
Enhancing Community Interactions with Data-Driven
Chatbots – The DBpedia Chatbot

Ram G Athreya
Arizona State University
Ram.G.Athreya@asu.edu

Axel-Cyrille Ngonga Ngomo
Data Science Group, Paderborn

University, Germany
axel.ngonga@upb.de

Ricardo Usbeck
Data Science Group, Paderborn

University, Germany
ricardo.usbeck@upb.de

ABSTRACT
In this demo, we introduce the DBPEDIA CHATBOT, a knowledge-
graph-driven chatbot designed to optimize community interaction.
The bot was designed for integration into community software to
facilitate the answering of recurrent questions. Four main challenges
were addressed when building the chatbot, namely (1) understanding
user queries, (2) fetching relevant information based on the queries,
(3) tailoring the responses based on the standards of each output
platform (i.e. Web, Slack, Facebook) as well as (4) developing sub-
sequent user interactions with the DBPEDIA CHATBOT. With this
demo, we will showcase our solutions to these four challenges.

KEYWORDS
DBpedia, chatbot, knowledge base, question answering

ACM Reference Format:
Ram G Athreya, Axel-Cyrille Ngonga Ngomo, and Ricardo Usbeck. 2018.
Enhancing Community Interactions with Data-Driven Chatbots – The DBpe-
dia Chatbot. In WWW ’18 Companion: The 2018 Web Conference Compan-
ion, April 23–27, 2018, Lyon, France. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3184558.3186964

1 INTRODUCTION
Growing domain-specific communities (e.g., the DBpedia [6] com-
munity)1 are often characterized by new users asking previously
answered questions upon joining the community. Mailing lists, fo-
rums (e.g., Facebook, Twitter) or the public Slack channel and FAQs
are examples of the types of measures that are often put in place
to mitigate this common problem. However, these solutions are
static and fail to interact with new community members. We address
this interaction issue for the DBpedia community by presenting
the DBPEDIA CHATBOT, which leverages existing communication
sources (between users) as well as DBpedia to enhance community
interactions in the DBpedia community.

In this demo, we will 1) describe and showcase the idea of tech-
nology federation through a chatbot to facilitate more efficient com-
munication in a community via examples run on laptops, 2) we will
ask users for their feedback to enhance the community value and 3)
show preliminary evaluations of the DBPEDIA CHATBOT.

The contributions of this demo are as follows:
1http://wiki.dbpedia.org/about/dbpedia-community-0

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3186964

(1) We implemented a baseline approach to intent classification
for technology federation,

(2) We implemented a rule-based approach to answer questions
related to the DBpedia community,

(3) We combined several tools for answering factual questions,
(4) We expose the research work being done in DBpedia as prod-

uct features. For example:
• Genesis [5]: We use the APIs from the Genesis project to

show similar and related information for a particular entity.
• QANARY [4]: We use WDAqua’s question answering ap-

proach to answer factual questions that are posed to the
DBPEDIA CHATBOT.

Our implementation is open-source and a screencast as well as
source code can be found at https://github.com/dbpedia/chatbot.
A live demo can be found at http://chat.dbpedia.org.

2 RELATED WORK
One of the early chatbots was ELIZA [11], which was designed
around a pattern matching approach. ELIZA was intended to sound
like different persons, e.g. like a psychotherapist. Later, the ELIZA-
inspired chatbot ALICE [10] was introduced. ALICE was imple-
mented based on a scripting language called AIML2, which is next to
RiveScript3, which is currently among the most used languages for
chatbots. More recent chatbots, such as Rose, combine chat scripts
with question understanding to better mimic domain experts [1].
Recent approaches have also considered tackling the combination of
RDF and chatbots, e.g., [2, 3, 9]. Due to the lack of space, we refer
the interested reader to [1, 7] for further references.

3 APPROACH
Our architecture is based on a modular approach to account for
different types of user queries and responses, as can be seen in
Figure 1. The DBPEDIA CHATBOT is capable of responding to users
via (1) simple short text messages or (2) through more elaborate
interactive messages using the underlying knowledge graph. Users
can communicate with the DBPEDIA CHATBOT through (3) text but
also through (4) interactions such as clicking on buttons or links as
well as giving feedback. Furthermore, we focused on designing this
bot so that it can be connected to a multitude of platforms to increase
outreach to the community. The core of the DBPEDIA CHATBOT

is based on the Spring framework4 and can run on a single core
machine or be distributed across a cluster. Incoming user feedback
is stored in Couch DB in an anonymous way for further research .

2http://www.alicebot.org/aiml.html
3https://www.rivescript.com
4https://spring.io/

https://doi.org/10.1145/3184558.3186964
http://wiki.dbpedia.org/about/dbpedia-community-0
https://doi.org/10.1145/3184558.3186964
https://github.com/dbpedia/chatbot
http://chat.dbpedia.org
http://www.alicebot.org/aiml.html
https://www.rivescript.com
https://spring.io/


Figure 1: Architecture of DBPEDIA CHATBOT.

