∩ img(ϕ) = ∅.
In practice, this can be accomplished by appropriate vari-
able renaming or using a reserved prefix for path variable
names. Under this assumption, we can combine b’s graph
pattern with the one obtained from the constraints once

10

b’s distinguished variable is mapped to that of the empty
path, and the corresponding transformation τϕscp becomes:

τϕscp(b) := pattern(b[dvar(b) 7→ϕ(〈〉)])

We can now define τϕfq which yields a faceted query’s
graph pattern:

τϕfq((b, C, f)) := τϕscp(b) AND τϕ∨C (C) AND τϕp (f).

Finally:

Definition 13 (matching value)
The set of matching values of a faceted query is in-
tensionally captured by the SPARQL concept pattern:
matchingValues : FQ→ SRP 1 defined as

matchingValues((b, C, f)) := (τϕfq((b, C, f)), 〈ϕ(f)〉)

4.8. Translating Facet Query Configurations to Graph Pat-
terns

So far we have shown how to construct the SPARQL
concept pattern that yields a faceted query’s matching val-
ues. The construction is essentially based on a conjunction
of the graph patterns that are obtained by appropriate
transformations of a faceted query’s constituents. However,
the construction of the focus-facet-value relation pattern,
from which facet counts and facet value counts can be
directly derived, needs additional considerations.

Recall that a facet query configuration fqc is a tuple
(fq, p, dir). The configuration serves as the base for gener-
ating the SPARQL query that yields the facets and facet
values in direction dir at path p w.r.t. the items that
match the faceted query fq. The goal is now to define
ffv : FQC → SRP 3 which for a facet query configuration
yields the of the ternary focus-facet-value (ffv) SPARQL
relation pattern.

Figure 4 shows two example configurations, each based
on a single constraint and a different parametrisation for
focus path and facet path. For each configuration, the
graph patterns and their results for evaluation on the ex-
ample graph in Figure 3 are given. The base concept is
left out for simplicity – eventually it is integrated via AND

analogous to the construction for the matching values.
Example (a) in Figure 4 asks for the immediate outgoing

facets of movies. The count for each facet value refers to
the number of matching resources in the subject position
because of the empty focus path. Note that in this example,
two graph patterns are required for capturing all facets,
facet values and counts: One specifically for the rdf:type

facet and one for all other facets.
In Example (b) in Figure 4, the constraint demands

matching values to be of type movie. The facet path
demands a forward traversal along the character predicate.
The set of values reachable via this traversal are exactly
characters which subsequently have type and portrayed by
facets. The only values of these facets are Character and
Peter Mayhew, respectively. For either facet value, there

are the same 2 corresponding movies, which are related
to the same 3 different genres. Consequently, because the
focus path is set to 〈(genre, fwd,)〉, the facet value count
for either facet value is 3.

As can be seen from Example (a) in Figure 4, a facet’s
contribution to ffv’s overall graph pattern depends on the
parametrisation. In the following, we define this construc-
tion.

Given a facet query configuration fqc = (fq, facetPath,
facetDir) with fq = (b, C, focusPath), where b is the base
concept pattern and C a set of constraints. The corre-
sponding facets and facet values are computed from the
set of RDF triples reachable via the path facetPath in the
direction facetDir. In order to obtain the set of available
values for a facet, all constraints affecting it need to be
excluded.

For this purpose, we introduce the helper function
affectingConstraints. For any constraint c having a path
that is reachable from the path facetPath in direction
facetDir via a single step s, a relation between the facet
i = predicate(s) and c is established:

affectingConstraints : (P,DIR,P(C))→ P(I × C) with

affectingConstraints(facetPath, facetDir, C) :=

{(predicate(lastStep(path)), c)

| c ∈ C ∧ path ∈ paths(c) ∧ parent(path) = facetPath

∧ dir(lastStep(path)) = facetDir}

From affectingConstraints’s resulting relation AfC ⊆
I×C we can obtain the set of facets affected by constraints:

affectedFacets : P(I × C)→ P(I) with

affectedFacets(AfC) := {i | (i,) ∈ AfC}

From AfC we can also derive the function adjustedCon-
straints, which for every affected facet i yields the set of
all constraints except those affecting i:

adjustedConstraints : I × P(I × C)→ P(C),

adjustedConstraints(i,AfC) := {c | (j, c) ∈ AfC ∧ i 6= j}

As an example, in the facet query configuration (a) of
Figure 4, the facet path is the empty path 〈〉 and the set
of constraints contains one item c which is

c : (?x→ 〈(rdf:type, fwd,)〉|?x = Movie)

The focus-facet-value relation pattern should be con-
structed for the facets in forward-direction relative to
the empty facet path. It turns out that the facet path
is a parent of the only constraint, and that the direction
of the constraint path’s last step matches that of the
requested facet’s direction. Hence, the relation of affecting
constraints contains a single tuple:

AfCc = {(rdf:type, c)}

11

Consequently, the adjusted constraints for a facet i
w.r.t. AfCc are:

adjustedConstraints(i,AfCc) =

{
∅ if i = rdf:type

{c} otherwise

Now that we can obtain for any facet its adjusted con-
straints, we can generate the graph pattern contributions
for the focus-facet-value relation:

Given a facet query configuration fqc = (fq, facetPath,
facetDir) with fq = (b, C, focusPath), where b is a con-
cept pattern, C a set of constraints, facetPath a path and
facetDir a direction. Let ϕ be a path variable mapping. Fur-
ther, let AfC = affectingConstraints(facetPath, facetDir, C)
be the relation of (facet-)affecting constraints and
F = affectedFacets(AfC) be the set of affected facets.

There is one contributed graph pattern for each facet
i ∈ F , and in addition the residual graph pattern. The
facet triple pattern is common to all contributions and
defined as:

pattern =

{
(ϕ(facetPath) ?p ?v) if facetDir = fwd

(?v ?p ϕ(facetPath)) if facetDir = bwd

The variable ?p corresponds to the facets and ?v to the
facet values. Without loss of generality, we assume that
?p and ?v are variables that are not mentioned in any
other graph pattern of the composition described in the
following. Analogous to Section 4.7 this can generally be
accomplished by variable renaming.

For every i ∈ F the pattern contribution is

facetGP(fqc, i) := τϕscp(b) AND

τϕ∨C (adjustedConstraints(i,AfC)) AND

τϕp (focusPath) AND

τϕp (facetPath) AND pattern

FILTER(?p = i)

Note, that τϕ∨C means that disjunction reduction is
performed on the set of constraints passed as arguments.
The residual graph pattern is created from all the facets
connected to the facet path that are not affected by con-
straints. If F = ∅, then the residual pattern is ε, otherwise
the residual pattern includes all facets which have not
received special handling:

residualGP(fqc) := τϕscp(b) AND

τϕ∨C (C) AND

τϕp (focusPath) AND

τϕp (facetPath) AND pattern

FILTER(?p NOT IN F)

The graph pattern construction for the focus-facet-value
construction under a facet query configuration fqc with
i ∈ F can now be formally captured as:

τϕfqc(fqc) := UNION {facetGP(fqc, i)} UNIONresidualGP(fqc)

This construction leads to the graph patterns shown
in Figure 4. Finally, we define the construction of the
ternary focus-facet-value relation pattern as

ffv : FQC → SRP 3

ffv(fqc) := (τϕfqc(fqc), 〈ϕ(focusPath), ?p, ?v〉)

where focusPath stands for fqc’s focus path.
From this ternary relation pattern, we can derive the

SPARQL queries for the facet value counts and facet values
as defined in Definition 9 and Definition 10.

