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ABSTRACT
Over the last years, theWeb of Data has grown significantly. Various

interfaces such as LOD Stats, LOD Laudromat, SPARQL endpoints

provide access to the hundered of thousands of RDF datasets, rep-

resenting billions of facts. These datasets are available in different

formats such as raw data dumps and HDT files or directly accessible

via SPARQL endpoints. Querying such large amount of distributed

data is particularly challenging and many of these datasets cannot

be directly queried using the SPARQL query language. In order

to tackle these problems, we present WimuQ, an integrated query

engine to execute SPARQL queries and retrieve results from large

amount of heterogeneous RDF data sources. Presently, WimuQ is

able to execute both federated and non-federated SPARQL queries

over a total of 668,166 datasets from LOD Stats and LOD Laudro-

mat as well as 559 active SPARQL endpoints. These data sources

represent a total of 221.7 billion triples from more than 5 terabytes

of information from datasets retrieved using the service “Where

is My URI” (WIMU). Our evaluation on state-of-the-art real-data

benchmarks shows that WimuQ retrieves more complete results

for the benchmark queries.
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1 INTRODUCTION
Currently, the LOD Laudromat along with LOD stats have more

than 250 billion facts which are available on 668,166 datasets and

559 active SPARQL endpoints [40]. Querying such large amount

of distributed data is particularly challenging in which Federated

query processing is one of the key components for accessing this

collection of information through these data sources. In general,

there are two types of available approaches to execute federated

SPARQL queries over distributed RDF data sources [30]. (1) Query
federation over multiple SPARQL endpoints (QFME) which
collects distributed information from multiple SPARQL endpoints.

Commonly, the list of SPARQL endpoints is provided as an input

to the federation engine. The federation engine decomposes the

original query into multiple sub-queries and execute them accord-

ingly to a specific query execution plan. (2) Link Traversal based
SPARQL federation (LTSF)which uses the URI lookups to collect
information from distributed RDF data sources. Such approaches

do not force the data providers to publish their data as SPARQL end-

points. Instead, the only requirement is that the RDF data sources

must follow the Linked Data principles
1
[14].

However, a particular shortcoming of the QFME approaches is

that many of the RDF datasets in Linking Open Data (LOD) are

not publicly available via SPARQL endpoints. Beek et al. [5] has

shown that around 90% of the information published are available

only as data dumps. On the other hand, the LTSF approaches are

unable to perform lookups for non-dereferenceable URIs. Hence,

they may retrieve empty or incomplete results for the latter type of

approaches. Note that our previous work [40] shows that around

43% of the URIs of more than 660K RDF datasets from LODStats [8]

and LODLaundromat [5] are non-dereferenceable.

In this work, dubbed WimuQ, we provide an approach that over-

comes the limitations of the state of the art regarding to the cov-

erage of the results. WimuQ is a hybrid (endpoints federation +

link traversal) federated SPARQL query processing engine which

collects distributed information from SPARQL endpoints as well

as raw data dumps and HDT files [10]. WimuQ integrates exciting

state-of-the-art LTSF and QFME approaches into a single query exe-

cution framework. Additionally, WimuQ overcomes the problem of

non-dereferenceable URIs by making use of our previous index of

4.2 billion URIs from more than 660k RDF datasets [40]. Our evalu-

ation on state-of-the-art real-data benchmarks shows that WimuQ

retrieves more complete results on three different benchmarks for

federated SPARQL query engines [29, 31, 36].

The contributions of this paper are as follows:

1
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• We present a hybrid SPARQL query processing engine which

is is able to retrieve results from 559 active SPARQL end-

points (with a total of 163.23 billion triples) and 668,166

datasets (with a total of 58.49 billion triples) from LOD Stats

and LOD Laudromat. Thus, to the best of our knowledge,

WimuQ is the first federated SPARQL query processing en-

gine that executes SPARQL queries over a net total of 221.7

billion triples

• As part ofWimuQ,we present a low-cost API dubbed SPARQL-
a-lot to execute SPARQL queries over LOD-a-lot [9], a 300

GB HDT file of the LOD cloud. For the first time, to the best

of our knowledge, we make use of the Concise Bounded

Descriptions (CBDs)footnote 6 to execute federate SPARQL

queries.