In the following sections, we explain our approach in detail. We will
also demonstrate all possible interactions at the demo booth.

Query Lifecycle. We devised a modular pipeline to interweave
novel knowledge base technologies, in this case DBpedia-related,
into our approach. The process by which the DBPEDIA CHATBOT

handles incoming requests can be divided into four steps:
(1) Incoming Request: For each platform, a webhook handles

the incoming request and forwards it to the routing module.
(2) Request Routing: Incoming requests are routed based on

their respective type. Pure text requests are handled by the
Text Handler while parameterized requests are handled by the
Template Handler.
• Pure Text Requests: A pure text request is basically a

text message from the user. We use RiveScript to identify
the intent of the message and classify it into the following
types (see Section Intent Classification): DBpedia Ques-
tions (rule-based community questions, service checks, lan-
guage chapters, etc.), Factual Questions (including location
questions) and Banter.

• Parameterized Requests: These are triggered when users
click on links in information already presented (e.g., a
“Learn More” button when presented with information
about a particular resource).

(3) Generate Response: The response from the handlers is con-
verted to a format that is suitable for each platform.

(4) Send Response: Finally, the response is sent back to the re-
spective platform. Additionally, for the Web interface, the
client side code to handle the responses is written using
standard front-end technologies such as HTML, CSS and
Javascript.

Intent Classification. Intent classification is the first step while
processing natural language queries since there are several kinds of
questions that the DBPEDIA CHATBOT needs to handle. All natural

Figure 2: Query Fulfillment Workflow.

language questions are passed to RiveScript which was developed
upon the underlying communication protocols for intent classifica-
tion. Based on contextual rules defined in RiveScript, the incoming
request is classified into the categories aforementioned and passed
on to respective request handlers. Algorithm 1 shows the mechanics
of the intent classification process and Figure 2 shows the overall
workflow of how a query is internally processed by the chatbot. The
different handlers and the APIs that support them are explained later.

Algorithm 1 Intent Classification Pseudocode

1: Consider user query Q
2: Intialize RiveScript variables
3: Sanitize common misspellings in Q using JLanguageTool
4: Apply substitutions on Q {Eg: I’m => I am}
5: Load all RiveScript rules to memory
6: Sort rules based on priority, rule structure, position of wildcards,

etc.
7: for all rule in rules do
8: if Q matches rule then
9: return rule− > classi f ication, rule− > arдs

10: end if
11: end for

Rule-Based Community Questions. The DBpedia Handler is
tailored towards conversations around the DBpedia community and
based on existing useful background conversations. Here, we ex-
plored DBpedia’s mailing lists to answer DBpedia-related questions
via a rule-based approach.

Data Sources. The official mailing lists of DBpedia were chosen
as the primary data source for this task. This includes the DBpedia
Discussion5 and DBpedia Developers mailing lists6. Conversational
threads from the mailing lists were extracted to find interesting

5https://sourceforge.net/p/dbpedia/mailman/dbpedia-discussion
6https://sourceforge.net/p/dbpedia/mailman/dbpedia-developers

https://sourceforge.net/p/dbpedia/mailman/dbpedia-discussion
https://sourceforge.net/p/dbpedia/mailman/dbpedia-developers


question-answer pairs that could be used for creating conversational
scenarios for the chatbot. This dataset was augmented with some
conversations from Slack that were handpicked in an ad-hoc manner.

Data Cleanup Tasks. The mailing list dump (mbox file)7 was
taken as an input and pre-processed to remove undesired messages
based on the criteria mentioned in subsequent sections. The result
from pre-processing was stored in a JSON file with the key being the
original message subject and all associated messages were stored
as an array for further processing. Several threads were excluded or
sanitized in the final dataset, including the following criteria:

• All messages that are request for comments, call for papers,
announcements etc.

• Messages that do not have question words in their subject or
body. Question words considered were: What, When, Why,
Which, Who, How, Whose, Whom.

• Words such as reply, fwd etc from the subject
• Reply sections to reduce redundancy
• Unnecessary HTML tags, whitespaces, new lines, etc.

TF-IDF Vectorization. The remaining messages were vectorized
for use in the latter clustering step.8 Then the subject of each message
was tokenized and stemmed using the Porter Stemmer within the
Pandas framework.9 This stemmed output was used as input to a TF-
IDF vectorizer to convert the text input to a matrix array containing
frequencies of each term in every message. The total number of
extracted features was 135.

