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ABSTRACT
The Semantic Web is about collaboration and exchange of informa-
tion. While the data on the Semantic Web is constantly evolving
andmeant to be collaboratively edited there is no practical transac-
tional concept or method to control concurrent writes to a dataset
and avoid conflicts. Thus, we follow the question, how can we en-
sure a controlled state of a SPARQL Store when performing non
transactional write operations? Based on the Distributed Version
Control System for RDF data implemented in the Quit Store we
present the Quit Editor Interface Concurrency Control (QEICC).
QEICC provides a protocol on top of the SPARQL 1.1 standard to
identify, avoid, and resolve conflicts. The strategies reject, branch,
and merge are presented to allow different levels of control over
the conflict resolution. While the reject strategy gives full control
to the client, with branch andmerge it is even possible to postpone
the conflict resolution and integrate it into the date engineering
process.
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1 INTRODUCTION
Collaboration and exchange of information is deep-seated in our
culture. With the Web, mankind has built a global communication
system based on the exchange of data. Especially, the publication
and exploitation of Linked Data is gaining popularity as it is appar-
ent in the Linked Open Data Cloud with 1,234 datasets and 16,136
links between the datasets1 also known as the Semantic Web. On
the Semantic Web knowledge bases and ontologies are used to en-
code a common understanding of people on a distributed network.
Collaborative editing of a common knowledge base is an evolution-
ary process of creating new versions of the knowledge base. In or-
der to manage collaboration on Linked Data we face the problem
of distributed versioning and parallel access to the knowledge base.
Recently, the versioning of RDF data has gained attention [6, 7].
Evolution of data and contributions by distributed parties intro-
duce the problem of overlapping update operations, called concur-
rency. The problem of concurrency control was extensively stud-
ied in the context of conventional databases and collaborative file
exchange systems [4, 5, 8, 20, 21]. But the architecture of Seman-
tic Web Applications is mostly Web oriented and similar to the
architecture of Ajax/REST Web Applications. Web Applications
as well as Semantic Web Applications consist of three layers: per-
sistence layer, data interchange & transaction processing, and user
interface [16]. The problem of distributed consistency is studied
with regard to the transfer of distributed states in Web Applica-
tions [11, 15, 19].

However, the role of the persistence layer and thus the data
interchange in Semantic Web Applications is different to the ar-
chitecture of conventional applications. On the informal Semantic
Web Layer Cake2,3 the bottom layers cover the abstract representa-
tion to encode data as triples and their serialization (cf. persistence
layer [16]). To query the data model the SPARQL 1.1 Query and
Update Language is standardized [10, 12] (cf. data interchange &
transaction processing). The top most layer represents User Inter-
face & Applications that are used to read and change the data. The
RDF data model allows Semantic Web Applications to encode the
schema and the application logic within the abstract representa-
tion on the persistence layer [13, 14, 16]. This semantically rich

1http://lod-cloud.net/; As of June 2018
2https://www.w3.org/2007/03/layerCake.svg
3https://natanael.arndt.xyz/notes/semantic-web-layer-cake
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data, stored in an abstract data model allows to handle concur-
rency on an abstract level while providing more flexibility to re-
solve conflicts. But, only little research is performed with regard to
the management of concurrent updates on RDF data. For SPARQL
1.1 (cf. [22]) there is no standardized transaction interface available
even though several approaches4,5 exist. The related work mainly
tries to adapt the protocols from conventional databases [17, 18]
to SPARQL 1.1 by striving for serializability. Innovative concepts
that take the possibilities of distributed versioning systems and the
abstract concept of RDF knowledge bases into account are missing.

In this paper we present the Quit Editor Interface Concurrency
Control (QEICC), a method to handle conflicting write operations
on a SPARQL 1.1 Update interface of a distributed multiversion
RDF quad store. The QEICC is build on top of Quit, our previously
published distributed version control system for RDF knowledge
bases [2, 3]. The Quit Store maintains multiple diverged version
logs (branches) of an RDF dataset while each branch can represent
a different state and latest version of the dataset. The branched
versioning logs allow to postpone the reconciliation of diverged
versions and to incorporate it into the data engineering process.
Further, it is possible to retrieve any version on the Quit Store us-
ing its random access feature. With the QEICC extension we ex-
ploit the properties of the distributed version control system of
the Quit Store. Using the branching system we postpone the con-
flict resolution as we are not constrained to reach serializability.
The reconciliation system is used to still strive for an eventually
conflated and serialized versioning log. In addition we exploit the
commit system and the random access to arbitrary versions of the
Quit Store to provide snapshot isolation for the operations. As we
use these features, with QEICC we detect, avoid, and resolve con-
flicts of update operations based on a snapshot identification. To
give full control to editing interfaces within the data engineering
process we provide the three optimistic concurrency control strate-
gies reject, branch, and merge. The strategies differ in their conflict
handling which allows us to shift the resolution of a conflict be-
tween the data’s creator, automatic processes, and collaborators to
perform a data-centric reconciliation.

