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ABSTRACT
DBpedia releases consist of more than 70multilingual datasets that
cover data extracted from different language-specific Wikipedia
instances. The data extracted from those Wikipedia instances are
transformed into RDF usingmappings created by theDBpedia com-
munity. Nevertheless, not all the mappings are correct and con-
sistent across all the distinct language-specific DBpedia datasets.
As these incorrect mappings are spread in a large number of map-
pings, it is not feasible to inspect all such mappings manually to
ensure their correctness. Thus, the goal of this work is to pro-
pose a data-driven method to detect incorrect mappings automati-
cally by analyzing the information from both instance data as well
as ontological axioms. We propose a machine learning based ap-
proach to building a predictive model which can detect incorrect
mappings. We have evaluated different supervised classification al-
gorithms for this task and our best model achieves 93% accuracy.
These results help us to detect incorrect mappings and achieve a
high-quality DBpedia.

CCS CONCEPTS
• Information systems→ Resource Description Framework
(RDF); • Computing methodologies → Cross-validation; Se-
mantic networks; • Social and professional topics→ Quality as-
surance;
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1 INTRODUCTION
A large number of RDF knowledge bases are created by transform-
ing non-RDF data sources into RDF. Such non-RDF formats include
relational databases, CSV files, key-value pairs, etc. A key input to
this transformation process is a mapping that defines how to trans-
form the non-RDF source data into RDF. Such mapping specifies
how tomap the source schema into RDF vocabularies, and possibly
other data transformations.

DBpedia [2], the main hub of the Linked Open Data Cloud, ex-
poses data fromWikipedia as machine-readable Linked Data. Until
2011, only data from the English languageWikipediawas extracted
but, since then, several “language-specific” DBpedia chapters were
created for other Wikipedia languages. For example, the Spanish
DBpedia1 (esDBpedia) was created in 2012 and currently there are
more than 15 other “language-specific” DBpedia chapters.

The DBpedia data extraction process generates RDF data based
on the mappings [15] that map: (1) Wikipedia infobox templates
to classes of the DBpedia ontology, and (2) infobox template key-
value pairs of eachWikipedia infobox template to ontology proper-
ties. In a large knowledge base such as DBpedia there is a consider-
ably large number of mappings; for instance, DBpedia 2016-04 ver-
sion has more than 5K template mappings (for all languages) and
much larger number of infobox template key-value pairs. As these
mappings are created by a diverse community of volunteers using
crowd-sourcing techniques, it is frequent to have wrong or incon-
sistent mappings. Notice that each incorrect mapping produces a
plethora of incorrect data because there are thousands of infobox
instances for a given infobox template. For instance, if the infobox

1http://es.dbpedia.org
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template for Mountain, which has 16 thousand instances (moun-
tain entries) in the English Wikipedia, has an incorrect mapping
for one of its keys (e.g. dbo:height instead of dbo:elevation for the
key elevation), all the mountain instances would get an incorrect
value for that property.

The wrong mappings can be due to many reasons. The DBpe-
dia ontology is considerably large and evolves in a collaborative
manner with significant additions and removals in each version
and some mapping contributors do not have knowledge about all
the 685 classes and 3500+ properties of the ontology. Further, there
are also language issues. Most of the contributors of the language-
specificDBpedia chapters are non-native English speakers and they
have influences from their native language when selecting map-
ping terms. For instance, while in the English DBpedia elevation
of an mountain is mapped to the dbo:elevation property most
language-specific DBpedia instances map it to dbo:height which is
not intended for mountains but for humans. Inconsistencies of the
mappings (same semantic relation mapped to distinct properties)
can also be caused by duplicate properties in large ontologies such
as the DBpedia ontology. For instance, the DBpedia ontology has
two properties dbo:formationYear and dbo:foundingYear and both
denote the year an organization was established. As both terms are
suitable for representing the relation, different DBpedia language-
specific chapters use them in mappings in an inconsistent manner.
In such cases, even though the generated data is not semantically
incorrect, the proper reuse of data is hindered because it is hard to
query the data (the users will have to use all the possible alterna-
tives in queries) and hard to integrate data frommultiple language-
specific datasets.

