SHARK: A Test-driven Framework for Design
and Evolution of Ontologies

Gustavo Correa Publio!

Universitét Leipzig, Leipzig, Germany, Institut fiir Informatik, AKSW Group
gustavo.publio@informatik.uni-leipzig.de

Abstract. In the Semantic Web, the sharing and reuse of knowledge are
made possible by ontologies which establish common vocabularies and
semantic interpretations of terms. Over the last years, the LOD cloud
has been growing substantially in size of each ontology and the total
number of objects. In order to ensure a certain level of data quality,
several methods have been proposed so far, with different characteristics
and approaches, demanding the composition of different tools to ensure a
full validation and continuous integration with hosting solutions. In this
paper, we present SHARK, a single framework capable to test an ontol-
ogy using formally pre-defined guidelines or custom SHACL tests, and
can also be used for continuous testing during the ontology development
process.

Keywords: Ontology evolution, test driven, ontology development, SHACL

1 Introduction

The Linked Open Data Cloud [2] is growing exponentially in the last few years.
Besides the increase in the number of available datasets, each of them also evolves
and grows in size and amount of data in an accelerated speed, often in a crowd-
sourced and collaborative environment — which makes virtually impossible to
find an error-free dataset. In order to achieve a sustainable growth, such amount
of data demands methods for effective control of data quality and conformance.

Over the last years, many approaches aiming the description and validation
of ontologies have been proposed, including methodologies, frameworks, tools,
and languages. Among the last group, we can cite the Shape Expression (ShEx)
[3], a language that attempted to develop the same function for RDF graphs that
languages like XML Schema do for XML; and the Shapes Constraint Language
(SHACL) [9], created in 2014 by the W3C Working Group on RDF Data Shapes
1.

In “Validating RDF Data book” [1], authors demonstrate several SHACL
applications, including “Ontology Validation with SHACL” - a starting point to
this work.

Aiming to a new approach for data validation that benefits from SHACL
advantages, we present SHARK (SHACL Reasoning over Knowledge-graphs), a

SHACL-based ontology validation framework. This framework aims to 1) pro-
vide a continuous-integration test solution for ontology evaluation; 2) support
ontology review and design through a simple web interface, by allowing pre-
selected tests based on several ontology development guidelines to be run against
user-submitted ontologies; and 3) allow advanced users to run their own custom
SHACL tests against any ontology, through the web interface or web service
APL

The remainder of this paper is organised as follows. Section [2| reviews the
related literature. The research problems and expected contributions are pre-
sented in Section [3] Section [4] outlines the research methodology and approach.
Section [f] discuss the preliminary tests, while Section [f] discuss the evaluation
plan. The paper is finally concluded in Section [7}

2 State of the art

Several languages, methodologies, frameworks, and tools have been proposed in
the last twenty years to evaluate ontologies. Tomaszuk [17] makes a comparison
of different languages for RDF Validation including SHACL [9], as well as ReSh
[16], DSP [4], SPIN [8], OWL [6] and RDF's [F]. In the evaluation, SHACL stands
out as the fastest and most complete processing language.

In [I4] and as of 2012, the author made an extensive literature review that
found relevant dependencies between ontology development methodologiesﬂ on-
tology evaluation frameworksEI and evaluation toolsEI The author also showed
that although ontology development methodologies had served as key reference
for ontology evaluation (mainly by spreading the use of Competency Questions
- CQ), they were not a requirement for the implementation of evaluation frame-
works and tools.

In general lines, CQs consist in questions that a specific ontology must be
able to answer. In [I5] authors claims that it is difficult to either specify the
requirements for an ontology, or to test their satisfaction. Thus, they propose a
novel approach to address this problem by leveraging the ideas of competency
questions and test-before software development. A key benefit of this approach is
to easily guide ontology authoring, especially for authors that are not proficient
in logic.

In [14] is also proposed OOPS! (OntOlogy Pitfall Scanner!), a diagnosis tool
to both detect potential errors (pitfalls) in ontologies and recommend some tips
to repair them. The detection methods are mainly based on structural pattern
matching and linguistic analysis. OOPS counts with a catalog of errors obtained
by manual review where each error is classified as critical, important or minor
according its importance level. Although OOPS provides a wider range of known
ontology issues, it has some drawbacks: a) its catalog of pitfalls is not exhaustive,

! The seminal work of Gruninger and Fox, Methontology, On-To-Knowledge, DILI-
GENT and Neon.