K-Means Clustering. The TF-IDF vector was passed as input
to a K-Means algorithm to cluster interesting topics using cosine
similarity which formed the baseline for our rule-based conversa-
tion module. Some of the major categories that were identified and
clustered through the algorithm are: ’About DBpedia’, ’DBpedia
Lookup’10, ’DBpedia Datasets Download/Dump’, ’DBpedia Re-
leases’ and ’DBpedia Extraction Framework’.

Rule-Based Conversation. The topics and threads that were de-
rived from the previous steps were converted into rules in RiveScript
in the form of patterns called triggers. These triggers are similar in
structure to regular expressions but have more sophisticated and ex-
pressive features such as variable output, redirections between rules,
dialogue blocks for continued conversation, etc. A typical (simple)
rule has a structure akin to that shown in Equation 1. The first line
specifies the input pattern that needs to be matched. The second
line specifies the response from RiveScript, which is then further
processed by the request handlers aforementioned. This particular
rule can be used to answer queries such as "How can I contribute to
DBpedia?", "Get involved with DBpedia.", etc.

+[how][∗](contribute∥contributinд∥involved)[∗]dbpedia[∗]
−{”type” : ”template”, ”params” : ”dbpedia − contribute”} (1)

7https://github.com/dbpedia/dbpedia-chatbot-data
8A converted CSV file can be found at https://raw.githubusercontent.com/dbpedia/
dbpedia-chatbot-data/master/data/dbpedia-discussion-archive-dataset.csv
9https://pandas.pydata.org/
10http://wiki.dbpedia.org/projects/dbpedia-lookup

Query Fulfillment. Based on the intent detected in the previous
step, an appropriate request handler is triggered. Within the context
of DBpedia-related questions, the DBpedia handler generates a re-
sponse which is usually a templated answer based on the scenario.
However, for certain queries such as "Is DBpedia down right now?"
additional steps are carried out by the DBPEDIA CHATBOT to check
whether the DBpedia website and SPARQL endpoint are working
and the result of this finding is returned back to the user as the
response.

Natural Language Questions. To answer natural language or
factual questions, the bot uses currently a combination of WDAqua’s
QANARY [4]11 question answering system and WolframAlpha. 12

The responses from QANARY are typically DBpedia URIs or RDF
literals13 with proper semantic annotation, while responses from
WolframAlpha typically need to be linked to DBpedia. The chatbot
uses DBpedia Spotlight [8] and the DBpedia Lookup service for this
purpose. The results are cascaded based on priority levels with a
higher priority given to RDF literals since they are typically a precise
answer to a question. A lower priority is assigned to DBpedia URIs
if both RDF literals and URIs are generated as candidate results for
a query. Finally, the responses from both systems are amalgamated
using a UNION strategy and the results are presented to the user.
Additionally, for location-related questions the DBPEDIA CHAT-
BOT employs OpenStreetMap14 data to acquire relevant geographic
information.

Knowledge Cards. The DBPEDIA CHATBOT enriches RDF URIs
from the responses for users and displays important attributes about
the respective entity. These knowledge cards are designed simi-
lar to the infoboxes shown in Wikipedia. This feature is based on
the underlying knowledge graph, a list of all classes in the ontol-
ogy namespace.15 Note, this feature is agnostic to any RDF knowl-
edge base. For a given class, we found the total number of occur-
rences of that class in the knowledge graph. Then, we extracted all
rdfs:domain properties for the respective class and calculated
the number of distinct occurrences of each individual property in
the knowledge graph. We derived a relevance score r ∈ [0, 1] for
each property p for the given class c: rp,c = Np/Nc , where Np is the
number of distinct occurrences of the property and Nc is the number
of distinct occurrences of the class.

For a given entity, 1) we extracted all its classes and 2) available
properties and 3) found the top properties for each class and verified
if they existed for the given entity. If they did, we shortlisted those
properties and displayed the top n properties to the user which were
ranked by their relevance score.

Follow-Up Interactions. To enhance the user experience when-
ever the user makes a query to the system, helpful follow up interac-
tions are provided in the form of buttons or links which the user can
interact with to continue the conversation with the chatbot through
a tap or click. Such a feature allows the user to delve deeper into a
particular topic or result. For example, if the user searches Barack

11Based on the DBpedia version 2016-10
12http://products.wolframalpha.com/api/
13https://www.w3.org/TR/rdf11-primer/
14https://www.openstreetmap.org/about
15In our case it is http://dbpedia.org/ontology/

https://github.com/dbpedia/dbpedia-chatbot-data
https://raw.githubusercontent.com/dbpedia/dbpedia-chatbot-data/master/data/dbpedia-discussion-archive-dataset.csv
https://raw.githubusercontent.com/dbpedia/dbpedia-chatbot-data/master/data/dbpedia-discussion-archive-dataset.csv
https://pandas.pydata.org/
http://wiki.dbpedia.org/projects/dbpedia-lookup
http://products.wolframalpha.com/api/
https://www.w3.org/TR/rdf11-primer/
https://www.openstreetmap.org/about
http://dbpedia.org/ontology/


Figure 3: Screenshot of three different platform views (left to right): Web, Slack, Facebook Messenger.