The remainder of this paper is structured as follows. First, we
give an overview on the state of the art for data base systems and
Web Applications as well as Semantic Web Applications in sec-
tion 2. Second, we provide a problem description in section 3. The
main contribution of our work is theQuit Editor Interface which is
presented in section 4 with the three conflict resolution strategies
reject in section 4.1, branch in section 4.2, and merge in section 4.3.
The strategies are compared regarding their individual properties
and the instance of control in section 5. Finally, we conclude the
paper in section 6.

2 STATE OF THE ART
In the following we take a look at the related work. First we will
provide a historical walk-through on conflict detection, concur-
rency, and transaction management for data base systems and de-
rived concepts for RDF data stores in section 2.1. Afterwards we
look into approaches for state transfer between clients and data

4https://jena.apache.org/documentation/txn/
5http://people.apache.org/~sallen/sparql11-transaction/

stores respective back-ends in the application engineering area and
in particular for Semantic Web Applications in section 2.2.

2.1 Database Management Systems
The problems of concurrency control and the recovery problemwere
broadly discussed by Bernstein et al. [5].

Systems that solve the concurrency control and re-
covery problems allow their users to assume that each
of their programs executes atomically – as if no other
programs were executed concurrently – and reliably
– as if there were no failures.

This abstraction is called transaction and an algorithm that exe-
cutes the transactions atomically is called concurrency control al-
gorithm. The concurrency control algorithm is implemented by ex-
ecuting concurrent interleaving transactions one after another to
give the illusion that transactions execute serially. Interleaving ex-
ecutions of transactions that have the same effect as serial execu-
tions are called serializable, which is considered correct because
they support the illusion of transaction atomicity.

Berenson et al. [4] introduce the snapshot isolation type. This
isolation type allows reads or writes to be executed on a snapshot
which ensures isolation from other transactions but is not serial-
izable. Following from the isolation guarantee snapshot isolated
write operations can only be performed on distinct data items.

The problem to ensure consistency across all replicas while
clients are disconnected from the network was discussed for the
Coda file system by Satyanarayanan et al. [21]. If a client is discon-
nected, be it intentionally or not, the client can still perform local
changes in the cached file system. When the client is reconnected
a reintegration process starts that tries to execute the cached up-
dates on the file system of all replicas. If conflicts between updates
are detected the conflicting files are temporarily stored in a covol-
ume until the conflict is resolved by a user.

Demers et al. [8] present the Bayou System, a client/server plat-
form to replicate databases for the usage onmobile devices like per-
sonal digital assistants. The system propagates all writes through
a peer-to-peer protocol to a primary server which accepts writes
to be committed. All other write operations on secondary servers
that were not yet committed are tentative until they are serialized
on the primary server and the order of writes propagated to the
secondary servers. If conflicts arise mergeprocs are employed that
understand the semantics of the data format and domain and can
reconcile the conflict.

Another system to reconcile transactions performed on mobile
clients is presented by Phatak and Badrinath [20]. Similar to the
Bayou System all transactions need to be transmitted to a server
to be globally committed. If a disconnected client performs local
transactions, on reconnection they need to be tested for serializ-
ability and are rolled back on conflicts. Further they discuss the
weakening of the serializability guarantee which can be enabled
by a semantic aware reconciliation and by providing snapshot iso-
lation (cf. [4]). To implement the multiversion reconciliation the
conflict detection and resolution is decoupled, while the server is
responsible for the conflict detection the client provides the con-
flict resolution function.

https://jena.apache.org/documentation/txn/
http://people.apache.org/~sallen/sparql11-transaction/


Muys [17] provides a discussion about a concurrency control
protocol for multiversion RDF data stores. In contrast to relational
or object databases in an RDF store the smallest “cell” that can be
considered is the entire graph. If multiple graphs are present and
can be targeted by an update, the whole RDF dataset needs to be
considered as a unit of change. This results in a single global write
lock when applying traditional concurrency control protocols on
an RDF data store and thus provides very little concurrency. To
avoid a single global write lock the usage of predicate locking is
proposed with the basic graph pattern (BGP) as predicate that is
tested against the update set of a transaction that needs to be seri-
alized. Still the resolution of conflicts is a problem. For this purpose
the single version optimistic concurrency control protocol is adapted
to a multiversion store by specifying the multiversion optimistic
concurrency control protocol. The multiversion protocol allows to
exploit snapshot isolation and thus to execute read-only operations
from the validation protocol.