2 OntoClean, OntoQA, Unit Tests, OQuaRE, Neon Guidelines, etc.

3 ODEClean, ODEval, AEON, Eyeball, Moki, OQuare, OntoCheck, XD-Analyzer.

b) it only deals with the conceptual schema level of OWL DL ontologies (TBox)
and c¢) it only checks explicit knowledge, i.e. it does not perform inference.
In addition, since those pitfalls were not been formalized, the tool cannot be
integrated smoothly into a continuous ontology quality assurance process.

Unit Tests, one of the ontology evaluation frameworks enumerated above, is
a well-known technique in test-driven software development and has also been
applied to the ontology evaluation field. In a framework initially proposed in [19]
and enhanced in [I8], the working ontology is validated against a positive and
a negative test ontology. Each unit test controls that each axiom in the positive
test ontology be inferred by the working ontology and that each axiom in the
negative test ontology be not inferred by the working ontology. Thus, if a unit
test fails, an error might exist in the working ontology. Notice that the proposed
framework formalizes competency questions but does not formalize all ontology
requirements.

In [10], a test-driven approach to evaluate Linked Data quality is described.
This approach encodes data quality constraints in generic SPARQL query tem-
plates which in turn are instantiated automatically into specific quality test
queries for a particular ontology or dataset. The data quality constraints are
compiled as a reusable set of Data Quality Test Patterns (DQTP) ready to be
integrated as automated test-methods.

3 Problem statement and contributions

The following examples illustrates some of the problems that might raise dur-
ing the ontology development process. As stated in [I5], authoring ontologies
is a non-trivial task as ontology authors are usually domain experts but not
necessarily proficient in logic. This may cause misleading in following the best
practices in ontology authoring, as for instance missing useful metadata. In fact,
[11] shows that a significant part of datasets available in the LOD cloud lack or
has incorrect/incomplete basic metadata information. Besides the metadata at
the dataset level, according to [I3] the lack of label or comment in the schema
level (classes and/or properties) also deviates best practices.

In [12], authors define two distinct modes of ontology evolution: traced and
untraced evolution. In the first mode we treat the evolution as a series of docu-
mented changes in the ontology. Those can be structural changes in the schema
level (TBox) or in the individuals of the ontology (ABox). On the other hand,
due to the extremely distributed nature of ontologies, we must also account for
the fact that we will not always have the trace of changes that led from one
version to another, leading to the untraced mode. In any case, it is expected
that the data keeps consistent in the new version of the ontology in order to
keep the compatibility between those versions, but such consistency is difficult
to be assured.

Finally, impacts of ontology evolution may be of interest to data authors,
consumers, reviewers, system developers, and so on, but they might be difficult
to trace, especially in crowd-sourced ontology edition. An approach to preview or

detect such impacts in any ontology must be public available to general purpose,
S0 users can try to mitigate such impacts prior to publish a new version of the
ontology.

3.1 Research questions

To solve the identified problems in the ontology design and evolution process,
the following research questions are intended to be addressed with the proposed
approach:

1. Regardless of prior technical knowledge in logic, authoring or programming
languages, how can any user evaluate whether his or her ontology addresses
the best practices of ontology design w.r.t. the data structure, metadata,
and so on?

2. How can non-conformance data inserted between two distinct versions of
ontology (whether in traced or untraced evolution) be detected at ABox or
TBox level?

3. In order to assure data quality, how can ontology evolution be evaluated
prior to final publication?

4. In a community-based crowd-sourced environment, how is it possible to mit-
igate data quality issues?

3.2 Contributions

In order to solve the mentioned research questions, this paper presents the
SHARK framework with the following respective contributions:

1. a novel web-based application that a) allows users to select relevant tests
among predefined guidelines based on best practices of ontology design, and
b) allows users to run custom SHACL tests against any given ontology;

2. for any given ontology and test set, a report at instance level for every
violation found;

3. a web API enabled through a web service endpoint that allows users to run
tests against any ontology at any phase of development;

4. a continuous-integration test solution for ontologies hosted in version-control
environments (e.g. GitHub).

4 Research Methodology and Approach

To achieve the intended contribution goals, the SHARK framework consists in
an environment as pictured in Figure[I] The only external dependency, that was
not developed in the context of this work, is the RDFUnit tool} which provides
the SHACL implementation, running the SHACL tests in the provided ontology
and giving the results.