4.9. Creating Constraints from Facet Values

We now have all the tooling in place to generate the
SPARQL query which yields the actual facet values over
an RDF graph G from a facet query configuration fqc. The
final aspect that has to be shown is how the iterative process
of a faceted search session can be realised. In essence, the
values of such a result set need to be combined with the
information in fqc in order to create new constraints which
leads to a new facet query configuration fqc′.

For a given facet query configuration fqc = (fq, facetPath,
facetDir), we can obtain the SPARQL query qfvc(fqc) for
the facet value counts according to Definition 9. Its
evaluation Ωfvc := [[qfvc(fqc)]]G yields a set of solution
bindings Ωfvc with the variables facet, value and count.
Based on Ωfvc we define a partial function that yields for
each facet the set of RDF terms that act as the available
facet values:

afv : I → P(T)

afv(i) := {µ(value) | µ ∈ Ωfvc ∧ µ(facet) = i}

Every facet i ∈ dom(afv) can be used to extend the
facetPath by an additional step based on the facetDir:

facetPath′ = facetPath⊕ 〈(i, facetDir,)〉

where ⊕ stands for sequence concatenation.
For a facet i we can now easily create new constraints

based on the available values afv(i) at facetPath′. For
example, from two arbitrary values v1, v2 ∈ afv(f) we can
construct constraints such as

cequals : ({?x→ facetPath′}, ?x = v1)

crange : ({?x→ facetPath′}, ?x ≥ v1∧?x < v2)

As long as it is ensured that conditions derived from the
RDF terms in afv(i) match a non-empty subset of afv(i),
the matching values of a new facet query configuration
fqc′ that includes that constraint will not become empty.
Because of the disjunction reduction we can create an
arbitrary number of equals constraints using facetPath′

and afv(f) and it will “naturally” result in a disjunction of
the conditions instead of causing an empty set of matching
values.

12

Facet Query Configuration

Faceted Query

Base Concept Constraints Focus Path Facet Source Path Direction

(a) ((?s?p?o), 〈?s〉) (?x→ 〈(rdf:type, fwd,)〉 | ?x = Movie) 〈〉 〈〉 fwd

(b) ((?s?p?o), 〈?s〉) (?x→ 〈(rdf:type, fwd,)〉 | ?x = Movie) 〈(genre, fwd,)〉 〈(character, fwd,)〉 fwd

#
contribution

for facet

Graph Patterns P
(SELECT ?p ?v

(COUNT(DISTINCT(?f AS ?c))) WHERE P)

Facet Value Counts
?p :?v1?c1, . . . , ?vncn

(a) rdf:type
(base concept AND)
(?root ?p ?v) FILTER (?p = rdf:type)

• type: Genre 3, Movie 2, Character 2, Person 1

UNION

(residual)
(base concept AND)
(?root rdf:type Movie) AND
((?root ?p ?v) FILTER (?p NOT IN (rdf:type)))

• genre: Scifi 1, Fantasy 2, Adventure 1
• character: Chewbacca: 1, Minoton: 1

(b) (residual)
(base concept AND)
(?root genre ?f) AND

((?root character ?c) AND (?c ?p ?v))
• type: Character 3
• portrayed by: Peter Mayhew: 3

Figure 4: This figure exemplifies facet value count computation from facet query configurations. The first table shows two independent
examples of facet query configurations (a) and (b). Thereby the columns base concept (pattern), constraints and focus path correspond to the
components of a faceted query. The second table shows the corresponding generated graph patterns with their respective evaluation results
on the example data. In general the base concept pattern is made part of every contribution by appropriately renaming its variables. Both
configurations use the same constraint but they differ in the focus and facet source path. Recall that the facet source path determines “from
where” to obtain facet values and dir whether in forward or backward direction. The focus path determines what to count. Configuration (a)
demonstrates, that even though the rdf:type facet is restricted to Movie, its values are not affected by that constraint. In general, when
constructing the graph patterns for the facet values reachable from the facet source path in the given direction, then for every of these facets
that carries constraints, these constraints need to be excluded in the graph pattern contribution. In this example, the graph pattern contributed
by the rdf:type facet is based on an exclusion of constraints on rdf:type. The practical consequence is that this enables a user to select
additional values of this facet in order to create a disjunction of conditions, such as “movies or characters”. However, all other – residual –
facet value counts are computed w.r.t. all constraints, in this case the restriction to movies. The complete focus-facet-value relation pattern for
each configuration is obtained from the union of the contributions. In configuration (b) there does not exist a constraint on any facet reachable
from the facet path via character in forward direction, hence there is no need for exclusions and only the residual contribution remains.

13

fqc1fqc2

cp5: 1.0-1.0
q1

cp[1..7]: 0.4-0.7

q2

cp5q1
1

cp9q2
2

revertq2
3

q2
4

cp[8..14]: 0.7-0.9

cp5: 1.0
q1

cp1: 0.6

q2
cp2: 0.5

...

cp14: 0.8

Template
Automaton Automaton

Run

...

cp4Non-applicable cps cp8 cp9

mv
fc
fvc

mv
fc
fvc

mv
fc
fvc

mv
fc
fvc

Generated Queries
 Matching Values
 Facet Counts
 Facet Value Counts

Session states
 hold history of
 facet query
 configurations

fqc1 fqc3

RDF
Graph

Applicable cps

Application of cps

fqc1fqc2 fqc1fqc2

cp5 cp9

s1 s2 s3 s4

Figure 5: Automata involved in the benchmark generation. A
concrete probabilistic automaton is instantiated from the template
automaton by randomly picking a concrete value for every range and
subsequently normalising them. The first step for the generation of
a benchmark scenario is to obtain a run from the automaton. The
first state in the run is mapped to an initial stack of facet query
configurations. Stacks for subsequent states in the run are computed
inductively: In the special case of a revert transition the new stack is
a copy of original one with the top element removed. Otherwise, the
new stack is a copy of the original one with a new element pushed.
This new element is the result of a chokepoint function applied to the
top of the original stack and the given RDF graph. Error conditions
are popping an empty stack and a chokepoint function that yields nil.
If an error occurs the new stack is the empty stack and the action
of any transition will yield again an empty stack. A run is viable if
the last state’s corresponding stack is non-empty. For a viable run
SPARQL queries for the matching value, facet counts and facet value
counts are created for every stack’s top facet query configuration.

5. The Faceted Search Benchmark Generation
Framework

In this section we present our benchmark generation
system. In a nutshell, the goal of the benchmark generator
is to yield sequences of SPARQL queries that are the result
of simulated sessions of interactions with a faceted search
system. Because of the SPARQL-driven nature of our ap-
proach, the resulting queries correspond to specifications of
essential faceted search information needs. In consequence,
our approach is representative for SPARQL-driven systems
that capture the relations of matching values, facet counts
and facet value counts intensionally as SPARQL queries.
These essential information needs are not exhaustive and
different use cases may require the definition of new ones.

We use the following terminology to describe the simu-
lation: A scenario is single simulated session. Within that
session an agent performs a sequence of interactions. After
each interaction and before the first one the faceted search
systems needs to present the agent with answers to a set of

information needs. Computing the whole set of answers is
referred to as a task. For SPARQL-driven faceted search a
task comprises a sequence of workloads that are SPARQL
queries. Hence, the output of our benchmark generator
is a sequence of SPARQL queries that relate to scenarios,
tasks and workloads.

The simulation corresponds to a random exploration of
an RDF graph under a given a set of possible interaction
types which we also refer to as chokepoints. The approach
to random exploration is divided into a macro and micro
level: On the macro level the choice for an interaction type
is made. The desired action is driven by a probabilistic
automaton. For example, the choice to add a constraint
that restricts a path to a numeric value. On the micro
level, a concrete path and value w.r.t. an RDF graph are
chosen. A possible outcome is that that the macro level
decision cannot be implemented on the micro level due to
the available data and state of the faceted search session.
In such a case, the macro level choice is rejected.