Neumann and Weikum [18] are following a similar approach
and extend the RDF-3X store to x-RDF-3X. The RDF store pro-
vides versioning with the ability for time travelling queries. The
store supports snapshot isolation and full serializability with help
of predicate locks based on the query BGPs. Due to the snapshot
isolation no locks are needed for read operations. To avoid too
small locks or unnecessary large locks a lock splitting algorithm is
employed. Update operations are performed in a per-transaction
workspace that is merged into the differential indexes if a save-
point is issued.

2.2 Application Engineering
Ousterhout and Stratmann [19] discuss the state problem in Web
Applications using asynchronousAJAX requests.They analyze and
verify possible solutions for managing states on the client side or
on the server side in a Web Application. The authors conclude that
both, client side and server side states have drawbacks. Client side
state management has overheads for shipping state between browser
and server, and it creates potential security loopholes by allowing
sensitive server state to be stored in the browser. Whereas the server-
based approach introduces overheads for saving state as part of ses-
sions, and it has garbage-collection issues that can result in the loss
of state. The authors prefer the usage of a server-based state man-
agement over that of a browser-based and predict upcoming chal-
lenges in state management of Web Applications.

Pardon and Pautasso [11] specify a protocol to support atom-
icity and recovery over distributed REST resources. The authors
contribute to the debate in the REST community to whether or not
transaction support is needed. The presented approach references
and is similar to the position paper by Helland [15]. The need for
the protocol is motivated by a business use case on booking two
connecting flights from two different airlines. The presented ap-
proach is based on a Try-Cancel/Confirm (TCC) pattern using (a)
an initial state, (b) a reserved state and (c) a final state.The reserved
state (b) is called tentative in [15]. To form a transaction an arbi-
trary number of REST services are loosely coupled. A transaction is
valid if all reserved states (b) are confirmed, after this the final state
(c) is entered for each service. Compared to the two-phase commit

lock the authors point out, that the TCC-approach offers higher-
level semantics and does not hold low-level database locks. The par-
ticipants do not block any other work other than the one affected by
the business resources they reserve. Both approaches [11, 15] men-
tion that an uncertainty is left if one of the loosely coupled sys-
tems fails before all systems have reached the final state. The man-
agement of uncertainty must be implemented in business logic to
counter this issue.

Web Applications as well as Semantic Web Applications (SWA)
consist of three layers Persistence Layer, Data Interchange & Trans-
action processing, and User Interface [16]. Martin and Auer [16]
present a categorizationmodel for SemanticWebApplications. Fol-
lowing this categorization model our focus is on intrinsic and ex-
trinsic producing SWAswhile the level of user involvement, seman-
tic richness, and semantic integration is left open. In an empirical
study performed by Heitmann et al. [13, 14] all SWAs have a graph
access layer, an increasing amount of SWAs is concerned with data
creation, and some applications even provide structured data au-
thoring interfaces. The data flow to allow collaborative knowledge
acquisition, visualization, and creation requires for a management
of concurrent and possibly conflicting operations. The above pre-
sented research on non-semantic Web Applications is mostly con-
cerned with distributed state management. Methods like Flux6 can
be used in client applications to bundle the data flow towards the
back-endwithin an application. A store object ensures that all view
component’s requests to the back-end system are executed and
controlled in a single place which can represent a client side state.
While the issue of communicating the global state of the store be-
tween back-end and client application is underrepresented in re-
search. A reason for a lack of research in this are in the Ajax/REST
community might be the fact, that Ajax/REST applications usually
encode parts of the business logic in the back-end. In contrast to
that, SWAs strive to separate the data’s semantics and implemen-
tation by searching for a generic semantic representation. With
the RDF data model SWAs are able to encode semantics in the data
store and thus are able to directly communicate with the RDF store
as persistence layer.