• We make use of the WIMU index [40] to intelligently select

the capable (also called relevant) [32] data sources pertaining

to the given SPARQL query. We evaluated our integrated

query engine on two real-data federated SPARQL query-

ing benchmarks LargeRDFBench [28],FedBench [36] and one

non-federated real data SPARQL benchmark selected from

FEASIBLE [31] benchmarks generation framework.

WimuQ is open source and available from https://github.com/

firmao/wimuT along with complete evaluation results. The web

version of the WimuQ is available from https://w3id.org/wimuq/.

The rest of the paper is organized as follows: Section 2 introduces

the related work, followed by WimuQ approach in Section 4. Sec-

tion 5 shows the evaluation results and discussion. Finally, Section 6

concludes the paper along with future directions.

2 RELATEDWORK
In this section we provide a brief overview of approaches for feder-

ated query processing.

Query federation over multiple SPARQL endpoints: DARQ
[27], ADERIS [20], FedX [37], Lusail [1], SPLENDID [12], CostFed

[35], ANAPSID [2], SemaGrow [6], Odyssey [24], KBox [21] and

MULDER [7] are examples of state-of-the-art SPARQL endpoint

federation engines. These approaches can be further divided into 3

categories namely index-only, index-free, and hybrid (index+ASK)
approaches [30].

DARQ, ADERIS andKBox are examples of the index-only SPARQL

query federation approaches. KBox perform federation query pro-

cessing over distributed RDF indices while DARQ and ADERIS

operate federation query over multiple SPARQL endpoints. DARQ

implements a cardinality-based query planner with bind join im-

plementation in nested loops. ADERIS is an adaptive query engine

that implements a cost-based query planner. It also makes use of

the index-based nested loop join.

FedX and Lusail are examples of the index-free query federation

approaches over multiple SPARQL endpoints. FedX only makes

use of ASK queries for source selection. It implements a heuristic-

based query planner. Comparing to DARQ, the number of endpoints

requests is greatly reduced by using bind joins in a block nested

loop fashion [37]. A query rewriting algorithm is used to push

computation to the local endpoints by relying on information about

the underlying RDF datasets. It implements a selectivity-aware

query execution plan generation.

SPLENDID, CostFed, ANAPSID, SemaGrow, and Odyssey are

examples of the hybrid (index+ASK) SPARQL query federation ap-

proaches over multiple SPARQL endpoints. SPLENDID performs

cost-based optimization using VOID statistics from datasets. It

makes use of bind and hash joins [30]. CostFed also implements a

cost-based query planner. The source selection is closely related

to HiBISCuS [32]. Both bind and symmetric hash joins are used

for data integration. ANAPSID [2] is an adaptive query federation

engine that adapts its query execution at runtime according to the

data availability and condition of the SPARQL endpoints. ANAP-

SID implements adaptive group and adaptive dependent joins [30].

SemaGrow adapts source selection approach from SPLENDID. It

performs a cost-based query planning based on VOID statistics

about datasets. SemaGrow implements bind, hash, and merge joins.

Odyssey is also a cost-based federation engine. MULDER describes

data sources in terms of RDF molecule templates and utilize these

template for source selection, and query decomposition and opti-

mization.

DAW [33] and Fedra [25] are examples of duplicate-aware query

federation approaches over multiple SPARQL endpoints.

SaGe[23] is a stateless preemptable SPARQL query engine for

public endpoints. The systemmakes use of preemptable query plans

and time-sharing scheduling, SaGe tackles the problem of RDF data

availability for complex queries in public endpoints. Consequently,

SaGe provides a convenient alternative to the current practice of

copying RDF data dumps.

Link Traversal based SPARQL federation: LDQPS [18], SI-

HJoin [19], WoDQA [3], and SQUIN [15] are examples of traversal-

based federated SPARQL query processing approaches. Both LQPS

and SIHJoin make use of the index and online discovery via link-

traversal to identify the relevant sources pertaining to the given

SPARQL query. They implement symmetric hash join. WoDQA

performs hybrid (index+ASK) source selection approach. It imple-

ments nested loop and bind joins. SQUIN discovers the potentially

relevant data during the query execution and thus produce incre-

mental query results. SQUIN uses a heuristic for query execution

plan generation, adapted from [13]. As a physical implementation

of the logical plans, SQUIN uses a synchronized pipeline of iter-

ators such that the i-th operator is responsible for the i-th triple

pattern of the given SPARQL query. More recent studies [17] inves-

tigated 14 different approaches to rank traversal steps and achieve

a variety of traversal strategies. A more exhaustive survey of the

traversal-based SPARQ query federation is provided in [16].