Further conceptual grounding of our work is based on
a recent survey of SFS systems conducted by [31], that
identified four basic types of actions, namely class-based
browsing, property-based browsing, property path-based
browsing, and entity type switch. This served as the basis
for our previous work [1], where selected common variations
of these transition types were chosen to form a conceptual
faceted search benchmark framework. In total, 14 varia-
tions were derived and labelled as chokepoints CP1 to CP14.
The term chokepoint in this context originates from [32]
where it is defined as those technological challenges un-
derlying a benchmark, whose resolution will significantly
improve the performance of a product. Thus, objectively
capturing relevant aspects of faceted search is needed in
order to identify potential bottle necks.

In the remainder of this section we first describe the
probabilistic model used in the macro level to simulate
scenarios. Afterwards we describe the different chokepoints
that operate on the micro level. Finally, we explain relevant
aspects of the benchmark generator implementation and
the underlying Facete framework.

5.1. Faceted Search Benchmark Generation using Proba-
bilistic Automatons to simulate User Behaviour

In this section we detail the conceptual model that forms
the backbone to faceted search benchmark generation. We
first formalise the notion of chokepoint. Then we describe
the use of a probabilistic automaton to generate so called
runs which are translated into corresponding faceted query
configurations which are finally translated to SPARQL
queries using the model introduced in Section 4.

Definition 14 (chokepoint)
Let FQC be the set of faceted search query configurations
and G be the set of all RDF graphs. A chokepoint is a
function cp : FQC × G → FQC ∪ {nil}. We refer to a
chokepoint as not applicable w.r.t. given arguments if it
yields nil for them.

14

The automaton is used as a generator for sequences
comprised of states and transitions called runs.

The following definitions are adapted from [33]12.

Definition 15 (probability distribution)
Given a finite set S, a probability distribution over S is
a function f : S → [0, 1] such that

∑
s∈S f(s) = 1. We

denote by D(S) the set of all probability distributions over
S.

Definition 16 (probabilistic automaton)
A probabilistic automaton is a tuple A = (Q, ρI ,Σ, δ),
where

• Q is a finite set of states;

• ρI ∈ D(Q) is the initial probability distribution;

• Σ is a finite alphabet;

• δ : Q× Σ→ D(Q) is the transition function

The language of an automaton A is the set of all se-
quences that can be generated from the alphabet and is
denoted by L(A) with L(A) ⊆ Σ∗. The elements of L(A)
are also referred to as words.

A run of A over a finite (resp. infinite) word w =
σ1σ2 . . . is a finite (resp. infinite) sequence r̄ = q0σ1q1σ2 . . .
of states and letters such that (i) ρI(q0) > 0, and (ii)
ρ(qi, σi+1)(qi+1) > 0 for all 0 ≤ i ≤ |w|. We define the
length of a run, denoted by |r̄|, to be equal to the number
of transitions and thus equal to |w|. We use the notations
r̄qi and r̄σj to refer to the state and letter at the i-th and
j-th position, respectively, in the run r̄ with 0 ≤ i ≤ |r̄|
and 0 ≤ j < |r̄|, respectively.

The probability for a run r̄ to be generated by automa-

ton A is given by PA(r) := ρI(q0) ·
∏|r̄|
i=1 ρ(qi−1, σi)(qi).

Our model for the state of a faceted search session is a
that of a sequence of facet query configurations. In order
to realise operations that modify a faceted search session –
including a revert operation – we introduce conventional
stack operations top, pop and push on sequences. In the
following we use the terms sequence and stack interchange-
ably.

• top(〈fqc0 . . . fqcn〉) := fqcn returns the top most (last)
item with the exception top(〈〉) := nil

• pop(〈fqc0 . . . fqcn〉) := 〈fqc0 . . . fqcn−1〉 returns a se-
quence with the top item removed with the exception
pop(〈〉) := 〈〉 such that pop on an empty sequence
yields again an empty sequence

• push(〈fqc0 . . . fqcn〉, fqcx) := 〈fqc0 . . . fqcnfqcx〉 re-
turns a new stack with an element fqcx as the new
top.

12We leave out the weight function in our description because we
do not need it.

Given an initial stack s0 = push(〈〉, fqc0) and a run r̄,
a benchmark is generated as follows: Let l = |r̄|. First,
inductively compute all si for 1 ≤ i ≤ l by applying the
chokepoint function referred to by r̄σi , denoted by cpσi

to
the prior fqc – or revert to a previous state – as follows:

si+1 =


〈〉 if si is empty,

pop(si) if r̄σi = revert

push(si, cpσi
(top(si), G)) else.

A run qualifies as viable if top(sl) 6= nil. If a run
is viable, generate for every facet query configuration at
top(si) the queries for the facet counts, facet value counts
and matching values as described in Section 4. This yields
a sequence of related queries which we refer to as scenario.

The initial state fqc0 is denoted by a facet query con-
figuration whose base concept is the set of all subjects, the
set of constraints is empty, the focus and facet paths are
empty paths as well, and the direction is fwd.

As a final extension, our framework supports the spec-
ification of a template automaton to derive differently
weighted probabilistic automata. The template automaton
uses for each state transition a numeric range instead of a
specific probability. When instantiating an actual proba-
bilistic automaton from the template automaton, for each
transition a value is chosen at random within the range and
subsequently normalised in order to obtain the probability.
The whole process is depicted in Figure 5.

The essence of our benchmark generator is the selection
and application of chokepoint functions from a pool of
available ones in order to produce different facet query
configurations from which the benchmark tasks are created.

In the remainder of this section, we first summarise the
chokepoints mentioned in [1] and subsequently present a
model that captures their generation. Finally, we present
our implementation.

5.2. Chokepoint Library

In this section we present the concrete set of chokepoints
that our system supports.

CP1 Property value based transition
Find all instances which, additionally to satisfying all
restrictions defined by the state within the browsing
scenario, have a certain property value

CP2 Facet path based transition
Find all instances which additionally realise this facet
path with any property value

CP3 Facet path value based transition
Find all instances which additionally have a certain
value at the end of a facet path. N.b. This is CP1
with a facet path instead of an immediate property

CP4 Property class value based transition
Find all instances which additionally have a property
value lying in a certain class

15

Figure 6: Overview of chokepoint transition types

CP5 Transition of a selected property value class to one
of its subclasses
For a selected class that a property value should
belong to, select a subclass

CP6 Change of bounds of directly related numerical data
Find all instances that additionally have numerical
data lying within a certain interval for a directly
related property

CP7 Change of numerical data related via a facet path of
length strictly greater than one edge
Similar to CP6, but now the numerical data is indi-
rectly related to the instances via a facet path

CP8 Restrictions of numerical data where multiple dimen-
sions are involved
This is a combination of transition types CP6 and
CP7 where bounds are chosen for more than one
dimension of numerical data. For example, adding
range restrictions to latitude and longitude predi-
cates simultaneously in order to realise a bounding
box constraint on a related spatial entity falls into
this category

CP9 Unbounded intervals involved in numerical data
A variation of CP8 where intervals can be unbounded
and/or only an upper or lower bound is chosen

CP10 Undoing former restrictions to previous state
Revert the faceted browsing session to an earlier state

CP11 Entity-type switch changing the solution space
Change of the solution space while keeping the current
filter selections. As an example based on Figure 3,
consider a constraint that restricts matching values
to those that are of type movie. Application of CP11
may set the focus to items reachable via the character

predicate. Hence, the new solution space would be
the characters of things that are movies.