3 PROBLEM DESCRIPTION
In user facing applications, in particular in Web Applications, the
user interface is constructed of many components. Each of the user
interface components might send read requests to the back-end
system. When the user performs any action that induces an up-
date operation the user might take into account any information
displayed in the user interface for his update decision. These re-
quests are sent by the individual components or can be coordinated
by a method like Flux. In many traditional systems the back-end
system implements parts of the business logic and can thus man-
age the state of the front-end in interaction with the store object.
For a Semantic Web Application the data store can directly serve
as back-end and be accessed using the SPARQL 1.1 Protocol [9]. In
the following we demonstrate two scenarios of clients interacting
with a SPARQL 1.1 store to manage a todo-list.

6https://facebook.github.io/flux/docs/in-depth-overview.html#
structure-and-data-flow
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User A Client A SPARQL Store Client B User B

open form

query(<Query A>)

<ResultSet A>

edit form

submit
update(<Update A>)

”successful”

”successful”

open form

query(<Query B>)

<ResultSet B>

edit form

submit
update(<Update B>)

”successful”

”successful”

Figure 1: Sequence diagram of two overlapping update op-
erations which result in an uncontrolled state of the shared
data store.

@prefix ex: <http :// example.org/> .

ex:garbage a ex:Todo;

ex:task "Take out the organic waste" .

Listing 1: The initial data in the triple store to be considered
for scenarios 1 and 2.

PREFIX ex: <http :// example.org/>

INSERT {

?task ex:status ex:completed

}

WHERE {

?task a ex:Todo

}

Listing 2: SPARQLUpdate operation <Update A> tomark the
task as completed in scenario 1.

PREFIX ex: <http :// example.org/>

INSERT DATA {

ex:chain a ex:Todo;

ex:task "Lubricate the bike chain."

}

Listing 3: SPARQLUpdate operation <Update B> to add a new
task in scenario 1.

Scenario 1. In fig. 1 an example of two conflicting operations
based on updating data through a form is depicted. We assume
the content of the SPARQL Store are the statements shown in list-
ing 1. Both clients retrieve the data from the store with a SPARQL

Query and receive the respective result set containing the task to
do. While user A performs the single task in the store and changes
it to “completed” with the update operation in listing 2, meanwhile
user B adds a new task with the update operation in listing 3. In
the final state of the store both tasks will be marked as completed.
If the operations were executed in the opposite order the state of
the store would be different. Thus the two operations are not se-
rializable and would cause the operations to abort with failure in
traditional transactional concepts. But the operations do not fail in
current SPARQL 1.1 implementations.

Scenario 2. Let us consider another scenario following the exe-
cution of fig. 1 and with the assumed initial content of the SPARQL
Store as shown in listing 1. Both clients retrieve the data from the
store with a SPARQL Query and receive the respective result set
containing the task to do. While user A performs the task
ex:garbage and changes it to “completed” with the update opera-
tion in listing 4, user B has changed the task description with the
update operation in listing 5. Even though both update operations
have taken care to identify the data item to change, in the final
state of the store the changed task will be marked as completed
even though this is not correct. Further, also the execution of the
operations in the opposite order results in the same result. A tra-
ditional transactional concept could not identify the operations as
conflicting.

PREFIX ex: <http :// example.org/>

INSERT DATA {

ex:garbage ex:status ex:completed

}

Listing 4: SPARQLUpdate operation <Update A> tomark the
task as completed in scenario 2.

PREFIX ex: <http :// example.org/>

DELETE { ?todo ex:task ?task }

INSERT {

?todo ex:task "Take out the organic waste 

↪→ and the residual waste"

}

WHERE {

BIND (

"Take out the organic waste" as ?task)

?todo ex:task ?task

}

Listing 5: SPARQL Update operation <Update B> to change
the description of the task in scenario 2.

For SPARQL 1.1 no transactional concept is standardized. The
SPARQL 1.1 Update language allows to build update operations of
the form DELETE {} INSERT {} WHERE {} [10]. The WHERE part
can be used to encode preconditions for the update operations and
bind variables used in the update operations, as shown in the list-
ings 2 and 5. But enclosing all preconditions inferred from all read
operations that were used to compose the user interface is not a
practical way to ensure it is not conflicting with other operations.



Further more, write operations in SPARQL 1.1 can also be per-
formed without any precondition (INSERT DATA, DELETE DATA).
Our question is: how canwe ensure a controlled state of the SPARQL
Store when performing non transactional write operations?