Another problematic type of mappings is mapping more spe-
cific relations to generic properties in DBpedia. For instance, for
describing the postal code of a city, somemappings use the generic
property dbo:code instead of the more specific and most appro-
priate property dbo:postalCode. Such mappings also create incon-
sistencies among data from different language-specific DBpedia
datasets and make queries across the DBpedia language-specific
datasets harder. Thus, all these inaccuracies and inconsistencies in
mappings either lead to incorrect data or causes inconveniences for
querying or data integration. However, as these inaccuracies and
inconsistencies are scattered over a large number of mappings, it
is not feasible to analyze each of themmanually by a set of experts.
Further, most of such inconsistencies are not unveiled when they
are inspected individually but rather uncovered only when they
are compared to other similar mappings.

Themain objective of ourwork is to propose a data-drivenmethod
to detect the aforementioned mapping deficiencies automatically
by analyzing: (1) instance data fromdistinct language-specific datasets,
and (2) the ontological axioms of the DBpedia ontology. More con-
cretely, our goal is to build a classifier using a set of features that
can be used to identify such deficiencies. In this way we would be
able to automatically classify mappings as Correct or Incorrect.

In our approach, we use the intuitive assumption that when a
given resource has the same object value for two distinct prop-
erties, there is a high probability of having a mapping inconsis-
tency, i.e., the same relation is mapped to two distinct properties.
For example, if the English and Spanish DBpedia have the same

subject-object pair <Mount_Everest, 8848> related with two dis-
tinct properties dbo:elevation and dbo:height, it may be possi-
ble that both properties refer to the same relation. To identify such
occurences, we use different language-specific DBpedia instances
(for example, English DBpedia, Spanish DBpedia, Greek DBpedia,
Dutch DBpedia) with similar data with equivalence relations (as
owl:sameAs links) among them.

Nevertheless, we also take into account that the possibility of
two distinct properties having the same value by coincidence (e.g.,
birthPlace and deathPlace of a person or largestCity and capital of
a country) could have same subject and same object pairs quite
frequently even though those relations are not semantically equiv-
alent.We define a set of data-drivenmetrics taking all these aspects
into account. Further, we also define a set of metrics based on the
ontological axioms such as the domain and range of a given prop-
erty and their hierarchical relationships to extract features that can
help to determine if a given mapping is incorrect.

Our hypothesis is that we can develop a classifier capable of
identifying incorrect mappings with high precision by using the
features that we have defined in this study. In order to evaluate
this hypothesis we have created a set of test data bymanually anno-
tating DBpedia mappings pairs from multiple languages (English-
Spanish, English-Greek, English-Dutch, Spanish-German). The se-
lection of the languages were driven by the availability of human
annotators. We have analyzed a selection of supervised learning
classification algorithms. In the best case, the proposed classifier
(based on the Random Forest algorithm) has an overall accuracy
of 93% (mappings classified correctly as ‘Correct’ or ‘Incorrect’).

The main contributions of this work are (a) a feasibility study of
using data-driven features for classification of incorrect mappings,
(b) a set of test data manually annotated by the DBpedia experts
that can be reused for other studies, and (c) a predictive model
for detecting incorrect mappings in English, Spanish, Greek, and
Dutch DBpedia instances.

2 PROBLEM DEFINITION
The main research problem studied in this paper is “is it possible
to automatically detect incorrect mappings by analyzing two knowl-
edge graphs created using two sets of different mappings?". We as-
sume that the knowledge graphs have an overlap, i.e., some enti-
ties are described in both, and the coreferences (owl:sameAs links)
can be resolved.