Obama, the DBPEDIA CHATBOT can also show related entities such
as the Democratic Party or similar people such as Bush or Clinton.

Banter or Casual Conversation. Banter messages are typically
casual in nature and have very little bearing on the core functionality
of a chatbot. Still, we provide a basic set of responses for such
queries. Some examples of banter could be messages such as "Hi",
"What is your name", etc. As a fallback in cases of no applying rule,
Eliza [11] is used as a filler.

Deployment to Platforms. Our approach is accessible from differ-
ent platforms to increase the usability and allows as many users as
possible to access it. In particular, the DBPEDIA CHATBOT can be
accessed via a web interface (optimized for both Desktop & Mobile),
Slack and Facebook Messenger (which we hope to integrate soon
into DBpedia’s official page). Screenshots of all platforms can be
seen in Figure 3.

4 CONCLUSION
Since its launch (between July 2017 to Dec 2017), the DBPEDIA

CHATBOT has been used by over 1400 users with an average conver-
sation length of 16 messages. These statistics suggest that there is a
genuine interest for users to interact with the DBPEDIA CHATBOT.
We hence aim to extend DBPEDIA CHATBOT in the future to over-
come the current limitations, e.g. we will include other approaches
such as the DBpedia relationship finder16, more data sources (stack-
overflow) and evaluate feedback on such interactions, e.g., we will
investigate details on types of questions asked by users compared
with the top ones in DBpedia mailing lists.

Acknowledgements This work has been supported by the BMVI
projects LIMBO (project no. 19F2029C) and OPAL (project no.
19F2028A) as well as by the German Federal Ministry of Education
and Research (BMBF) within ’KMU-innovativ: Forschung für die

16http://www.visualdataweb.org/relfinder.php

zivile Sicherheit’ in particular ’Forschung für die zivile Sicherheit’
and the project SOLIDE (no. 13N14456).

Authors: Ram G Athreya is a graduate student at Ari-
zona State University and Google Summer of Code ’17
participant.

Prof. Axel-Cyrille Ngonga Ngomo has been a Google
Summer of Code mentor since 2015.

Dr. Ricardo Usbeck has been a Google Summer of Code
mentor since 2016.

REFERENCES
[1] Sameera A Abdul-Kader and John Woods. 2015. Survey on chatbot design

techniques in speech conversation systems. Int. J. Adv. Comput. Sci. Appl. (2015).
[2] H. Al-Zubaide and A. Issa. 2011. OntBot: Ontology based chatbot. In International

Symposium on Innovations in Information and Communications Technology.
[3] A. Augello, G. Pilato, G. Vassallo, and S. Gaglio. 2009. A Semantic Layer

on Semi-Structured Data Sources for Intuitive Chatbots. In 2009 International
Conference on Complex, Intelligent and Software Intensive Systems. 760–765.

[4] Andreas Both, Dennis Diefenbach, Kuldeep Singh, Saeedeh Shekarpour, Didier
Cherix, and Christoph Lange. 2016. Qanary - A Methodology for Vocabulary-
Driven Open Question Answering Systems. In ESWC. 625–641.

[5] Timofey Ermilov, Diego Moussallem, Ricardo Usbeck, and Axel-Cyrille Ngonga
Ngomo. 2017. GENESIS: a generic RDF data access interface. In Proceedings of
the International Conference on Web Intelligence. 125–131.

[6] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. 2015. DBpedia–a large-scale, multilingual knowledge base
extracted from Wikipedia. Semantic Web 6, 2 (2015), 167–195.

[7] Michael McTear, Zoraida Callejas, and David Griol. 2016. Conversational Inter-
faces: Past and Present. In The Conversational Interface. Springer, 51–72.

[8] Pablo N. Mendes, Max Jakob, Andrés García-Silva, and Christian Bizer. 2011.
DBpedia spotlight: shedding light on the web of documents. In Proceedings the
7th International Conference on Semantic Systems, I-SEMANTICS. 1–8.

[9] Mon-Tin Tzou, Chun-Hung Lu, Chin-Chien Wang, Cheng-Wei Lee, and Wen-Lian
Hsu. [n. d.]. Extending knowledge of AIML by using RDF. ([n. d.]).

[10] Richard S Wallace. 2009. The anatomy of ALICE. Parsing the Turing Test (2009),
181–210.

[11] Joseph Weizenbaum. 1966. ELIZA—a computer program for the study of natural
language communication between man and machine. Commun. ACM (1966).

http://www.visualdataweb.org/relfinder.php

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Conclusion
	References