Beside the above query federation strategies, low-cost triple

pattern fragments (TPF) interfaces [41] can also be used to execute

federated SPARQL queries. Comunica [39] is a highly modular

meta engine for federated SPARQL query evaluation over support

heterogeneous interfaces types, including self-descriptive Linked

Data interfaces such as TPF. The system also enables querying

over heterogeneous sources, such as SPARQL endpoints and data

dumps in RDF serializations. The main drawback here is that the

user should know in advance the dataset where the query will be

executed.

One of the targets and motivation to build WimuQ was to dis-

cover which dataset the SPARQL query can be executed, unfortu-

nately, with exception of SQUIN [15], none of the related works

https://github.com/firmao/wimuT
https://github.com/firmao/wimuT
https://w3id.org/wimuq/


provides this feature. Despite the fact that some of them incorporate

Nquad support that allows the possibility to know the graph of the

triple. The provenance system of WimuQ also includes dump files

and endpoints with a rank provided by WIMU [40].

3 PRELIMINARIES
We now introduce the terminology and symbolism that is used

throughout the rest of this paper
2
.

RDF graph. An RDF graph is a set of RDF triples which has a

set of subjects and objects of triples in the graph called nodes.

Given an infinite set U of URIs, an infinite set B of blank

nodes and an infinite set of literals L, a RDF triple is a triple
⟨s,p,o⟩ where the subject s ∈ (U ∪ B), the predicate p ∈ U
and the object o ∈ (U ∪ B ∪ L). An RDF triple represents an

assertion of a “piece of knowledge”, so if the triple ⟨s,p,o⟩
exists, then, the logical assertion p(s,o) holds true. An RDF

graph is also represented by a collection of RDF triples and

it can be seen as a set of statements describing, partially or

completely, a certain knowledge.

Basic Graph Pattern 3
is a set of Triple Patterns[11].

RDF Dataset An RDF dataset is a set:

G, (< u1 >,G1), (< u2 >,G2), ...(< un >,Gn )

where G and each Gi are graphs, and each <ui> is an IRI.

Each <ui> is distinct.G is called the default graph. (<ui>,Gi )

are called named graphs.

SPARQL is the language to query RDF datasets, in which the

formal definition of a SPARQL Query is: A SPARQL Abstract

Query is a tuple (E,D,R) where E is a SPARQL algebra ex-

pression, D is an RDF Dataset and R is a query form.

More formally, let Q be a SPARQL query and D be a finite set

of the datasets which can be retrieved using WIMU [40]. For each

data source D ∈ D, we write G(D) to denote the underlying RDF

graph exposed by D. When requesting data source D to execute a

SPARQL query Q, we expect that the result of D is the set ⟦Q⟧
G(D).

Hence, we define the result set S(Q) of a SPARQL query over the

federation D to be a set of solution mappings that is equivalent to

⟦Q⟧
G(D) where GD =

⋃
D∈D G(D).

We formalize the problem in two steps as follows: (1) find the
datasets on which a given query can be executed and (2) return the
query results from the selected datasets.4

4 THEWIMUQ
In this section, we explain the WimuQ approach to the SPARQL

query processing. We assume that the reader is familiar with the

concepts of RDF and SPARQL, including the notions of an RDF

triple, a triple pattern, a basic graph pattern (BGP), and subject,

predicate, object of the triple pattern.