CP12 Advanced facet paths or circles
A combination of transition types CP3 and CP4 with
“advanced” facet paths involved. Advanced hereby
means “rarely used” patterns, such as following the
same predicate in forward and backward direction.
“Circle” in this context means that the set of resources
reached via a (non-zero length) path overlaps with
the set of resources from where the path started. An
example is the traversal from an initial set of movies
to their genres and back to the movies again. This
can be used to find related sets of items based on an
initial sample.

CP13 Inverse direction of an edge involved in facet path
based transition
Transitions where the facet path involves traversing
edges in the inverse direction

CP14 Numerical inequality restriction over a property
path involving the inverse direction of an edge
Additional numerical data restrictions at the end of
a facet path where the path involves traversing edges
in the inverse direction. As an example, filtering the
set of characters by the release year of the respective
movies requires an inverse step along the character
predicate and a numerical constraint on the release
year predicate.

5.3. A Model to capture Chokepoint Characteristics

In this section a model that captures the previously
introduced chokepoints is devised in order to make them
applicable for benchmark generation. It can be observed
that most chokepoints are related to generating paths and
imposing restrictions on the (non-empty set of) reached

16

Table 2: Characteristics of chokepoints w.r.t. restrictions on path lengths, directions and predicates involved in steps, and the type of the
SPARQL conditions to generate for the values reached by these paths. F indicates a 100% likeliness to choose a forward traversal, whereas F,
B refers to 50%/50% chance for either forward or backward traversal. The shown parameters were used in our chokepoint definitions, but our
framework also allows for defining new characteristics. CP5, CP8 and CP10 are listed separately as they do not exactly fit the schema. Note,
that paths generated for CP11 (entity type switch) can occur in either direction, for CP13 they must include a backward traversal (in any
step), and for CP14 they always start with a backward traversal.

Chokepoints Path Length Min #bwd Direction Choices Restriction(s) on . . .
Min Desired traversals Consumable Fallback Final Pred. Values

CP1 1 1 F (exists)
CP2 1 3 F (exists)
CP3 1 3 F equals
CP4 2 2 F rdf:type

CP6 1 1 F (numeric) closed range
CP7 1 3 F (numeric) closed range
CP9 1 3 F (numeric) open range
CP12 1 3 F, B rdf:type

CP13 1 2 1 F, B equals
CP14 2 2 B F, B (numeric) equals
CP5 reuse path of existing equals-constraint rdf:type pick subclass
CP8 apply multiple CPs that involve numeric constraints
CP11 change focusPath rdf:type

CP10 return to previous state

values. Our model to cover the path generation aspects of
length and direction changes uses the following parameters:

• Minimum length: The minimum length for a path to
qualify as a candidate

• Desired length: The desired length of a path. Our
path finding algorithm will try to generate candidate
paths of that length, if the dataset and active facet
constraints allow for it.

• Minimum number of required backward traversals:
CPs may require paths to contain reverse traversals
in order for them to qualify as candidates.

• Consumable direction pool: A pool of (direction,
weight) pairs from which can be drawn using “draw-
with-replacement” semantics, i.e. whenever a pair
is chosen to generate a step in a path, that entry is
removed. In this work, we used a weight of 1 for all
directions.

• Fallback direction pool: Static (direction, weight)
values (i.e. without draw-with-replacement) that are
resorted to once the other pool is consumed. This
allows for paths having lengths greater than the size
of the consumable pool.

• Restrictions on final predicate: The set of predicates
that may appear in the last step of a path.

• Restrictions on values: Constraint types over the
values, with the following meanings: (exists) im-
poses no further restriction on the values reached by
a path other than that this set is non-empty. Equals
generates an equals-constraint from a random pick
of the available values. Likewise, open range, closed
range creates inequality expressions. ”Pick subclass”

considers a datasets’ class hierarchy to replace an
equals constraint on a class with one of an arbitrary
sub-class.

Table 2 summarises the path and constraint characteristics
of the chokepoints.

5.4. Framework Architecture

In this section we present the faceted search benchmark
generation framework which assembles several components.
These include the query generation based on Section 4 and
the chokepoints described in Section 5.2. Figure 7 depicts
its components grouped by the phases of the benchmark
process for which they are relevant, namely preparation,
generation and execution. In the following, we briefly
explain the components.

• The Scenario Generator drives the benchmark gen-
eration and uses the APIs and services provided by
the other components. A scenario is a sequence of
faceted search transitions.

• The Dataset Analyser ’s purpose is to obtain metadata
about a dataset. Most relevant to us are the used
predicates and their ranges, and the schema-graph,
i.e. which instance types are connected by which
properties. This metadata is used by the pathfinding
sub-system.

• The Path Finder finds simple paths that end in a
given set of predicates, such as a numeric one or a
pair that represents longitude and latitude. This com-
ponent uses the schema-graph to generate candidate
paths, which are subsequently validated using a ref-
erence triple store. As this path finder only operates
on the schema graph, it is independent of the number
of instance data. However, the required time for the

17

Middlewares

3. Benchmark Execution

2. Benchmark Generation

Benchmark Generator

Faceted Search
Query Model

1. Benchmark Generation Preparation

Docker

queries writes to

Dataset
Profiler

chooses from

uses

adheres to

modifies

Scenario
Generator

Configuration with
Transition Probabilities

Reference
RDF Store

Dataset
Manager

Dataset
Profile
Cache

Query
Normalizer

Chokepoint Library

cp1 cpn...

cp5
s1 s2

*loads intoreads

Dataset
Loader

Input
Dataset

(File)

internally loads

emits

uses

Sparql-
Integrate

Tool
SPARQL
Extensions

Evaluation
Results

RDF
Data Cube

RDF Task
Specifications

SPARQL Query
Payloads

uses data guide Path
Finder

emits

consults

computes reference
results against

uses

Query&Task
Generator

System
under
Test

Benchmark
Execution
Specification

adheres torequests

Changesets

Figure 7: Architecture of the Schema-agnostic SPARQL-driven Faceted Search Benchmark Generator

dataset analysis is directly proportional to the size
of the instance data.

• The Query Normaliser is used to post-process gener-
ated SPARQL queries in order to make them more
natural as if they were written by a human. For in-
stance, whenever possible, variables in triple patterns
are substituted with constants and filter expressions
are simplified. The main purpose is to improve the
comparability and quality of our evaluation results
– we want to know how well systems can execute
faceted search queries in contrast to how well they
can handle artefacts of our query generation. Query
normalisation may be necessary in order for the gen-
erated queries to execute successfully on some triple
stores due to issues with them13.

• The Middleware Layer is the conceptual place where
any virtual data transformations relevant to faceted
search can be transparently added – i.e. indepen-
dently of the SFS system – under the assumption
of SPARQL interoperability. Query rewriting sys-
tems, such as OWL reasoners and ontology-based
data access systems, e.g., Ontop14, may go here. Fur-
thermore, many RDF stores provide features that

13Example of an issue that was mitigated by improving our query
normaliser:
https://github.com/openlink/virtuoso-opensource/issues/822

14https://ontop-vkg.org/

can be used for virtual Skolemisation of blank nodes
using query rewriting or result set transformations.
For example, our Facete framework ships with an
embedded middleware that enables faceted search
over blank nodes by employing query rewriting tech-
niques that virtually expose them as IRIs. Additional
query rewriting techniques can be used for creating
logical RDF views over physical RDF graphs, such
as by means of introducing new predicates or hiding
existing ones. As an example, browsing people by
age is often more convenient than by birth date. In
a dataset, typically the latter predicate is preferred
as it refers to static information, whereas the former
one changes every year. Middlewares allow for decou-
pling of functionality from SFSs and such that other
SPARQL-interoperable tools may benefit from trans-
formed data and/or advanced features as well. For
the evaluation of this work, we pass our benchmark
queries directly through to the systems under test.