In the DBpedia use case, we can find a large number of datasets
that contain similar data, i.e., the language-specific DBpedia knowl-
edge bases and a large portion of the entities present in those knowl-
edge bases are linked by equivalence relationships based on the
manually annotated wikilinks contributed by the Wikipedia com-
munity. For instance, the entity dbr:Mount_Everest is included in
more than 15 other DBpedia language-specific datasets, and the
coreferences (i.e., the links that refer to the same entity) anno-
tated using the owl:sameAs relation [8]. All these entities that de-
scribe Mount Everest in different DBpedia datases such as English
DBpedia, Spanish DBpedia, Greek DBpedia, and German DBpedia
mostly contain similar information about it such as its location,
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Table 1: Data from correct and consistent mappings

DBpedia Subject Predicate Object

English dbr:Mount_Everest geo:long 86.925278
dbo:mountainRange dbr:Himalayas

Spanish dbr-es:Monte_Everest
(owl:sameAs
dbr:Mount_Everest)

geo:long 86.925278

dbo:mountainRange
dbr-es:Himalayas
(owl:sameAs
dbr:Himalayas)

Greek dbr-el:
(owl:sameAs
dbr:Mount_Everest)

geo:long 86.925278

dbo:mountainRange
dbr-el:
(owl:sameAs
dbr:Himalayas)

German dbr-de:Mount_Everest
(owl:sameAs
dbr:Mount_Everest)

geo:long 86.925278

dbo:mountainRange

dbr-de:
Mahalangur_Himal
(owl:sameAs
dbr:Himalayas)

Table 2: Data from an incorrect mapping

DBpedia Dataset Subject Predicate Object
English dbr:Mount_Everest dbo:elevation 8848
Spanish dbr-es:Monte_Everest dbo:height 8848
Greek dbr-el: dbo:elevation 8848
German dbr-de:Mount_Everest dbo:elevation 8848

elevation, important climbers, etc. Thus, as it can be seen in Ta-
ble 1 such relations are mapped correctly to the same correspond-
ing property in all DBpedia language-specific datasets.

However, in some cases, due to the errors in the mappings such
relations can be mapped to properties not intended for the given
relation. For instance, Table 2 shows the property that corresponds
to the elevation of the Month Everest in each dataset. As it can be
seen from the table, while three of the datasets have mapped that
relation to dbo:elevation property, the Spanish DBpedia dataset
has mapped it to dbo:height. In our work, we use a set of fea-
tures extracted from the two datasets to identify such incorrect
mappings.

In DBpedia, this data is generated from Wikipedia by mapping
Wikipedia infobox keys to DBpedia ontology properties. DBpedia
maintainsmappings for each language-specificWikipedia template
and thosemappings are improved over time by contributers adding
mappings to common keys in those infobox templates. At the mo-
ment, these mappings are maintained in a specific wiki2 and the
DBpedia contributors with access to the mapping wiki maintain
and improve the mappings on regular basis. However, as those
mappings are created by a diverse community, inaccuracies and
inconsistencies are introduced during this process. In this work,
we categorize mappings firstly into two categories: correct and in-
correct mappings.

Our hypothesis is that we can develop a classifier capable of
identifying incorrect mappings with high precision by using the
features that we have defined in this study. In the next section,

2See http://mappings.dbpedia.org

we discuss an approach for developing such classifier and how to
evaluate it.

3 APPROACH
This section describes the feature engineering for creating the pre-
dictive model, as well as the model preparation process.

3.1 Feature descriptions
The features that we used for building the model are of two types:
(a) instance-based features, and (b) schema-based features. We will
define the features using twoRDF graphs, graphGi where ⟨Si ,Pi ,Oi ⟩ ∈
Gi and graph Gi where ⟨Sj ,Pj ,O j ⟩ ∈ G j .

Instance-based features are extracted from ABox information
in a data-drivenmanner. The key advantage of such features is that
they can be extracted even when no schema information is avail-
able. There are 4 direct features, denoted by M1-M4 and 4 derived
features, denoted C1-C4. Direct features can be any whole number,
derived features always have a normalized range of [0 − 1].

M1(Gi ,G j ,Pi ,Pj):M1 is defined as the count of Si resources i.e.
⟨Si ,Pi ,Oi ⟩ ∈ Gi , ⟨Sj ,Pj ,O j ⟩ ∈ G j , and Si is same as or equivalent
to Sj . This gives the frequency of resources having property Pi in
graphGi while having property Pj inG j . The rationale behind this
feature is to check how probable is that a resource will have prop-
erty Pj in G j given that the resource has Pi in Gi . For example, if
the elevation of a mountain is mapped to dbo:elevation in English
DBpedia, and wrongly mapped to dbo:height in Spanish DBpedia,
the instances of mountains having dbo:elevation in English DB-
pedia and dbo:height in Spanish. Our intuition is if Pj is wrongly
mapped in G j (to denote Pi ) this number should be high.