Figure 1 shows the workflow of the query processing in WimuQ,

which comprises of four main steps: (1) the user issue a SPARQL

query to the WimuQ interface, which (2) extracts all the URIs used

in the given user query. Note the URIs can be used in subject,

2
Further information about RDF and related definition can be found at: https://www.

w3.org/TR/rdf-sparql-query/

3
Basic Graph Patterns: https://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns

4
Throughout the paper, we refer to RDF dump files or any datasets accessible using a

SPARQL endpoint as datasets, data sources or simply sources.

predicate, or objects of the SPARQL triple patterns. (3) The extracted

URIs are then searched in the WIMU index, which gives all the

relevant datasets where the extracted URIs can be found. (4) The

relevant datasets are furthered filtered based on the source selection

algorithm and (5) the finally-selected relevant datasets are then

queried by using the different query processors, depending on the

type (HDT, endpoint, datadump, dereferenceable dataset) of the

datasets; (6) the results generated by the different query processors

are then integrated and sent back to the user. The whole process

is like a black box to the end user: the user only sends the query

and get back the results without knowing the underlying query

execution steps.

Select ?p ?o 
Where {<http://uri.com> ?p ?o} 

Endpoint 

hdt file 

dump.bz2 

file.rdf 

... 

http://uri1.com

http://uri2.com

http://uriN.com

Extract URIs

WIMU

1
2

3

Data Dumps 
Query processor 

Traversal Based  
Query processor Union of  

the results

Source Filtering

SPARQL-a-lot 
Query processor 

SPARQL Endpoint  
Query processor 

wimuQ query
execution engine

Results
<subject1><predicate1><object1>
<subject2><predicate2><object2> 
<subjectN><predicateN><objectN> 

4

5

6

Figure 1: WimuQ’s query processing workflow.

Nowwe go into the details of these steps, explaining the different

components.

4.1 WimuQ source selection
One of the important optimization steps in federated SPARQL query

processing is the source selection [26, 32]. The goal of the source

selection is to identify the potentially relevant datasets (also called

sources) to the given query. We make use of the WIMU service

[40] to select the potentially relevant sources. The WIMU service
5

provides URIs lookup facility and identify those datasets which

contain the given URI. Currently, this service processed more than

58 billion unique triples and indexed 4.2 billion URIs frommore than

660k RDF datasets obtained from the most used Linked Data hubs

including LODStats [4] and LOD Laundromat [5]. The identified

WIMU datasets can be of four types: (1) SPARQL endpoint, (2) HDT

file, (3) dataset with dereferenceable URIs, (4) data dump with non-

dereferenceable URIs. The service is both available from a web

interface as well as can be queried from a client application using

the standard HTTP protocol.

The WimuQ source selection algorithm is given in Algorithm

1 which takes a SPARQL query Q as input. We provide the set of

extracted URIs (from step 2) U to the WIMU service and retrieve

the relevant datasets D pertaining to the given URIs (Lines 1-4 of

Algorithm 1). Now for each relevant dataset d ∈ D, if the d is a

SPARQL endpoint, we extract the individual triple patterns t of

5
WIMU URIs lookup service is available from: http://wimu.aksw.org/
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the query and perform a SPARQL ASK of t in dataset d (Lines 5-

8 of Algorithm 1). We add the dataset d into the set of relevant

SPARQL endpoints E, if the SPARQL ASK query returns true (Lines

9-13 of Algorithm 1). We directly add d into sets H and T if d
is an HDT file or if the d is a SPARQL endpoint or dataset with

dereferenceable URIs, respectively (Lines 14-19 of Algorithm 1).

Finally, if d is dataset with non-dereferenceable URIs, we apply the

RDFSlice [22] technique to only get the relevant RDF slice of the

dataset. The RDF slice is then considered as a relevant dataset (Lines

20-23 of Algorithm 1). The purpose of only adding the relevant

slice of the complete dataset is to reduce the processing overhead,

explained in the next section.

Algorithm 1 The WimuQ source selection

Input: Q ▷ The SPARQL query

Output: E,H,T,N ▷ Hash sets of relevant sources of SPARQL

endpoints, HDT files, dataset with dereferenceable URIs, datadump

with non-dereferenceable URIs, respectively

1: U = extractURIs(Q) ▷ Extract the URIs from the SPARQL

query

2: for all u ∈ U do
3: D = D ∪wimuLookup(u) ▷ Datasets from the WIMU

4: end for
5: for all d ∈ D do ▷ For each dataset

6: if d is SPARQL endpoint then
7: for all t ∈ Q do ▷ For each Triple pattern in query