4http://rdfunit.aksw.org/

http://rdfunit.aksw.org/

Remote
Cntology
dau

2

WebService AP|

_"r RDFUnit Integration

l
51 —b @

JSOM file

Ontology and Git / Version
SHACL tests host

Fig. 1. The SHARK Framework architecture

4.1 Technologies

The front-end Web application under development uses HTML5 and Javascript
ES6, and also the Bootstrap frameworkEl The Web Service and its API is being
written in Java, with support of Springboot frameworkEl It runs in the backend
the RDFUnit tool. Finally, the developed continuous integration system integra-
tion was preliminary tested with Travis—CIIZl (as shown in Figure and GitHukﬂ
for hosting and version control.

4.2 Web application home

The web application consists of a three-step-process. As seen in Figure [2| [a],
the initial screen of the web-based application offers to the user to select between
uploading an ontology from his local computer or specifying the remote URL of
the ontology to be tested.

In the second step (Figure [2| [b]), users can either select which pre-defined
guidelines they want to test against the provided ontology or define custom
SHACL tests in the second tab (Figure[2] [c]). There are 20 distinct pre-defined
guidelines that can be tested in the provided ontology. To make it easier to
update such guidelines, they are described in a separated JSON file that contains
the SHACL tests and generates the HTML form. When selecting each of them,
the user is indirectly generating (internally by the tool) a SHACL test which

® https://getbootstrap.com/
S https://spring.io/

" https://travis-ci.org

8 https://github.com/

https://getbootstrap.com/
https://spring.io/
https://travis-ci.org
https://github.com/

Select tests Custom

Classes

Fixed top-level classes i]

Classes must have a label @

Load yOUr OnTOlOgy Classes must have a comment @

Classes must have at most one superclass @
Where is your ontology?

Some classes does not allow subclasses | ¢ i]

- @ Classes names must not start with a lowercase letter @
Classes must have instances @

Detect synonyms created as classes @

a Detect unconnected classes @ b

Select tests Custom SHAGL = ’
1 @prefix rdfs: <http://waw.u3.org/2000/01/rdf-schena#> .
2 @prefix sh: <http://wws.u3.org/ns/shacls> .
@prefix xsd: <http://wai.u3.org/2081/XMLSchenas> .
+ @prefix owl: <http://ww.u3.0rg/2002/07/ovlé> . Test results
5 @prefix gdl-shape: <http://dbpedia.org/qdl-shapess .
6 @prefix rdf: <http://wiw.u3.org/1999/02/22- rdf-syntax-nsi> .
7/ gd1-shape: 12 tests failed, 13293 violations
rdfs:label "SHACL for Ontology Guidelines'@en ;

) rdfs:comment "This graph is used to validate ontologies against pre-seled|

sh:namespace “http://ww.vi3.org/2000/01/rdf-schema#"~ xsd:anyURI ;

15

prefix "oul" ;
namespace "http://w.w3.0rg/2002/07/owl#" " xsdzanyURT ;

declare [
prefix “rdf* ;
namespace “http://wiw.u3.0rg/1999/02/22- rdf-syntax-ns#"~*xsd:anyURI ;

declare [
prefix "gdl* ;

namespace “http: //dbpedia.org/ontology-guidelines/"**xsd:anyURT ;

Fig. 2. The SHARK web tool interface, with a) ontology selection screen, b) guidelines
selection, ¢) custom SHACL editor and d) test results report.

can be either a SHACL Core-based test or a SHACL SPARQL-based one. Such
tests were designed based on the best practices reviewed in the literature, such
as OOPS! framework[I4], or those included in Validating RDF Data book [1].

To the users, there are two different types of tests: those that they can only
select and activate, and those that demands an extra, custom text input. The
latter are the “Fized top-level classes” test, where users can specify whether the
first layer of the class hierarchy of the ontology is fixed and cannot be changed
by simply listing those fixed classes, and the “Some classes does not allow sub-
classes” test, which in the same way, requires as text input a list of classes that
does not allow subclasses.

Finally, in the third step (Figure [2| [d]), the report with the test results
is presented, showing all the elements that violates any of the selected guide-
lines/SHACL tests.

Blog Status Help

Help make Open Source a better place and start buildii

dbpedia / ontology-tracker

Current Branches Build History ~ Pull Requests
X master Setting tests log level to info o #18 failed
Commit dcfb753 Ran for 37 sec
Compare a%99cc..dcfb753 2 days ago

Branch master

@ Gustavo Publio authored and committed

Fig. 3. The SHARK continuous integration, showing a build that failed due to a test
violation.