M2(Gi ,G j ,Pi ,Pj):M2 is defined as the number of ⟨Si ,Oi ⟩ pairs
i.e. ⟨Si ,Pi ,Oi ⟩ ∈ Gi , ⟨Sj ,Pj ,O j ⟩ ∈ Gj, Si is equivalent to Sj , and also
Oi is equivalent toO j . BecauseM2 only counts occurrences where
the objec is also the same, it is even stronger indication that two
properties refer to the same relation (see, Table 2). Our intuition
is that when M2 is high, there is a higher-probability that those
properties may refer to the same relation. For example, if we take
M2(EN,ES,dbo:elevation,dbo:height), there are 5108 resources with
the same object value in two graphs, giving an indication that they
might refer to the same relation and one mapping is inconsistent.

M3(Gi ,G j ,Pi ,Pj): M3 is defined as the number of Si resources
i.e. ⟨Si ,Pi ,Oi ⟩ ∈ Gi and ⟨Sj ,Pj ,O j ⟩ ∈ G j where Si is equivalent to
Sj but Oi is different from O j . This features looks for the opposite
of M2. The rationale is that it is possible to have false positives in
M2, for example, people are born and have died in the same place
by coincidence (dbo:birthPlace/dbo:deathPlace) or actors who are
also directors in given film (dbo:directedBy/dbo:actor). Thus, in this
feature we count the number of counter examples. Our intuition is
that when we find few matches in M2 by coincidence, M3 should
be able to find reasonable amount of counter examples.

M4(Gi ,Pi ,Pj): M4 is defined as the number of Si resources in
graph Gi that contain both property Pi and Pj simultaneously in
the same graph. The rationale for this feature is similar toM3. The
intuition is that this is higher when the two properties denote two
distinct relation than when they denote the same. For example,

http://mappings.dbpedia.org
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more resources have both dbo:birthPlace and dbo:deathPlace prop-
erties in same resource simultaneously (denoting two distinct rela-
tions) compared to dbo:elevation and dbo:height in same resource.

The derived features are calculated by normalizingM2,M3, and
M4 usingM1 i.e. C1 =M2/M1, C2 =M3/M1, and C3 =M4/M1.

Schema-based features are extracted from TBox information.
When we manually analyzed mappings, we found that it’s com-
mon to have generic properties in some wrong mappings, for in-
stance, using dbo:code instead of dbo:postalCode. Further, we no-
ticed wrong mappings could also be due to duplicated proper-
ties (for the same relation), for example, dbo:foundingYear and
dbo:formationYear. Schema-based features try to capture hints for
such cases. There are 11 schema-based features: TB1-TB11.

TB1 checks if the property Pi is a subproperty of Pj and TB2
checks vice versa, i.e., Pj is a subproperty of Pi . TB3 checks if the
classes corresponding are the same in both graphs. TB4 checks if
the class in Gi is a subclass of the class in G j and TB5 checks vice
versa. TB6 checks if the domains of Pi and Pj are the same. TB7
domain(Pi ) is subclass of domain(Pj ) and TB8 checks vice versa.
Similarly,TB9 checks if the ranges of Pi and Pj are the same.TB10
checks range(Pi ) is subclass of range(Pj ) and TB11 checks vice
versa.

3.2 Model preparation
Because we are using supervised training techniques, it is neces-
sary to collect annotations to train the learning algorithms.

We have asked experts from 4 DBpedia chapters to manually
inspect mappings. For selecting the mappings that can possibly
contain errors, we have used our previous assumption that when
there is a high number of same subject and same object combina-
tions with different properties in two different datasets of DBpedia,
this could be because of a wrong mapping. Thus, we selected such
mappings from 4 combinations of DBpedia datasets (EN-ES, EN-
DE, EN-NL, EN-GR) and asked the language-pair experts to anno-
tate if the mappings were correct or not. The instructions provided
to the language-pair experts are available online in the following
link3.