5.5. A Java domain-specific Language for Faceted Search

In this section we present our Java domain-specific lan-
guage (DSL) our benchmark generator is built upon. The
purpose of the DSL is to ease carrying out faceted search
based on the model and query generation approaches de-
scribed in Section 4 and facilitate decoupling of faceted
search functionality from applications such as graphical
user interfaces. In object oriented programming DSLs are
used to allow for succinct expression of actions w.r.t. a

18

https://github.com/openlink/virtuoso-opensource/issues/822
https://ontop-vkg.org/

certain application domain. The starting point of our DSL
is an instance of the interface FacetedQuery which corre-
sponds to Definition 7 and thus comprises a base SPARQL
concept pattern that specifies the initial set of items, a set
of constraints, and a focus path. In addition, a Faceted-
Query holds a connection to a SPARQL endpoint which
allows for execution of queries – most prominently those
that correspond the faceted search information needs. In
our DSL, traversals along facet paths and steps (Defini-
tion 3) are performed via method calls on a FacetNode
interface. A FacetNode thereby corresponds to a variable
in a graph pattern and a performing a step corresponds
to the creation of a triple pattern. Consequently, traversal
along paths corresponds to the construction of a graph
pattern.

A FacetedQuery offers two FacetNodes as starting
points for path traversals: .root() and .focus(). The former
corresponds to the base concept pattern’s variable, whereas
the latter corresponds to the variable reachable via a given
(possibly empty) path starting from .root().

Note that Definition 3 defines steps as a three-tuple
comprised of an IRI, a direction (fwd or bwd) and an
alias. Our DSL splits traversal of a step into individ-
ual method calls for each of its components such as
.fwd().via(iri).alias("a"). These calls yield ad-
ditional instances which allow executing requests for
faceted search information needs. For example, retrieval
of all facet values counts in forward direction is ac-
complished using .fwd().facetCounts(). Constraints
can be created and subsequently activated using e.g.
.constraints().eq(10).activate(). FacetNode and
the further involved interfaces are depicted in Figure 8
and detailed in the following.

• A FacetNode instance can be seen as a specific vari-
able in a graph pattern and thus intensionally repre-
sents a set of resources. Using the .fwd() or .bwd()
methods, one obtains a FacetDirNode entity that rep-
resents the set of facets and facet values reachable
either in forward or backward direction.

• FacetDirNode An intermediate entity for access to
all facets in either forward or backward direction,
backed by the immediate triples of the resources
represented by the FacetNode. The methods availabl-
eValues yields all values from which constraints can
be created, whereas remainingValues yields all values
that do not yet satisfy any existing constraint. The
latter method is used in our benchmark in order to
create non-subsumed constraints. The FacetDirNode
interface allows for forward and backward traversals
via RDF predicates.

• FacetMultiNode An entity representing all SPARQL
variables reached via the same origin and predicate.
Conjunctive constraints are managed here, and each
addition of a constraint results in a new FacetNode

FacetNode

.one()

FacetMultiNodeFacetDirNode
(fwd)

FacetDirNode
(bwd)

.via(“:knows”)

FacetNode

.parent() .parent()

.fwd().bwd()

.facets()

.facetCounts()

.facetValues()

.facetValueCounts()

.via(Property p)

.one()

.constraints()

.availableValues()

.remainingValues()

.fwd()

.bwd()

.constraints()

.availableValues()

.remainingValues()

Figure 8: The most relevant interfaces and their methods of our
faceted search DSL. They enable traversal of the data as well as
retrieval of faceted-search-related information, such as available values
or facet value counts.

– and thus underlying SPARQL variable – to be al-
located. The primary FacetNode – i.e. the default
FacetNode for disjunctive constraints – is reached via
.one().

• ConstraintFacade The constraint facade provides a
convenient way to list and append constraints that af-
fect a given Facet(Multi)Node. Recall that a Faceted
Query comprises a list of constraints that are ex-
pressions. The constraint facade allows creation of
equality, inequality, range and spatial expressions,
where one of the arguments corresponds to the re-
spective Facet(Multi)Node.

All retrieval methods, such as .facetValueCounts() and
.facetCounts(), yield an instance of DataQuery which wraps
the SPARQL query that corresponds to an information
need. DataQuery is an interface which provides method
to apply subsequent SPARQL query transformations and
modify query execution parameters. For example, slicing,
filtering or the addition of extra joins is supported as well
as configuring query execution timeouts.

An example of the DSL together with the composed
query is shown in Figure 10.

5.6. An RDF Model for Faceted Search Queries

An RDF model is the representation of a domain model
as an RDF graph. In Section 4 we devised a formal model
for faceted search query generation from paths and con-
straints. In our implementation, we represent this domain
model in RDF as shown in Figure 9. The advantages of
this approach are:

• Change Tracking and Undo: Changes to a faceted
search query can be tracked and reverted simply by
book-keeping of additions and removals of triples.
This generic mechanism is used in the benchmark
generator for undoing effects of faceted search transi-
tions.

• Persistence: The state of a faceted search query can
be saved and loaded using standard RDF syntaxes –

19

(root)

fwd-entry

fwd-entry

rdf:type

eg:genre

key

value alias-entry

"a1"
key

key

value

"a1"
key

(rdf:type
a1)

value

BgpNode BgpNode

"?x = eg:Scifi"

"x"

expr

varmap-entry

varName

Constraint

root

(eg:genre
a1)

value

BgpNode

alias-entry

constraint

focusfaceted
Query

Faceted
Query

BgpMulti
Node

RDF Model for

?s

		rdf:type	?rdf_type_a1	;

		eg:genre	?genre_a1

FILTER(?genre_a1	=	eg:Scifi)

with focus on ?rdf_type_a1

Figure 9: Faceted Query RDF Model

FacetValueCount f c =
// −− F a c e t e d S e a r c h API
fq . f ocus ()

. fwd (RDF. type) . one ()

. c on s t r a i n t s ()
. e q I r i (‘ ‘ eg : Movie ’ ’) . a c t i v a t e ()

. end ()

. parent () // b a c k t o f o c u s
. fwd () . facetValueCounts ()
// −−− Da taQue r y API
. randomOrder () . l im i t (1)
. exec ()
// −−− RxJava API
. f i r s tE l ement ()
. timeout (10 , TimeUnit .SECONDS)
. blockingGet () ;

Listing 2: Java domain-specific language for
faceted search query construction

SELECT ?p ?o ?c {
{ SELECT ?p ?o (COUNT(DISTINCT ?s) AS ?c) {

Facets and facet values without rdf:type
?s a eg:Movie ;

?p ?o
FILTER (?p != rdf:type)

} GROUP BY ?p ?o HAVING (!bound(?o) || !isBlank (?o) }
UNION
{ SELECT ?p ?o (COUNT(DISTINCT ?s) AS ?c) {

Values of the rdf:type facet
?s a ?o
BIND(rdf:type AS ?p)

} GROUP BY ?p ?o HAVING (!bound(?o) || !isBlank (?o)) }
} ORDER BY ASC(rand()) LIMIT 2

Listing 3: Facet value counts for
movies

Figure 10: Juxtaposition of our DSL and the generated SPARQL query for a faceted search query for movies

20

possibly in conjunction with RDF stores. This makes
our system a native Linked Data citizen.

• Single point-of-truth: Our API implementation is
backed solely by this RDF graph, therefore changes
to it are always reflected when requesting current
facet/-value counts.