8: b = ASK (t,d) ▷ SPARQL ASK of t in d

9: if b = true then
10: E.add(d)
11: end if
12: end for
13: end if
14: if d is HDT file then
15: H.add(d)
16: end if
17: if d is dataset with dereferenceable URIs then
18: T.add(d)
19: end if
20: if d is datadump with non-dereferenceable URIs then
21: N.add(RDFSlice(d)) ▷ only add the relevant slice

22: end if
23: end for
24: return E,H,T,N ▷ final relevant sources set

4.2 WimuQ query execution
We make use of the four – SPARQL endpoint, Link Traversal-based,

SPARQL-a-alot, Data dumps – query processor to execute federated

queries over the aforementioned four types of WIMU datasets. The

relevant data sources for each of these query processors are returned

by the WimuQ source selection discussed in previous section.

In WimuQ, we used FedX [37] query processor for SPARQL

endpoints query federation and SQUIN for traversal-based query

federation. The reason for choosing FedX for SPARQL endpoints

federation and SQUIN for traversal-based federation is due the fact

that they do not require any pre-computation of dataset statistics

and hence are able to retrieve up-to-date results. Thus both are able

to run federated queries with zero initial knowledge. In addition,

both produce reasonably query runtime performances comparing

to state-of-the-art approaches [15, 30, 35].

The list of required endpoints URLs for FedX are returned from

the previously discussed source selection Algorithm (ref. E of Algo-

rithm 1). The potentially relevant dereferenceable URIs data sources

(ref. T of Algorithm 1) are already identified by the WimuQ sources

selection algorithm. Thus, we reduced the search space by only

considering the dereferenceable URIs data sources.

As mentioned before, FedX can only works with public SPARQL

endpoints. SQUIN needs dereferenceable URIs. Both of these en-

gines are unable to execute SPARQL queries over non-dereferenceable

URIs datadumps: SPARQL endpoint federation approaches cannot

execute queries over such datadumps as they are not exposed as

SPARQL endpoints, link traversal-based approaches fail to retrieve

results as the URIs are non-dereferenceable. We need to download

the dumps first, load it locally, and run some query processing API

(e.g., JENA or Sesame) on the loaded datasets. However, we can

not simply download the complete dumps and process it locally

due to their large amount of data. To solve this problem, we make

use of the Wimu index to only select those data dumps which are

potentially capable to execute the given query. These datadumps

are further sliced by using the RDFSlice technique, to only select

the required chunks of the datadumps which will provide results to

the given SPARQL query. The identified chunks are finally loaded

in a local Apache Jena model. The model is then use to execute

federated queries.

Finally, we propose a query processor named SPARQL-a-lot to
execute federated SPARQL queries over HDT files. The SPARQL-

a-lot is a CBD-based
6
query execution described in Algorithm 2.

The algorithm takes a SPARQL query Q as input and return the

resultsetO of the query execution over HDT file. First, the algorithm

extracts all of the BGPs from Q (Line 2 of Algorithm 2). The next

step is to extract the subjects, predicates, and objects of all the triple

patterns used in Q (Line 3 of Algorithm 2). The CBDs are then

generated from extracted subjects, predicates, and objects (Line

4 of Algorithm 2). The extracted CBDs constitute an RDF dataset

of set of triples T which are then loaded into a local Jena model

(Line 5 of Algorithm 2). The query Q is then finally executed over

the Jena model and results are returned (Lines 6-7 of Algorithm 2).

The duplicated results from different query processing engines is

removed after collecting the final results.

The results generated by each of WimuQ’s processors are finally

integrated and sent back to the user.

4.3 Practical example
Given the following SPARQL query (LD1 from FEDBench[36]):

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * WHERE { ?paper
<http://data.semanticweb.org/ns/swc/ontology#isPartOf>
<http://data.semanticweb.org/conference/iswc/2008/
poster_demo_proceedings> .
?paper <http://swrc.ontoware.org/ontology#author> ?p .
?p rdfs:label ?n .