4.3 RESTful API

The RESTful Web Service API is described in the SwaggerHub serviceﬂ It
provide methods that supports different input formats of the ontology file, as
well as all output formats that Apache Jenalﬂ supports.

5 Preliminary Results

5.1 Guidelines evaluation

In order to evaluate the usefulness of the pre-selected guideline tests, we run most
of them (18 out of 20 - except the two that requires custom user input) against
the ontologies available in the LOV CloudE As provided by LOV vocabulary
list APIB we found 633 ontologies in the cloud. From those, 237 ontologies were
not tested due to different reasons: broken (Error 404) or non-public (Error 401)
URI, connection timeout, empty ontologies (model with 0 elements), etc. Thus,
396 ontologies were effectively tested.

Given that the tested ontologies are public available in the LOV list, and that
this test set consists in ontologies of different domains and authors, the idea is
that each of the designed tests should neither fail or pass in 100% of the on-
tologies, otherwise that test would not be useful for generic guidelines purposes.

9 https://app.swaggerhub.com/apis/gcpdev/SHARK/O. 1
0 http://jena.apache.org/documentation/io/rdf-output.html#normal-printing
"' https://lov.okfn.org
12 http://lov.okfn.org/dataset/lov/api/v2/vocabulary/list

https://app.swaggerhub.com/apis/gcpdev/SHARK/0.1
http://jena.apache.org/documentation/io/rdf-output.html#normal-printing
https://lov.okfn.org
http://lov.okfn.org/dataset/lov/api/v2/vocabulary/list

Table [1| shows the test results. The most frequent violation is classes/properties
must have a label/comment, which shows that unfortunately the metadata of
ontology elements still lack in most of the available datasets. On the other hand,
tests like “Detect relationships inverse to themselves”, “Detect cycles in the class
hierarchy” or “Detect synonyms created as classes” have only a few occurrences,
but they point out critical structural problems in each ontology they occur.

6 Evaluation Plan

6.1 User Interface evaluation

In order to obtain a deeper, critical evaluation of the SHARK web based tool,
we plan to make an evaluation of its web user interface with a group of users
through surveys, rating the usability and relevance/usefulness of those predefined
guidelines.

6.2 Improve guidelines

The literature review and guidelines maintenance will be periodically revisited,
in order to improve the actual tests according to users feedback and add new
predefined guidelines.

6.3 Better evolution/alignment evaluation

The evolution process of ontologies is very related to the alignment process, as
both of them deals with the differences and compatibility between two different
ontology versions. Both processes demand a better evaluation, with study cases
and practical examples of the impact of the SHACL tests over each of them.

7 Conclusion

In this paper, we presented SHARK, a test-driven framework for design and
evolution of ontologies. The framework consists in a Web-based interface where
users can either choose between 20 different pre-defined guidelines to test their
ontology, or run their own custom SHACL tests. The pre-defined tests were
run successfully against 396 different ontologies, demonstrating their usefulness
against real data. The framework has also an web service API, and a continuous
integration system setup for automatic evaluation of ontology evolution.
Finally, all the SHARK framework code is open-source and available in the

GitHub[5]

13 https://github.com/gcpdev/shark

https://github.com/gcpdev/shark

Table 1. Compilation of test results over 396 different ontologies streamed from the
LOV Cloud. The second column shows the absolute number of ontologies where the
test failed; the third one shows the average frequency of element violations, and the
last column shows the percentage of ontologies that failed the test with at least one
violation

Test #Occurr. Av. Freq. (%) Ontologies occurr. (%)
Classes must have a label 363 12.04 92.37
Classes must have a comment 363 12.04 92.37
Classes must have at most one 170 397 43.26
superclass
Class.es names must not start 4 3.87 1.02
with a lowercase letter
Classes must have instances 282 9.46 71.76
Detect synonyms created as 12 0.75 3.05
classes
Detect unconnected classes 129 1.14 32.82
Detect cy.cles in the class 14 0.91 356
hierarchy
Properties must have a label 359 15.26 91.35
Properties must have a comment 359 15.26 91.35
Properties must hafve at most one 68 0.93 17.30
domain
Properties must have a.t least one 359 20.77 91.35
_class as domain
Properties must have at most one 62 0.65 15.78
range
Properties must have at least one 359 920.77 91.35
class as range
Properties must have at most one 60 283 15.97
superproperty
Properties names must not start
with a capital letter L <=2 C%
Detect relationships inverse to 15 0.50 3.89
themselves
Detect wrongly defined 93 0.36 5.85

relationship ’is’