To facilitate the annotation, for each mapping we provided the
Wikipedia infobox template name, infobox key, and the property it
is mapped to for each of the language. A snippet from the English-
Spanish annotation table is shown in Table 3.

For sake of clarity, we will describe the process for the English-
Spanish (EN-ES) case.We distinguish between two kinds of objects:
IRIs and literals. We start with the literals case, in which 226 anno-
tations have been provided manually by contributors from our in-
stitutions, fluent in both languages. Then, we trained a predictive
model with these annotations. The data file is publicly available at
https://www.openml.org/d/40742, were you also can see a statistic
summary for each variable in the dataset. The training set contains
182 mappings annotated as “Correct" and 44 as “Incorrect". There-
fore, the simplest classifier (known as ZeroR), which assigns the
most popular class value, has an accuracy of 64.29%. This classifier
establishes the baseline value that must be enhanced by our model.

We tested several classifiers using a 10-fold cross-validation.
Each fold was stratified, that is, keeping class proportions.We used

3http://goo.gl/M1go5S
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Figure 1: ROC curve for relevant classifiers.

the weka environment (version 3.8.1) [9] and the classifiers use de-
fault parameters unless otherwise stated.

The best results for accuracy (correctly classified instances)
were for Random Forest (93.36%), Multilayer Perceptron (94.25%)
and Support Vector classifier (93.36%). Figure 1 shows the ROC
curve for these classifiers. In this figure (and also in columns ‘ROC
Area’ in table 5) we can see that Random Forest has the highest
ROC AUC (Area Under the Curve) and, therefore, can be consid-
ered the best classifier among the ones considered.

This figure also shows the specific point in which these classi-
fiers reach a 50% threshold. These points are the “working points"
for the non-penalty classifiers, that is, the points for which the
cost/benefit curve reaches its minimum value. If we are interested
in penalizing the false positives (i.e., a higher value than the value
assigned to false negatives) the working point of the classifier will
move to another point in this curve.

Table 4 summarizes some relevant classifier output values for
these classifiers. Table 5 shows the detailed accuracy by class as
well as the confusion matrix.

4 RESULTS
4.1 Using the predictive model

4.1.1 Prediction on IRIs. If we apply this predictive model to
objects being IRIs, the accuracy (correctly classified instances) is
95.00%, very similar to the 93.36% achieved when objects are liter-
als. Notice that this IRIs dataset, or any other IRI datatset, has not
been “seen" by the model in its training. The dataset (80 instances,
71 Correct and 9 Incorrect) is publicly available4.

4.1.2 Prediction on datasets in other languages. It would be
great to have a unique model (trained with data annotated in an
specific language) capable of predicting incorrect mappings not
only in its own language but in other languages. This would be

4https://www.openml.org/d/40744
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Table 3: A snippet from English-Spanish mapping annotation

Template(en) Infobox_French_commune Infobox_company Infobox_mountain Infobox_album
Attribute(en) elevation_m foundation elevation_m Artist
Template(es) Ficha_de_entidad_subnacional Ficha_de_organización Ficha_de_montaña Ficha_de_álbum
Attribute(es) elevación_media fundación Elevación productor
Prop(en) dbo:elevation dbo:foundingYear dbo:elevation dbo:artist
Prop(es) dbo:height dbo:formationYear dbo:prominence dbo:producer
Annotation Wrong mapping (note that in

this is case, dbo:elevation
was the expected property to
be used with mountains etc.)

Wrong mapping (note that
sometimes the ontology has
similar properties for the
same thing but this is still a
wrong mapping)

Wrong mapping Correct (it happens that the
producer is the same person as
the artist in some albums by co-
incidence)

Table 4: Summary of classifiers output.

Random Forest Multilayer
Perceptron SMO

Correctly Classified Instances 211 (93.36%) 213 (94.25%) 211 (93.36%)
Incorrectly Classified Instances 15 (6.64%) 13 (5.75%) 15 (6.64%)
Kappa statistic 0.7865 0.8117 0.7748
Mean absolute error 0.1101 0.0641 0.0664
Root mean squared error 0.2288 0.2276 0.2576
Relative absolute error 34.8987% 20.3324% 21.0402%
Root relative squared error 57.7554% 57.4747% 65.0442%
Total Number of Instances 226 226 226

some sort of multilingual predictor. Notice that the manual anno-
tation of each dataset is a high-specialized task that requires hu-
mans with an excellent knowledge of the two languages involved.
A unique model would save a lot of human work.