6
https://www.w3.org/Submission/CBD/
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Algorithm 2 Query execution on LOD-a-lot

Input: Q ▷ The SPARQL query

Output: O ▷ The results of the query

1: procedure sparql-a-lot(Q)
2: BGP = extractBGP(Q) ▷ Extract the BGP from the

SPARQL query

3: Tbgp = extractSPO(BGPs)
4: T = executeAPILOD-a-LOT(Tbgp) ▷ Generating CBDs

from s,p,o
5: createTDBJena(T)
6: O = execSPARQLTDBJena(Q)
7: return O
8: end procedure

}

With WimuQ we were able to identify 4 HDT datasets avail-

able from https://tinyurl.com/WimuQexData. All of these datasets

are from LOD Laundromat repository [5] containing information

about the conference ISWC2008 [38], under the domain http://data.

semanticweb.org, originally from SW Dog Food dataset
7
. Thus,

SPARQL-a-lot is the only query processing engine (because of the

selected datasets are HDTs) which is considered for executing the

given SPARQL queries. The final results of the query execution is

available from https://tinyurl.com/WimuQExample.

5 EVALUATION
In this section, we present the evaluation setup and the correspond-

ing results that validate our hypothesis that we can improve the

resultset retrieval if we automatically identify potentially relevant

sources from heterogeneous RDF data even if the URIs are not

dereferenceable anymore. The goal of this evaluation is to show

that by combining different SPARQL query processing approaches,

we are able to retrieve more complete results as compared to the

results retrieved by the individual approaches.

5.1 Experimental setup
5.1.1 Benchmarks used: Since WimuQ aims to execute SPARQL

queries over real-world RDF datasets, we chose three – FedBench

[36], LargeRDFBench [28], Feasible [31] – real-world RDF datasets

benchmarks in our evaluation:

• FedBench is federated SPARQL querying benchmarks. It

comprises of a total of 25 queries and 9 real-world intercon-

nected datasets. FedBench queries are further divided into

three main categories: (1) 7 queries from Life Sciences (LS)

domain, (2) 7 queries from Cross Domain (CD), and (3) 11

queries named Linked Data (LD) for link traversal-based ap-

proaches. The detailed statistics of the benchmark’s datasets

and queries are given in FedBench[36].

• LargeRDFBench is also a federated SPARQL querying bench-

mark. It comprises a total of 40 queries and 13 real-world

interconnected datasets. FedBench queries are further di-

vided into four main categories: (1) 14 Simple queries, (2) 10

7
https://old.datahub.io/dataset/semantic-web-dog-food

Complex queries, (3) 8 Large Data queries, and (4) 8 Com-
plex+High Data Sources queries. The detailed statistics of the
benchmark’s datasets and queries are given in [28].

• FEASIBLE is a benchmark generation framework which

generates customized benchmarks for the queries logs. In

our evaluation, we chose exactly the same benchmarks used

in [31]: (1) 175 queries benchmark generated from DBpe-

dia queries log and (2) 175 queries benchmark generated

from Semantic Web Dog Food (SWDF) queries log. Further

advanced statistics of the used datasets and queries can be

found in [31].

To the best of our knowledge, these are the state-of-the-art from

the real-data SPARQL benchmarks. All of the 415 queries used in

our evaluation is publicly available
8
.

5.1.2 Hardware: All the experiments were done on a modest ma-

chine with 200 GB of Hard Disk, 8 GB of RAM and a 2.70GHz single

core processor. Each of the queries was run 5 times and the average

of the results are presented.

5.1.3 SPARQL endpoints: As previously stated, the query federa-

tion over multiple SPARQL endpoints approaches requires the set

of endpoint URLs to be provided as input to the federation engine.

We chose a total of 539 active SPARQL endpoints available from

LOD cloud
9
. We filtered the endpoints URLs

10
and the total number

of triples hosted by each of these endpoints.

5.1.4 Metrics: Since WimuQ aims to retrieve more complete re-

sults within the reasonable amount of time, we choose two metrics:

(1) coverage in terms of the number of results retrieved from the

query executions and (2) the time taken to execute the benchmark

queries.