4 THE QUIT EDITOR INTERFACE
In the following we present the Quit Editor Interface Concurrency
Control (QEICC) a method to handle concurrency of write opera-
tions in a distributed multiversion RDF quad store. QEICC is built
on top of the Quit Store [2, 3]. We first introduce the essential pre-
liminaries of the Quit concept. Then, we propose a fully backward
compatible7 protocol on top of the SPARQL 1.1 Protocol [9] that al-
lows us to control concurrency. Based on this protocol we present
the three conflict resolution strategies reject in section 4.1, branch
in section 4.2, and merge in section 4.3.

The QEICC builds on our previously published distributed ver-
sion control system (DVCS) for RDF knowledge bases Quit [2, 3].
The underlying DVCS allows not only linear versioning logs but
also non linear diverged versioning logs represented by an acyclic
directed graph of multiple branches. Because of the non linear ver-
sioning log we are not constrained to reach serializability of all per-
formed operations. Instead, the store maintains multiple branched
versioning logs while each branch can represent a different state
and latest version of the database. Each version in the versioning
log is identified by a unique hashed commit id, further each version
references its predecessor as parent commit. A branch is identified
by its name and is a pointer to the currently latest commit id in
its versioning log. The store allows random access to arbitrary ver-
sions in the versioning log for query and update operations. Thus
it is possible to start a new diverged versioning log at any exist-
ing version in the log. The latest version (Head) of each version
log respective branch can be queried and updated through virtual
SPARQL Endpoints. The store provides one virtual SPARQL End-
point for each branch, i.e. http://localhost:5000/sparql/<Branch>.

The QEICCmethod exploits the commit system and the random
access feature of the underlying DVCS to provide a state identifi-
cation of the data store to the client. As shown in fig. 2 the state is
transferred on query and update operations. A query operation is
sent to the store following the standard SPARQL 1.1 Protocol [9].
The client selects the branch to work on by using the respective
SPARQL Endpoint for the branch. In fig. 2 the selection of the
branch is depicted by the parameter <Branch> of the query() and
update() methods.

When the client sends a query operation to the store, the result
set for the query is returned along with the additional two HTTP-
Headers X-CurrentBranch and X-CurrentCommit (<Branch> and
<CommitID A> in fig. 2). The X-CurrentBranch header field con-
tains the name of the branch that was requested. The
X-CurrentCommit header field contains the commit id of the cur-
rentHead of the selected branch in the store.With these two header
fields the store encodes the current snapshot state of the store at
the time of the execution of the query.

When the client sends an update operation to the store it trans-
mits the snapshot state that it has received with the last query

7The protocol still allows standard SPARQL 1.1 Query and Update operations, which
of course will not benefit from the concurrency control features.

User Client Quit Store

open form

query(<Query A>, <Branch>)

<ResultSet A>, <Branch>, <CommitID A>

edit form

submit update(<Update A>, <Branch>,
<CommitID A>, <Resolution Method>)

”successful”, <Branch>, <CommitID B>

”successful”

A
(
{G0 }

)
B{A}

(
{G1 }

)<Update A>

Figure 2: Sequence diagram showing the execution of an up-
date operationwith the parameters specified by theQuit Edi-
tor Interface. In the lower part, the commit graph is depicted
which exists at theQuit Store after the update operation.

(X-CurrentCommit). To transfer the state from the client to the
store the client sets the parameter parent_commit_id8 along with
the update operation to the store (<CommitID A> in fig. 2). This
transfer of the state allows the client to express towards the store
which is the currentlymost recent commit on the branch. Addition-
ally the client selects a resolution strategy that the store has to ap-
ply in case of a conflict. The client sets the resolution method with
the resolution_method parameter along with the
parent_commit_id and update operation (<Resolution Method> in
fig. 2).The resolution_method is one of the values reject, branch,
or merge. When the store receives an update operation it compares
the commit id of the currently latest commit (Head) on the branch
with the value of parent_commit_idwhich was sent by the client
along with the update request. By comparing the commit ids the
store can identify whether a conflict exists or not.

No conflict. If no overlapping update operation was performed
in the meantime both commit ids are equal. In this case the store
commits the update operation and returns the commit id of the
new Head of the selected branch. The now updated commit graph
is depicted in the lower part of fig. 2. The state before the update is
encoded in commit A with graph G0, the update is performed us-
ing the update operation <Update A> which leads to the new state
B{A} which was derived fromA and points to its predecessor (for
more details cf. [1, 2]).