Acknowledgements

This paper‘s research activities were funded by grants from the Smart Data Web
BMWi project (GA-01MD15010B) and CNPq foundation (scholarship 201808,/2015-
3). The author also acknowledges the support of Adam Sanchez, Sebastian Hell-
mann, Magnus Knuth, and Rafael Penaloza in the development of this paper.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Rdf data shapes working group, https://www.w3.org/2014/data-shapes/wiki/
Main_Page) last accessed 29th January 2018

Abele, A., McCrae, J.P., Buitelaar, P., Jentzsch, A., Cyganiak, R.: Linking open
data cloud diagram 2017 http://lod-cloud.net/

Boneva, 1., Gayo, J.E.L., Hym, S., Prud’hommeau, E.G., Solbrig, H., Staworko, S.:
Validating rdf with shape expressions. arXiv preprint arXiv:1404.1270 (2014)
Bosch, T., Eckert, K.: Towards description set profiles for rdf using sparql as in-
termediate language. In: International Conference on Dublin Core and Metadata
Applications. pp. 129-137 (2014)

Brickley, D., Guha, R.V.: Resource description framework (rdf) schema specifica-
tion 1.0: W3c candidate recommendation 27 march 2000 (2000)

Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, 1.,
McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: Owl web ontology language
reference. W3C Recommendation February 10 (2004)

Gayo, J.E.L., Prud’Hommeaux, E., Boneva, 1., Kontokostas, D.: Validating RDF
Data, vol. 7. Morgan & Claypool Publishers (2017)

Knublauch, H., Hendler, J.A., Idehen, K.: Spin-overview and motivation. W3C
Member Submission 22 (2011)

Knublauch, H., Kontokostas, D.: Shapes constraint language (shacl), https://
www.w3.org/TR/shacl/| last accessed 29th January 2018

Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: 23rd International
World Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11,
2014. pp. 747-758 (2014), http://doi.acm.org/10.1145/2566486 . 2568002
Neto, C.B., Kontokostas, D., Kirschenbaum, A., Publio, G.C., Esteves, D., Hell-
mann, S.: Idol: Comprehensive & complete lod insights. In: Proceedings of the 13th
International Conference on Semantic Systems. pp. 49-56. Semantics2017, ACM,
New York, NY, USA (2017), http://doi.acm.org/10.1145/3132218.3132238
Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution.
Knowledge and information systems 6(4), 428-440 (2004)

Poveda, M., Suarez-Figueroa, M.C., Gémez-Pérez, A.: Common pitfalls in ontology
development. In: Conference of the Spanish Association for Artificial Intelligence.
pp. 91-100. Springer (2009)

Poveda-Villaléon, M.: Ontology Evaluation: a pitfall-based approach to ontol-
ogy diagnosis. Ph.D. thesis, Departamento de Inteligencia Artificial, Universidad
Politécnica de Madrid (2 2016)

Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., Van Deemter, K., Stevens, R.: Towards
competency question-driven ontology authoring. In: European Semantic Web Con-
ference. pp. 752-767. Springer (2014)

Ryman, A.G., Le Hors, A., Speicher, S.: Oslc resource shape: A language for defin-
ing constraints on linked data. LDOW 996 (2013)

Tomaszuk, D.: Rdf validation: A brief survey. In: International Conference: Beyond
Databases, Architectures and Structures. pp. 344-355. Springer (2017)
Vrandecic, D.: Ontology Evaluation. Ph.D. thesis, Departamento de Inteligencia
Artificial, Fakultat fur Wirtschaftswissenschaften des Karlsruher Instituts fur Tech-
nologie (KIT) (6 2010)

Vrandecic, D., Gangemi, A.: Unit tests for ontologies. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM Workshops (2). Lecture Notes in Computer Science, vol.
4278, pp. 1012-1020. Springer (2006)

https://www.w3.org/2014/data-shapes/wiki/Main_Page
https://www.w3.org/2014/data-shapes/wiki/Main_Page
http://lod-cloud.net/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
http://doi.acm.org/10.1145/2566486.2568002
http://doi.acm.org/10.1145/3132218.3132238

	SHARK: A Test-driven Framework for Design and Evolution of Ontologies