5.1.5 Approaches: As mentioned in Section 2, different federation

engines available to federate SPARQL queries over endpoints and

traversal-based federation. We chose FedX [37] for SPARQL end-

point federation and SQUIN [15] for traversal-based query federa-

tion. The reason for choosing these two engines is due the fact they

do not require any pre-computation of dataset statistics and hence

able to retrieve up-to-date results and able to run federated queries

with zero initial knowledge. In addition, both these engines perform

reasonably well in terms of query runtime performances w.r.t state-

of-the-art approaches [15, 30, 35]. For the sake of completeness, we

also compared WimuQ with SPARQL-a-lot and WimuDumps.

5.2 Results
Coverage of the results: The main purpose of WimuQ is to devise

a federation engine which is able to retrieve more complete results

for the given SPARQL queries. Figure 2 shows a comparison of

the selected approaches in terms of the average of the number of

results retrieved for the different queries categories of the selected

benchmarks. The complete results for individual queries can be

found on our aforementioned project website. By using different

query processing engines, our approach is able to retrieve more

8
Queries available from https://github.com/firmao/wimuT/blob/master/

queriesLocation.txt

9
List of SPARQL endpoints: https://lod-cloud.net/lod-data.json

10
Endpoints URLs with size: https://goo.gl/H2t5ko

https://tinyurl.com/WimuQexData
http://data.semanticweb.org
http://data.semanticweb.org
https://tinyurl.com/WimuQExample
https://old.datahub.io/dataset/semantic-web-dog-food
https://github.com/firmao/wimuT/blob/master/queriesLocation.txt
https://github.com/firmao/wimuT/blob/master/queriesLocation.txt
https://lod-cloud.net/lod-data.json
https://goo.gl/H2t5ko


results as compared to the results retrieved by only using SPARQL

endpoints federation engine (i.e, FedX) link traversal engine (i.e.,

SQUIN), data dumps, or HDT files. In our evaluation, the average

resultset size of WimuQ is 8481 across the three benchmarks. Out of

these, WimuQ collects about 91% of the results from wimuDumps

(avg. resultset size 7651), 7% from SPARQL endpoints (avg. resultset

size 556), and 1% from SPARQL-a-lot (avg. resultset size 74).
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Figure 2: Average number of results retrieved by the se-
lected approaches across different queries categories of the
selected benchmarks.

For FedBench, the WimuQ avg. resultset size is 2,253. Out of

these results, about 55% are collected from SPARQL endpoints by

using FedX query processing engines (avg. resultset size 1,262). The

LinkTraversal (SQUIN) contributed about 25% of the total results

(avg. resultset size 549), wimuDumps contributed about 10% of

the total results (avg. resultset size 226), and SPARQL-a-lot also

contributed about 10% of the results (avg. resultset size 215).

For LargeRDFBench, the WimuQ avg. resultset size 123. Out

of these results, about 81% are collected from wimuDumps (avg.

resultset size 100). The SPARQL endpoints contributed about 14% of

the results (avg. resultset size 17). The LinkTraversal(SQUIN) con-

tributed 6% of the total results (avg. resultset size 6), and SPARQL-

a-lot did not provide results (avg. resultset size 0).

For FEASIBLE, theWimuQ avg. resultset size 34,537. Out of these

results, about 98% are collected from wimuDumps (avg. resultset

size 33,893). The SPARQL endpoints contributed about 1.6% (avg.

resultset size 577). The LinkTraversal(SQUIN) approach contributed

only about 0.15% (avg. resultset size 54). Finally, SPARQL-a-lot query

processing engine only retrieved about 0.03% results (avg. resultset

size 11).

In summary, WimuQ is able to retrieve at least one resultset for

76% of the overall 415 queries. The results clearly shows that by

combining different query processing engines into a single SPARQL

query execution framework lead towards more complete resultset

retrieval. An important observation is that the selected approaches

are mostly not able to retrieve results for the Large Data and Com-

plex+High (Ch) queries categories of LargeRDFBench. The reason is

getting zero results for the Large Data queries is that these queries

retrieve results from the LinkedTCGA [34] datasets which were

not publicly available via SPARQL endpoints, were not indexed

by WIMU, also were not reachable via link traversals. While Ch

queries often require higher number of distributed datasets in order

to compute the final resultset of the queries. Thus, the approaches

were able to find all of the relevant datasets, required to compute

the final resultset of the queries. The average number of datasets
11

11
Here we also point the number of datasets discovered

queries by WimuQ for the selected benchmarks queries categories

in given in Figure 3. We can clearly see the highest number of

datasets are selected for Ch queries of LargeRDFBench.
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Figure 3: Average number of datasets discovered and queried
byWimuQ across different queries categories of the selected
benchmarks.