Conflict. If the commit ids are different a conflict is detected.
This case is depicted in fig. 3. The conflict is then handled accord-
ing to the specified value for the resolution_method. To give con-
trol over the conflict resolution processwe provide three optimistic
8The client uses HTTP form-encoded or query string request parameters to encode
the values.

http://localhost:5000/sparql/<Branch>


Client Quit Store Other Client

query(<Query A>, <Branch>)

<ResultSet A>, <Branch>,
<CommitID A>

query(<Query B>, <Branch>)

<ResultSet B>, <Branch>,
<CommitID A>

update(<Update B>, <Branch>,
<CommitID A>, ”reject”)

”successful”, <Branch>,
<CommitID B>

Overlapping EditOverlapping Edit

update(<Update A>, <Branch>,
<CommitID A>, ”reject”)

”rejected”

A
(
{G0 }

) B{A} ({G })
<Update B>

Figure 3: Sequence diagram showing two overlapping up-
date operations, where the first operation is committed,
while the second operation is aborted according to the se-
lected strategy reject. The commit graph shows the state of
the store after the successful update operation was commit-
ted.

strategies which differ in their conflict handling. In fig. 3 the pre-
vious queries and the conflicting update operation are enclosed in
the Overlapping Edit block. For brevity, this block is not repeated
but referenced in the later figures, figs. 4 to 6.

4.1 Reject
If a conflict is detected on the server side, choosing the reject strat-
egy will abort the execution of the operation and will leave the
store unchanged.This allows to perform update operations in a try-
catch or trial-and-error manner. Figure 3 shows a rejected update
operation performed by the client. The commit log in the lower
part of fig. 3 shows the state of the store after the successful com-
mit of the update operation from the other client. After the rejected
operation it is up to the clients implementation how to proceed.

One possibility to resolve the conflict on the client side is de-
picted in fig. 4. The Overlapping Edit block is reused by reference
from fig. 3. To resolve the conflict this method involves a new re-
trieval of the data that is been edited on the client side. Just af-
ter the update operation was rejected the query operation is per-
formed again and returns now an up-to-date result set ResultSet A’.
This result set is compared to the original result set in two alterna-
tive blocks. The top block is for the case that the result set of the

Client Quit Store Other Client

refref Overlapping Edit (<Query A>, <Branch>):
<ResultSet A>, <CommitID A>

update(<Update A>, <Branch>,
<Commit ID A>, ”reject”)

”rejected”

query(<Query A>, <Branch>)

<ResultSet A’>, <Branch>, <Commit ID B>

[no changes in the edited subgraph]
compare(<ResultSet A>, <ResultSet A’>)

∅

update(<Update A>, <Branch>,
<CommitID B>, ”reject”)

”successful”, <Branch>, <CommitID C>

[changes in the edited subgraph]
compare(<ResultSet A>, <ResultSet A’>)

<differences>
resolve conflicts

update(<Update A’>, <Branch>,
<CommitID B>, ”reject”)

”successful”, <Branch>, <CommitID C>

altalt

A
(
{G0 }

) B{A} ({G })
<Update B>

C{B{A} } ({G
′ })

<Update A’>

Figure 4: Sequence diagram showing the retry of an update
operation after it was rejected due to an overlapping update
operation.The alternative flows depict the first case that the
result set of the original query did not change and thus the
update operation can be resent.The second case inwhich the
client needs to perform a resolution of the conflict before it
can resent an updated operation. The commit graph shows
the state of the store after the client has performed a resolu-
tion and the new update operation was committed.

query operation did not change and the bottom part for if the re-
sult set changed. If the result set is the same as the original result
set the update operation is resent now with the updated commit id
as parameter. By comparing the result sets we can ensure that the
operation with which we are conflicting did not change the part
of the graph (subgraph) that was queried with our query opera-
tion. This involves the assumption that the update operation was
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Figure 5: Sequence diagram of the overlapping update oper-
ation with the resolution strategy branch. The update oper-
ation is committed to a new branch that can be used to post-
pone the resolution.The commit graph shows how the state
of the store has diverged into two branches after committing
both update operations.

constructed based on the result set retrieved by the query opera-
tion Query A (cf. fig. 3). If the update affected the subgraph of our
interest the client needs to resolve the conflict locally. This resolu-
tion can happen by informing the user about the changes and let
the user review its input under the new circumstances and resub-
mit the form. After the conflict was resolved on the client side the
adapted update operation can be submitted to the store along with
the new commit id. The bottom part of fig. 4 shows the version log
with the update operation by the other client (as shown in fig. 3)
and the adapted update operation after the client side conflict res-
olution and the new commit C.