5.7. Benchmark Generator Configuration and Output

The benchmark generator is configured with an RDF
document describing the number of faceted search scenar-
ios to generate as well as how many interaction/transition
types to apply within a scenario. The application of tran-
sitions is controlled using a probabilistic automaton (see
Section 5.1). This is aimed at making it possible to config-
ure the benchmark generator to simulate natural behaviour
more closely, albeit for this work, models for real-world
user interaction patterns are out of scope. For execution of
benchmarks, we provide a benchmark runner implemented
as a SPARQL CONSTRUCT query emitting data cube obser-
vations based on the SPARQL extensions provided by the
Sparql-Integrate tool which is part of our RDF Processing
Toolkit15. With this approach, benchmark queries are for-
warded to the system-under-test by exploiting SPARQL’s
SERVICE clause. Details about the configuration and invo-
cation can be found on the project website.

6. Evaluation

In this section we present our empiric validation of the
SPARQL-driven faceted search benchmark generation. We
perform two related studies: First, we evaluate the perfor-
mance of several triple stores w.r.t. the most basic query
that computes facet counts. In this experiment we scale
the amount of data that participates in the aggregation by
using different limits for that query. The results provide
insights about how much data a triple store can process in
what time on certain hardware in order to compute facet
counts and facet value counts. This yields an estimate
for the size of result sets at which interactive performance
is no longer possible. Afterwards, we use our benchmark
generator from Section 5 to generate benchmarks for two
different datasets. Recall that the benchmark generator
uses an internal reference triple store on which faceted
search sessions are simulated. These simulations yield se-
quences of SPARQL queries which form the benchmark.
These datasets are then loaded into triple stores that act
as systems under test. The systems under test are then
evaluated for their performance in executing the sequences
of SPARQL queries that correspond to the faceted search
sessions. The SPARQL result sets of the reference triple
store are part of the generated benchmark and we verified
that all systems under test yield the correct responses. For
every chokepoint function of the benchmark generator we

15https://github.com/SmartDataAnalytics/RdfProcessingToolkit

verified the correctness of the implementation using at least
one unit test that involves comparing generated queries
against expected ones on testing data.

6.1. Triple Stores

The following triple stores are used in our evaluation:
Virtuoso16 is one of the most popular triples store as it pow-
ers the SPARQL endpoint of DBpedia17. BlazeGraph18 is
well known because powers the SPARQL endpoint of Wiki-
data19. Ontotext’s GraphDB20 (formerly called OWLIM)
is a triple store that gained recognition in the Semantic
Web community for its reasoning features and by power-
ing early Linked Data services at the British Broadcasting
Corporation (BBC). Eclipse rdf4j 21 is a major Semantic
Web framework for Java. It ships with in-memory and disk-
based SPARQL-engines. For these systems there existed
working docker images which we could readily use for our
evaluation purposes.

6.2. Datasets

For benchmark data, we used two datasets; one gen-
erated dataset using the Public Transport RDF Dataset
Generator PoDiGG [34]. The generated data has a small
schema with main entities being stops, routes (sequences
of stops) and connections (instances of routes at certain
times). We generated a dataset of size approximately 4
million triples. The second dataset was taken from the
German National Library (DNB) the Catalogue of Seri-
als22 (ZDB23). It contains the real world data from this
catalogue, comprising about 40 million triples.

Using our framework, we then generated faceted brows-
ing benchmarks using a Virtuoso 7.2.524 as the reference
triple store (via the tenforce/virtuoso docker image25). We
also conducted experiments with DBpedia data, however,
its schema graph has too many possible combinations of
paths. As such, we defer to future work before we can select
a sensible subset of DBpedia to evaluate the pathfinding
components on.

6.3. Performance of Basic Facet Count Computation

As a first measure of dataset behaviour on these two
datasets, a systematic analysis of aggregation over increas-
ing RDF data sizes from 1M to 4M resp. 1M to 50M triples
was executed, using the query

SELECT ?p (COUNT(DISTINCT ?o) AS ?c) { { SELECT *

{ ?s ?p ?o } LIMIT X } } GROUP BY ?p

16https://virtuoso.openlinksw.com/
17https://dbpedia.org/sparql
18https://blazegraph.com/
19https://query.wikidata.org/
20https://www.ontotext.com/products/graphdb/
21https://rdf4j.org/
22https://github.com/hobbit-project/facete3-fsbg-results/releases

(archived from https://data.dnb.de/opendata/zdb_lds_20190305.nt.gz)
23https://zdb-katalog.de/
24https://virtuoso.openlinksw.com/
25https://github.com/tenforce/docker-virtuoso

21

https://github.com/SmartDataAnalytics/RdfProcessingToolkit
https://virtuoso.openlinksw.com/
https://dbpedia.org/sparql
https://blazegraph.com/
https://query.wikidata.org/
https://www.ontotext.com/products/graphdb/
https://rdf4j.org/
https://github.com/hobbit-project/facete3-fsbg-results/releases
https://data.dnb.de/opendata/zdb_lds_20190305.nt.gz
https://zdb-katalog.de/
https://virtuoso.openlinksw.com/
https://github.com/tenforce/docker-virtuoso

Table 3: Run-time (in seconds) of computing number of subjects per property on different subsets of the data.

System
Limit

PoDiGG DNB ZDB

1M 2M 3M 4M 1M 4M 6M 12M 34M

Blazegraph 3 5 16 17 3 12 33 129 1244
GraphDB 1 2 3 4 1 5 7 11 34

rdf4j 7 15 22 27 18 41 55 112 315
Virtuoso 1 2 4 4 1 5 8 12 44

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

5

10

15

Transition type

#
tr

a
n

si
ti

on
s

PoDiGG DNB ZDB

CP:

Figure 11: Dataset characteristics : number of times a transition
was applied across all generated scenarios

The resulting execution times are shown in Table 3. User
experience findings suggest, that response times below 0.1
seconds are perceived as instant reactions, times below 1
second may be noticed as slight delays but are typically
non-interruptive, whereas around 10 seconds is the limit
for keeping a user’s attention [35]. Our findings show, that
contemporary triple stores under the load of real world
faceted search queries reach or exceed this threshold already
for moderate data sizes.

6.4. Experimental setup

The generation of the benchmarks as well as the sub-
sequent execution were run on a Intel E5-2620 2.1GHz
system with 16 cores and 120GB or RAM total, and SATA
hard drives (not SSD). We used the benchmark genera-
tor on each dataset and stored the resulting benchmark.
The benchmark generator configuration file used was the
config-all.ttl, which enables the generation of all tran-
sition types described in Section 5.2 to equal chances, and
requires that the first transition is always CP5. For each
dataset, twelve scenarios were generated with each simu-
lating a number of user interaction steps, each step corre-
sponding to one transition type.

For the execution of the benchmarks, each triple store
was limited to 10GB of JVM memory. Only for GraphDB
we requested the free version which cannot be used in
docker (personalised link download required), the other
stores were instantiated from docker-compose files. We
then loaded the source datasets using the respective system-
provided user interface for data load/import. Finally, the
generated benchmarks were executed three times, and the
last results were stored. To run the benchmarks, we used
Sparql-Integrate as introduced in Section 5.7. This tool
sends the SPARQL queries contained in the benchmark to

the configured endpoint and records the correctness of the
result as well as the required time.

All docker containers, the detailed configuration, gener-
ated benchmarks, SPARQL query for benchmark execution,
and complete results of the executed benchmarks, are pro-
vided in the additional materials on the website.