We have applied this specific predictive model (EN-ES-lit) to
the dataset ES-DE-IRI containing 110 annotations. The accuracy
(correctly classified instances) is 87.28%, very similar to the 85.71%
achieved for EN-ES-IRIs, but not as good as the EN-ES-lit with
93.36%. The dataset is publicly available at https://www.openml.
org/d/40743.

However, the English-Dutch literals (EN-NL-lit), with 83 anno-
tations (35 Incorrect, 48 Correct) has an accuracy of only 61.45% If
we create a predictive model for this data we get an accuracy of
71.08%.

For Dutch (EN-NL-IRIs), with 28 annotations (19 Incorrect, 9
Correct) has an accuracy very low as well, only 67.86%. A predic-
tive model with this dataset would get an accuracy of 100%. A de-
tailed analysis, changing the aleatory seed, produces accuracy val-
ues around 94%. This dependency on the seed indicates that the
number of instances is too low.

For EN-GR-lit, with 64 annotations (30 Incorrect, 33 Correct)
we get an accuracy of 77.78%. If we create a predictive model for
this data we get an accuracy of 73.02%. All this information is con-
densed in table 8, were we can see that for the 4 language-pairs
studied the model for IRIs is always better than the model for liter-
als. Besides, we can see that the EN-ES-lit model is good predicting
incorrect mappings for some language-pairs (such as ES-DE-IRI or
EN-GR-IRI), but not so good for another language-pairs (such as
EN-NL-lit or EN-NL-IRI). Our conclusion is that is not feasible to
have a unique predictive model for all the language-pairs.

4.2 Optimizing the model
We have computed a Principal Component Analysis over the EN-
ES-lit dataset. This analysis produces a new set of attributes, linear
combination of the initial attributes, ranked by its contribution to
the data variance, from more relevant to less relevant. Specifically,
keeping a variance of 95%, we can move from a dataset with 23 at-
tributes to a dataset with 13 attributes (12 numeric attributes and
1 nominal attribute). If we compute a new model using again Ran-
dom Forest we achieve an accuracy of 92.4779%, very close to the
93.3628% achieved with all the attributes. Table 9 shows the effect
of the progressive elimination of less relevant attributes on the ac-
curacy of the predictive model. The ‘Order’ column is the variable
ID, from lowest to highest variance. For instance, the first row in
this table shows that the effect of removing the first lowest vari-
ance PCA attribute, having a 0.55 variance (indeed std. dev.), pro-
duces a predictive model with accuracy 93.8053%. The second row
shows that the effect of removing the 2 lowest variance PCA at-
tributes, in which the second attribute has a variance (std. dev.) of
0.688, produces a predictive model with accuracy 93.8053%. In this
table we can see that the effect of removing the 3 lowest variance
PCT attributes is the same: a model accuracy of 93.8053%. How-
ever, removing the 4 lowest we get lower accuracy (93.3628%), that
maintains this value when removing the 5th and 6th lowest vari-
ance PCA attributes. But, when we remove the 8th we get an in-
crement in the accuracy. If we remove more PCA attributes we
get lower values. The last row shows the effect of removing all the
PCA attributes except the onewith the highest variance. Using this
unique attribute we get a model with accuracy 80.9735%.

It is remarkable that with a reduction from 23 to 4 attributes,
the Random Forest classifier obtains a slightly better accuracy
(93.8053%) than the initial model with 23 attributes (accuracy
93.3628%).

If we repeat the PCA keeping a variance slightly lower than
before, specifically to 90%, we get now 10 PCA attributes. En ta-
ble 9 we can see that we can remove the 6 attributes with lowest
variance while getting a predictive model with accuracy 93.8053%.
Again, we get a model with only 4 attributes that produces a pre-
dictive model with accuracy 93.8053%.