4.2 Branch
The branch strategy actually exploits the possibilities of our non-
linear version log system. Figure 5 shows the execution of an up-
date operation that conflicts and is resolved with the branch strat-
egy. In contrast to the other two strategies the branch strategy does
never fail. Instead, if a conflict arises a new branch is created that
diverges from the original branch from the last common commit
before the conflict on the branch. This divergence is shown in the
lower part of fig. 5, each of the commits B and C are derived from
the same original commit A. In the sequence diagram the new
branch is created with the branch() method. After the new branch

was created the conflicting update operation is committed to the
new branch <Branch’>.

This strategy allows fire-and-forget operations in a way that the
update operation is committed, no matter if it conflicts or not. Also,
this strategy allows to postpone a conflict resolution for instance
if the correct resolution is not yet known or needs to be found
based on a community discussion. This allows a data-centric rec-
onciliation, in contrast to time based reconciliation, of the conflict
using appropriate, e.g. domain specific, merge operations (cf. sec-
tion 4.3 and [2]). Another asset of allowing a versioning log to
branch is that it reflects the actual lineage of the update operations
and changed dataset. By analysing the version log it is possible to
reconstruct in which logical order operations were performed.

4.3 Merge
The merge strategy is similar to the branch strategy as it creates a
new branch to commit the update operation when a conflict arises.
In addition it subsequently performs a reconciliation of the diverged
versioning log. To perform the merge, a merge method can be se-
lected according to the methods supported by the respective sys-
tem. The Quit Store has specified the merge methods Three-Way-
Merge and Context Merge [2]. The two possibilities for a success-
ful and a failing merge process are depicted in the two alternative
blocks. If the reconciliation is successful a new commit is created
as shown in the lower part of fig. 6, the commit D is derived from
the two diverged commitsB and C and combines the two branches
again. If the reconciliation fails the update operation fails and the
system ends up in the branched state. This means that the update
operation is committed but the diverged states could not be auto-
matically reconciled. The result of a failed merge operation is the
description of the merge conflicts and the references to the new
branch and commit. The merge conflict now needs to be resolved
by the client or can be postponed to a later state. If the merge con-
flicts are resolved a newmerge operation is performed by the client.

A merge method compares the two versions of the dataset as
they are produced by the conflicting operations. This comparison
usually takes into account the last common ancestor of the two
newly created commits. In our case the newly created commits are
B and C and the last common ancestor is A. Each of the datasets
{G} and {G ′} is compared to the dataset {G0}, this allows to break
down the conflict from the level of overlapping operations to the
actual data in the graphs. Besides the predefined merge methods
Three-Way-Merge and Context Merge additional methods can be im-
plemented to reflect special properties of a domain model. This al-
lows a semi-automatic data-centric reconciliation of overlapping
operations.

5 COMPARISON
The presented strategies have different properties with regard to
the control over the resolution process. The resolution strategies
are operating on a DVCS which provides non-linear versioning
logs. Due to the distribution and because we are not limited to
work on a linear versioning log we gain flexibility. The flexibility
allows us to distribute the responsibility to resolve a conflict and
to freely define a point in time at which a conflict resolution has
to be performed.
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Figure 6: Sequence diagramof the overlapping update opera-
tions and server side resolution bymerging the changes.The
merge is successful in the first case, while in the second case
the merge conflicts are reported to the client and need to
be resolved on the client side. The commit graph shows the
merged state of the store after a successful merge operation
was performed with an optional <MergeResolution>.

In table 1 the three strategies reject, branch, and merge are cat-
egorized according to the aspects performer of the resolution, point
in time, and on failed resolution. In the case that an operation is
detected to conflict with a previous operation the server performs

Table 1: Comparison of the three conflict resolution strate-
gies reject, branch, and merge.