6.5. Results

First, we take a look at the generated benchmarks
themselves. It can be observed nicely that the benchmark
generator will produce benchmarks targeted to the given
dataset. In Figure 11, it can be seen that the transition
types were chosen according to applicability on the dataset.
For example, on the DNB ZDB dataset, no numeric facets
were available. Thus, the transition types CP6–9 have not
been chosen. Consequently, the PoDiGG dataset did not
provide any inverse property path relations. Since each
generated scenario had to start with CP5, this transition
type was also chosen more often than the others.

Furthermore, if we now consider the execution times of
the benchmarks on the various triple stores in Figure 12,
for the artificial PoDiGG dataset, we can see that Virtuoso
is generally the fastest and rdf4j the slowest to answer. For
these generated benchmarks, one notable observation is
that the result set size after each faceted search step was
still exceeding 900 resources. The response times are also
often several seconds and thus not suited for interactive
faceted browsing according to the definitions in Section 6.2.
However, performance was better on the DNB ZDB dataset.
There, we can observe a different behaviour of triple stores.
In general, Virtuoso performed worse compared to the
PoDiGG dataset. The execution times were much faster
on this dataset, and thus suitable for real time browsing in
most cases.

In Figure 12 (b), Scenario 9, we can observe that Virtu-
oso performed much slower on the last step. We evaluated
the query in depth (see Figure 13). Between step 2 and
3, only the node variable ?v 4 was added to the query.
Sometimes simple additions can cause a massive slow-down
in the query planner of a triple store.

The evaluation shows that among the selected triple
stores, Virtuoso usually outperforms other systems, es-
pecially when they already require several seconds to ex-
ecute a query. As a consequence, this store allows for
significantly improving the time it takes to explore data
on-the-fly. However, there are cases where the generated

22

1-5 2-6 3-14 4-9 5-6

0

20

40

Scenario 1

ti
m

e(
se

co
n

d
s)

1-5 2-5 3-5

0

50

100

Scenario 2

ti
m

e(
se

co
n

d
s)

1-5 2-8 3-14 4-9 5-9 6-9

0

20

40

Scenario 3

ti
m

e(
se

co
n

d
s)

1-5 2-6 3-7 4-5 5-8 6-5

0
50

100
150
200

Scenario 5

ti
m

e(
se

co
n

d
s)

1-5 2-7 3-7 4-7

0

20

40

Scenario 7

ti
m

e(
se

co
n

d
s)

1-5 2-14 3-14 4-6

0
10
20
30

Scenario 8

ti
m

e(
se

co
n

d
s)

blazegraph graphdb rdf4j virtuoso

(a) Timed results on generated PoDiGG benchmark

1-5 2-11 3-2 4-4

0

1

2

Scenario 1

ti
m

e(
se

co
n

d
s)

1-5 2-2 3-5

0

0.5

1

Scenario 3

ti
m

e(
se

co
n

d
s)

1-5 2-12 3-5 4-12

0

0.2

0.4

0.6

Scenario 7

ti
m

e(
se

co
n

d
s)

1-5 2-2 3-5

0

2

4

Scenario 9

ti
m

e(
se

co
n

d
s)

1-5 2-12 3-11 4-10

0

5

10

Scenario 11

ti
m

e(
se

co
n

d
s)

1-5 2-10 3-12 4-10 5-3

0
0.05
0.1

0.15

Scenario 12

ti
m

e(
se

co
n

d
s)

(b) Timed results on benchmark generated on DNB ZDB data
set

Figure 12: Performance of different triple stores on generated benchmark scenarios. The x-axis labels show the ordinal number of the
transition in the scenario followed by the id of the choke point that was applied. The measured times are the total times spent on tasks in a
scenario and therefore are the sum of the execution times of the queries for facet counts, facet value counts and matching items.

23

Figure 13: Example query graph of DNB ZDB Scenario 9, step 3, each edge representing a triple pattern in the query.

benchmarks reveal that generic data exploration can lead to
performance-sensitive queries (e.g. Scenario 5) where even
the fastest systems can no longer provide interactive perfor-
mance. On the one hand, these insights can be particularly
useful when offering faceted search over RDF graphs to
users. For example, a-priori knowledge of such corner cases
may be used in (future) semantic faceted search systems in
order to improve usability by means of pre-configuration
that either prevents such transitions at all or uses sampling
methods at the expense of abandoning the calculation of
exact result items and/or counts. Also, such cases may be
prioritised for caching and conversely, the effects of caching
systems can be evaluated using the generated benchmarks.
On the other hand, the benchmark generation may reveal
anomalies or even issues with datasets such as incorrect or
sub-par relations that cause performance problems. This
work enables practical studies w.r.t. the strengths, weak-
nesses and limits of SPARQL-driven faceted search.

7. Conclusions and Future Work

In this work, we presented a schema-agnostic faceted
search benchmark generation framework for triple stores.
In accordance with the Semantic Web vision where au-
tonomous agents are able to explore the Web of Data in
order to solve tasks on someone’s behalf efficient exploratory
search mechanisms are needed. Faceted search is a form
of exploratory search that enables systematic exploration
with a-priori insights about the available data under a set
of constraints. As a consequence, the class of SPARQL
queries that realise the faceted search paradigm on RDF
graphs is of particular relevance.

Performance of SPARQL-driven faceted search depends
mainly on the triple stores’ capabilities of aggregating and
counting data. Some benchmarked systems reached time-
outs on query loads on relatively small dataset sizes. This
suggests, that even today, live faceted search on SPARQL
endpoints is associated with a high performance cost. As
our evaluation of a simple aggregation on a large volume
of data shows, interactive performance on such data is
only achievable by means of indexing. Indexing can be
performed on different levels: While it is possible to cache
entirely on the SPARQL level, it may be advantageous to

index on the level of an intermediate language for SPARQL-
driven faceted search. The reason is, that very basic domain
specific operations, such as “yield all facet values” under
a given facet query configuration, may result in relatively
complex SPARQL queries, as shown in Figure 10. Our
benchmark generation framework thus provides fundamen-
tal functionality for these kinds of future research: On
the one hand, creation of such an index (via SPARQL)
requires assembling exactly the queries our faceted search
engine generates. On the other hand, our implementation
provides a high level abstraction for faceted search queries
which may be suitable for use in conjunction with advanced
indexing strategies. In any case, our benchmark genera-
tor can be used to automatically evaluate faceted search
over arbitrary RDF datasets in order to detect potential
performance issues.

We see the following directions for future work: First,
comparison of our generated benchmarks with existing
SPARQL-driven benchmarks in order to provide a bigger
picture such as by means of assessing the similarities and
differences of benchmarks w.r.t. used SPARQL language
features. Second, evaluation of to what extent existing
SFS systems can be integrated into our framework. And
third, extension of our benchmark generation framework
to cover features of advanced SFS systems, such as unions
and negated existential restrictions on paths.

Acknowledgements

This work was supported by grants from the EU H2020
Programme for the projects HOBBIT (GA no. 688227)
and QROWD (GA no. 732194) and the Federal Ministry
of Transport and Digital Infrastructure (BMVI) for the
LIMBO project (GA no. 19F2029G).

References

[1] H. Petzka, C. Stadler, G. Katsimpras, B. Haarmann, J. Lehmann,
Benchmarking faceted browsing capabilities of triplestores, in:
Proceedings of the 13th International Conference on Semantic
Systems, ACM, 2017, pp. 128–135.

[2] Y. Guo, Z. Pan, J. Heflin, Lubm: A benchmark for owl knowledge
base systems, Web Semantics: Science, Services and Agents on
the World Wide Web 3 (2-3) (2005) 158–182.