Figure 2 shows a 2D projection of the 4D PCA space after the
optimization. Although there is no clear separation for the classes,
despite the 93% accuracy of the model, we can see a clear con-
centration (cluster) for Incorrect instances (dashed black ellipse).

https://www.openml.org/d/40743
https://www.openml.org/d/40743
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Table 5: Detailed accuracy data and confusion matrix for the classifiers.

SMO

Accuracy TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.750 0.022 0.892 0.750 0.815 0.779 0.864 0.718 Incorrect
0.978 0.250 0.942 0.978 0.960 0.779 0.864 0.939 Correct

Avg. 0.934 0.206 0.932 0.934 0.931 0.779 0.864 0.896

Confusion
matrix

Pred.
Correct

Pred.
Incorrect

True Correct 178 4
True Incorrect 11 33

Multilayer Perceptron

Accuracy TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.818 0.027 0.878 0.818 0.847 0.812 0.934 0.854 Incorrect
0.973 0.182 0.957 0.973 0.965 0.812 0.934 0.979 Correct

Avg. 0.942 0.152 0.941 0.942 0.942 0.812 0.934 0.955

Confusion
matrix

Pred.
Correct

Pred.
Incorrect

True Correct 177 5
True Incorrect 8 36

Random Forest

Accuracy TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.818 0.038 0.837 0.818 0.828 0.787 0.966 0.907 Incorrect
0,962 0,182 0,956 0,962 0,959 0,787 0,966 0,991 Correct

Avg. 0.934 0.154 0.933 0.934 0.933 0.787 0.966 0.975

Confusion
matrix

Pred.
Correct

Pred.
Incorrect

True Correct 175 7
True Incorrect 8 36

Table 6: Summary of the results of applying the predictive
model (EN-ES literals) to the IRIs dataset.

Correctly Classified Instances 12 (85.7143%)
Incorrectly Classified Instances 2 (14.2857%)
Kappa statistic 0.6889
Mean absolute error 0.2479
Root mean squared error 0.3102
Total Number of Instances 14

This concentration could provide the separation between classes
required for such a good classification.

5 RELATEDWORK
Zaveri et al. [16] present a comprehensive systematic review of
data quality assessment methodologies applied to LOD. They have
extracted 18 quality dimensions and a total of 110 objective and
subjective quality indicators. The work presented in this paper is
related to the conciseness dimension of the intrinsic data quality.
The survey does not contain any specific metric for measuring the
inconsistencies in the mappings.

Dimou et al. [5] propose a test-driven approach for assessing the
mappings and semi-automatic mapping refinements based on the
results of the quality assessment. However, in contrast to the work
presented in this paper the quality assessment is performed based
on the mapping definitions before the RDF data is produced. The
work presented in this paper uses a data-driven approach using
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Table 7: Detailed accuracy data and confusion matrix for the predictive model (EN-ES literals) on the IRIs dataset.

Accuracy TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.800 0.111 0.800 0.800 0.800 0.689 0.978 0.967 Incorrect
0.889 0.200 0.889 0.889 0.889 0.689 0.978 0.989 Correct

Avg. 0.857 0.168 0.857 0.857 0.857 0.689 0.978 0.981

Confusion
matrix

Pred.
Correct

Pred.
Incorrect

True Correct 8 1
True Incorrect 1 4

Table 8: Summary of the prediction accuracy for other language-pairs.

EN-ES ES-DE EN-NL EN-GR
lit IRI lit IRI lit IRI lit IRI

Accuracy Ad hoc model 93.36% 95.00% N.A. 96.36% 71.08% ∼94% 73.02% 89.71%
En-ES-lit model 65.00% N.A. 87.28% 61.45% 67.86% 77.78% 88.24%

Annotations
Total instances 211 80 110 83 28 63 68
‘Correct’ instances 175 71 102 35 9 33 44
‘Incorrect’ instances 36 9 8 48 19 30 24

Number of mappings 799 4979 4999 1329 4971 328 2785

Table 9: Principal Components Analysis (PCA). Effect of re-
ducing the number of PCA attributes on the accuracy of the
predictive model.