Query runtime performances: Figure 4 shows a comparison

of the selected query processing engines in terms of the average

query run times for the different queries categories of the selected

benchmarks. The average query runtime of WimuQ is 17 min-

utes across the three benchmarks. The average query execution

to collect results from wimuDumps is about 2 minutes, which in

turn is followed by query execution over SPARQL endpoints (avg.

query runtime 13 minutes), SPARQL-a-lot (avg. query runtime 58

seconds) and LinkTraversal (SQUIN) (avg. query runtime 36 sec-

onds). Interestingly, WimuQ collects about 91% of the results from

wimuDumps yet its average execution time is smaller than query

execution over SPARQL endpoints which provide only 7% of the

total results. One possible reason for this could be that in SPARQL

endpoint federation, the query processing task split among multiple

selected SPARQL endpoints and hence network and the number

of intermediate results play an important role in the quer runtime

performances.

For FedBench, the WimuQ average query runtime 20 minutes.

Out of this, the average avg. query runtime over SPARQL endpoints

is 16 minutes, followed by wimuDumps (avg. query runtime 2 min-

utes), LinkTraversal (SQUIN) (avg. query runtime 49 seconds), and

SPARQL-a-lot (avg. query runtime 46 seconds), respectively. For

LargeRDFBench, the average query execution of WimuQ is 11 min-

utes. Out of this query execution over SPARQL endpoints took 8

minuts on average, followed by wimuDumps (avg. query runtime

2 minutes), SPARQL-a-lot (avg. query runtime 35 seconds), and

LinkTraversal (SQUIN) (avg. query runtime 25 seconds), respec-

tively. For FEASIBLE, the WimuQ takes on average of 24 minutes

per query execution. Out of this, the query federation over SPARQL

endpoints took about 18 minutes on average. Which is followed by

wimuDumps (avg. query runtime 3 minutes), SPARQL-a-lot (avg.

query runtime 1), and LinkTraversal (SQUIN) (avg. query runtime

36 seconds), respectively.

As an overall query runtime evaluation, we can clearly see there

is a trade-off between the recall and query runtimes: the highest the

recall the highest the query runtimes. Finding a balance between

the recall and runtime would be an interesting research question

to be considered in the future.
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Figure 4: Average query runtimes of the selected approaches
across different queries categories of the selected bench-
marks.

The results of our evaluation lead us to validate our hypothesis

that we can improve the resultset retrieval if we identify potentially

relevant sources from heterogeneous RDF data.

6 CONCLUSIONS AND FUTUREWORK
We presented an approach to execute SPARQL queries over a large

amount of heterogeneous RDF data sources available from different

interfaces and in different formats. We made use of the Wimu

service to identify the potentially relevant sources to the qiven

SPARQL query. We discussed two main types of federated SPARQL

query processing approaches namely the endpoints federation and

traversal-based federation. The former type of federation only able

to execute federated queries over the data available from SPARQL

endpoint. While the later, faces problem of URI’s dereferenceability.

To overcome these issues we proposed a hybrid (endpoints+link-

traversal-based) federation engines which integrates four different

types of SPARQL query processing engines. Currently, WimuQ able

to execute both federated and non-federated SPARQL queries over

a total of 668k datasets available from LOD Stats, LOD Laudromat,

and LOD cloud active SPARQL endpoints. We evaluated WimuQ

by using three state-of-the-art real-data SPARQL benchmarks. We

showed thatWimuQ is able to successful execute (with some results)

majority of the benchmark queries without any prior knowledge of

the data sources. In addition, the WimuQ resultset recall is higher

with reasonable query execution times.

As future, we will add more URIs into the the WIMU index in

order to retrieve more complete and fast results. Furthermore, we

will add TPF interfaces and query execution engines such Comu-

nica [39] and SAGE [23] into the WimuQ query execution engine.

We will continue maintaining
12

and developing, extending WimuQ

to include the publicly-available triple pattern fragments interfaces

as well
13
.
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