24

[3] M. Schmidt, T. Hornung, G. Lausen, C. Pinkel, Spˆ 2bench: a
sparql performance benchmark, in: 2009 IEEE 25th International
Conference on Data Engineering, IEEE, 2009, pp. 222–233.

[4] C. Bizer, A. Schultz, The berlin sparql benchmark, International
Journal on Semantic Web and Information Systems (IJSWIS)
5 (2) (2009) 1–24.

[5] G. Aluç, O. Hartig, M. T. Özsu, K. Daudjee, Diversified stress
testing of rdf data management systems, in: International Se-
mantic Web Conference, Springer, 2014, pp. 197–212.

[6] G. Garbis, K. Kyzirakos, M. Koubarakis, Geographica: A bench-
mark for geospatial rdf stores (long version), in: International
Semantic Web Conference, Springer, 2013, pp. 343–359.

[7] D. Tunkelang, Faceted search, Synthesis lectures on information
concepts, retrieval, and services 1 (1) (2009) 1–80.

[8] H. Bast, F. Bäurle, B. Buchhold, E. Haussmann, Broccoli:
Semantic full-text search at your fingertips, arXiv preprint
arXiv:1207.2615 (2012).

[9] J. Moreno-Vega, A. Hogan, Grafa: Scalable faceted browsing for
rdf graphs, in: International Semantic Web Conference, Springer,
2018, pp. 301–317.

[10] M. Hildebrand, J. Van Ossenbruggen, L. Hardman, /facet: A
browser for heterogeneous semantic web repositories, in: Inter-
national Semantic Web Conference, Springer, 2006, pp. 272–285.

[11] P. Heim, J. Ziegler, S. Lohmann, gfacet: A browser for the
web of data, in: Proceedings of the International Workshop on
Interacting with Multimedia Content in the Social Semantic
Web (IMC-SSW08), Vol. 417, Citeseer, 2008, pp. 49–58.

[12] E. Oren, R. Delbru, S. Decker, Extending faceted navigation for
rdf data, in: International semantic web conference, Springer,
2006, pp. 559–572.

[13] G. Cheng, W. Ge, Y. Qu, Falcons: searching and browsing
entities on the semantic web, in: Proceedings of the 17th in-
ternational conference on World Wide Web, ACM, 2008, pp.
1101–1102.

[14] J. Davies, R. Weeks, Quizrdf: Search technology for the semantic
web, in: 37th Annual Hawaii International Conference on System
Sciences, 2004. Proceedings of the, IEEE, 2004, pp. 8–pp.

[15] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson,
M. Bürgle, H. Düwiger, U. Scheel, Faceted wikipedia search,
in: International Conference on Business Information Systems,
Springer, 2010, pp. 1–11.

[16] J. Waitelonis, H. Sack, Towards exploratory video search using
linked data, Multimedia Tools and Applications 59 (2) (2012)
645–672.

[17] J. Moreno-Vega, A. Hogan, Grafa: Scalable faceted browsing for
rdf graphs, in: International Semantic Web Conference, Springer,
2018, pp. 301–317.

[18] L. Wenige, J. Ruhland, Similarity-based knowledge graph queries
for recommendation retrieval, Semantic Web 10 (6) (2019) 1–31.

[19] S. Ferré, A. Hermann, Reconciling faceted search and query
languages for the semantic web, in: Int. J. Metadata, Semantics
and Ontologies, 2012, pp. 37–54.

[20] S. Ferré, Squall: A controlled natural language for querying and
updating rdf graphs, in: International Workshop on Controlled
Natural Language, Springer, 2012, pp. 11–25.

[21] S. Ferré, Sparklis: an expressive query builder for sparql end-
points with guidance in natural language, Semantic Web 8 (3)
(2017) 405–418.

[22] M. Arenas, B. C. Grau, E. Kharlamov, Š. Marciuška,
D. Zheleznyakov, Faceted search over rdf-based knowledge
graphs, Journal of Web Semantics 37 (2016) 55–74.

[23] E. Sherkhonov, B. C. Grau, E. Kharlamov, E. V. Kostylev,
Semantic faceted search with aggregation and recursion, in:
International Semantic Web Conference, Springer, 2017, pp.
594–610.

[24] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jimenez-Ruiz,
M. Giese, M. G. Skjæveland, D. Hovland, R. Schlatte, S. Brandt,
H. Lie, et al., Optiquevqs: a visual query system over ontologies
for industry, Semantic Web 9 (5) (2018) 627–660.

[25] F. Haag, S. Lohmann, S. Siek, T. Ertl, QueryVOWL: A visual
query notation for linked data, in: Proceedings of ESWC 2015
Satellite Events, Vol. 9341 of LNCS, Springer, 2015, pp. 387–402.

[26] T. Mailis, Y. Kotidis, V. Nikolopoulos, E. Kharlamov, I. Hor-
rocks, Y. Ioannidis, An efficient index for rdf query containment,
in: Proceedings of the 2019 International Conference on Man-
agement of Data, ACM, 2019, pp. 1499–1516.

[27] C. Stadler, M. Saleem, A.-C. N. Ngomo, J. Lehmann, Efficiently
pinpointing sparql query containments, in: International Confer-
ence on Web Engineering, Springer, 2018, pp. 210–224.

[28] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of
sparql, ACM Transactions on Database Systems (TODS) 34 (3)
(2009) 1–45.

[29] R. Angles, C. Gutierrez, The multiset semantics of sparql pat-
terns, in: International semantic web conference, Springer, 2016,
pp. 20–36.

[30] M. Kaminski, E. V. Kostylev, B. C. Grau, Query nesting, as-
signment, and aggregation in sparql 1.1, ACM Transactions on
Database Systems (TODS) 42 (3) (2017) 1–46.

[31] Y. Tzitzikas, N. Manolis, P. Papadakos, Faceted exploration
of rdf/s datasets: a survey, Journal of Intelligent Information
Systems 48 (2) (2017) 329–364.

[32] P. Boncz, T. Neumann, O. Erling, Tpc-h analyzed: Hidden
messages and lessons learned from an influential benchmark, in:
Technology Conference on Performance Evaluation and Bench-
marking, Springer, 2013, pp. 61–76.

[33] K. Chatterjee, L. Doyen, T. A. Henzinger, Probabilistic weighted
automata, in: International Conference on Concurrency Theory,
Springer, 2009, pp. 244–258.

[34] R. Taelman, R. Verborgh, T. De Nies, E. Mannens, Podigg: a
public transport rdf dataset generator, in: Proceedings of the
26th International Conference on World Wide Web Companion,
International World Wide Web Conferences Steering Committee,
2017, pp. 843–844.

[35] J. Nielsen, Usability engineering, Elsevier, 1994.

25

	Introduction
	Related Work
	Preliminaries: RDF and SPARQL
	Semantic Faceted Search Query Generation Model
	Definitions
	Faceted Search Information Needs
	Considerations for Constraints
	Translating Paths to Graph Patterns
	Translating Constraints to Graph Patterns
	Multiple Conditions affecting the same Set of Paths
	Translating Faceted Queries to SPARQL Concept Patterns
	Translating Facet Query Configurations to Graph Patterns
	Creating Constraints from Facet Values

	The Faceted Search Benchmark Generation Framework
	Faceted Search Benchmark Generation using Probabilistic Automatons to simulate User Behaviour
	Chokepoint Library
	A Model to capture Chokepoint Characteristics
	Framework Architecture
	A Java domain-specific Language for Faceted Search
	An RDF Model for Faceted Search Queries
	Benchmark Generator Configuration and Output

	Evaluation
	Triple Stores
	Datasets
	Performance of Basic Facet Count Computation
	Experimental setup
	Results

	Conclusions and Future Work