Strategy Performer of
the Resolution Point in Time On Failed

Resolution
reject client/user client’s choice retry
branch any collaborator postponed n/a
merge merge method immediate resolve/branch

the strategy that was specified by the client through the parame-
ter resolution_method. For the reject strategy the server rejects
the operation and thus gives the control back to the client or user
to perform the resolution. The client can consequently decide at
which point in time the conflict should be resolved, if also the res-
olution fails the client can retry or abort.With themethod branch a
new branch is created that is part of the non-linear versioning log,
which enables any collaborator in the DVCS to perform a conflict
resolution on this branch.The resolution of a branched conflict can
be postponed to any later point in time. The merge strategy relies
on a merge method that performs a predefined resolution proce-
dure and can thus automatically control the resolution of the con-
flict.Themergemethod is applied immediately after the conflicting
update operation was applied on a temporary branch. A successful
conflict resolution is not always guaranteed by the merge method,
depending on its implementation. In case of a failed resolution the
merge method gives the control back to the client in the form of a
merge conflict. If the client can resolve the merge conflict the reso-
lution was successful, if not we end up at a branched state whose
resolution is postponed in the same way as for the branch strategy.

In summary, the control of the resolution for the reject strat-
egy is the client’s responsibility, for the branchmethod the control
can be distributed among collaborators, and for themerge strategy
the control is at an automatic merge method but given back to the
client or the collaborators in case of failure. We thus can shift the
resolution of a conflict between the data’s creator, an automatic
process, and collaborators. The collaborator to resolve the conflict
can be any participant in a team or a specified role according to a
data engineering workflow. In contrast to traditional concurrency
control systems when we deal with RDF data, we are able to in-
corporate the semantics of the data into the resolution process. In
different usage scenarios different stakeholders, agents, or collab-
orators are responsible or capable to interpret the semantics of the
data. With the presented strategies we gain flexibility to provide
the control of a conflict resolution to the respective role in charge.

6 CONCLUSION
The usage of the SPARQL 1.1 Query, Update, and Protocol stan-
dards allows interoperability across software stacks in different
usage scenarios. But this standard is not meant to deal with prob-
lems occurring in collaborative scenarios. The overall problem is
how can we ensure a controlled state of the SPARQL Store when
performing non transactional write operations. In the collabora-
tive usage scenario we thus have additional requirements on top
of the functionality covered by the SPARQL 1.1 standard.



With the Quit Editor Interface Concurrency Control (QEICC)
we have presented a method to identify and avoid overlapping up-
date operations respective conflicts. The conflicts can not only be
detected on operations that would not be serializable in traditional
transaction protocols, but also in cases where the operations could
be executed in an isolated way. This is achieved by the possibility
for the client to express towards the store which state it assumes
to be the most recent respective which is the currently most recent
commit on a branch. On top of this we have defined three strategies
to handle the conflicts. The presented system allows to strive for
a linear execution of the operations and only diverges if overlap-
ping operations are detected. In contrast to conventional systems
our system is based on non-linear versioning logs. The branched
versioning logs allow us to postpone the serialization of operations
(reconciliation) and incorporate it into the data engineering process.
Due to the different strategies provided, the control over the reso-
lution and reconciliation process can be assigned to the respective
roles. The reconciliation can happen in a data-centric way that is
aligned with the domain model.

As a side-effect, using the parameters defined by QEICC for con-
flict detection on updates the client can store the received values of
the current branch and current commit id as the state of the store.
This state representation allows the client to detect updates to the
store while it performs query operations. This detection allows the
client to trigger local updates of the user interface components
when the store changes, to always present up-to-date information.

The QEICC mainly focuses on conflicts on local instances of
a Distributed Version Control Systems for RDF data i.e. the Quit
Store. TheQuit Store provides, besides its local branching features,
the possibility to run globally distributed networks of data repos-
itories. Between the instances there is no steady connection, but
committed update operations can be distributed among the instances
via a synchronization protocol.This synchronization protocol trans-
mits the individual commits as well as the branches. This synchro-
nization of branches allows to even reconcile update operations
that happened at different locations in the same way as following
the branch strategy.

With ourQuit system we hope that Distributed Version Control
Systems find their way into the RDF data engineering and knowl-
edge engineering domain to allow more collaborative and agile
processes. With QEICC on top we provide an interface to control
overlapping update operations and assign the resolution task to
the responsible entity. Due to the abstract conception of the QE-
ICC method it could also be adapted to RDF archiving and linear
versioning systems. The X-CurrentCommit header field can be set
to any string that distinctively identifies a state of the graph in the
version log.The X-CurrentBranch header field can be set to a fixed
value. This would allow to implement the reject strategy but also
the merge strategy can be implemented for successful merging by
performing the branch and merge operations in the cache. While
this would not allow to postpone the reconciliation, it provides the
possibility to detect conflicts and provides the flexibility of domain
specific merge methods.
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