Order Data variance

95% 90%

Std.dev. Accuracy Std. dev. Accuracy

1 0.55 93.8053% 0.779 93.8053%
2 0.688 93.8053% 0.91 93.3628%
3 0.779 93.8053% 0.938 93.3628%
4 0.91 93.3628% 0.996 93.3628%
5 0.938 93.3628% 1.047 92.9204%
6 0.996 93.3628% 1.074 93.8053%
7 1.047 92.9204% 1.207 92.9204%
8 1.074 93.8053% 1.277 88.4956%
9 1.207 92.9204% 1.939 80.9735%
10 1.277 88.4956%
11 1.939 80.9735%

multiple datasets and the problem addressed in this paper can not
be addressed only by analyzing the mapping definitions.

Paulheim [13] presents a data-driven approach to discover prob-
lems inmappings as well as in the ontology. This approach uses the
ontology to check logically inconsistent statements, identify the
mapping that was used to generate each inconsistent statement,
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Figure 2: Selected projection to 2D of the 4D optimized PCA
space. Blue crosses are Incorrect predictions. The ellipse
shows a high concentration of Incorrect predictions that
could explain the good classification of the model.

and group the inconsistencies by mappings. Finally, a score is com-
puted for each mapping depending on the frequency of inconsis-
tent mappings. This is the closest to our work considering the ob-
jective. However, the approach presented in this paper is based on
annotations by the experts and supervised machine learning algo-
rithms.

Previous work that are not focused on evaluating the mappings
but rather on data has used variety of approaches such as statistical
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methods [4, 14], outlier detection [3, 6, 12], using external sources
of knowledge [7, 11], crowdsourcing [1], and gamification [10].
Such approaches detect the errors in data but do not identify the
mappings that caused those errors. Further, most of those work are
focused on detecting errors in a single dataset and not on detecting
inconsistencies among a set of datasets.

6 CONCLUSIONS
We have analyzed, from a data-driven perspective, the mappings
that convert non-structured data to linked data. The method
shown in this paper provides 22 numeric features for each map-
ping in a language-pair basis, and it is applied to several chapters of
DBpedia. Additionally we provide non numeric information about
each mapping to people fluent in each language-pair, and we ask
them to decide if the mapping is correct or incorrect. With the
numeric features we trained different supervised learning models,
and we selected the random forest as the most appropriate.

The effort required to annotate a given language-pair is remark-
able, but annotating a minimal part of all the mappings we achieve
a 93% accuracy. A Principal Component Analysis can reduce the
number of features to only 4 (linear combinations of the previous
22 features), keeping 93% accuracy, and a 2D projection allow us
to see a concentration of ’Incorrect’ data in a specific area.

We also explore the possibility of having a unique predictive
model for all the language-pairs. However, experiments show that
is better to have a model per language-pair. Results also show that
models created from mappings having IRIs as objects (IRI models)
are better thanmodels created frommappings having literals as ob-
jects (lit models). Themain reason for this could be the equivalence
checking of the objects. When the objects are IRIs, the equivalence
checks are more accurate because they are explicit owl:sameAs re-
lations. But when checking literals (e.g., strings, numbers, dates,
etc.) small syntactic differences could lead to non-equivalent val-
ues, even though they represent the same value.

Concerning challenges, one key problem is data incompleteness.
For instance, the attribute ’death_date’ is correctly mapped to dbo:
deathDate but most of the data only contain the year. However,
in our approach it will match with the dbo:deathYear property
of the other dataset because both values are death years. In such
cases, the mapping could be falsely identified as incorrect because
of the inaccuracies in data. Nevertheless, it is important to note
that if the mapping is corrected as suggested it will result in more
accurate data as the data contains the death year rather than death
date.

Another challenge is that some of the annotations require con-
siderable domain knowledge to decide if a mapping is correct or
incorrect. For instance, a template for F1 Racing or musical genres,
uses a lot of terms specific to the given domain which annotators
are not familiar with. This challenge can be mitigated by provid-
ing human annotators with a richer user interface. Currently, the
annotators see a set of features on a spreadsheet. Some of the anno-
tators claimed a better interface, with more features or examples
based on data mappings.

Our future plans include to measure the number of triples with
high probability of being incorrect due to an incorrect mapping,
as well as applying these predictive models to assist people in the

mapping process. The model allows us to assign a cost matrix, for
instance to penalize false negatives over false positives, in order to
minimize recall.
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