
Benchmarking Virtuoso 8 at the Mighty Storage
Challenge 2018: Challenge Results

Milos Jovanovik1,2 and Mirko Spasić1,3

1 OpenLink Software, United Kingdom
2 Faculty of Computer Science and Engineering,

Ss. Cyril and Methodius University in Skopje, Macedonia
3 Faculty of Mathematics, University of Belgrade, Serbia

{mjovanovik,mspasic}@openlinksw.com

Abstract. Following the success of Virtuoso at last year’s Mighty Stor-
age Challenge - MOCHA 2017, we decided to participate once again and
test the latest Virtuoso version against the new tasks which comprise
the MOCHA 2018 challenge. The aim of the challenge is to test the
performance of solutions for SPARQL processing in aspects relevant for
modern applications: ingesting data, answering queries on large datasets
and serving as backend for applications driven by Linked Data. The chal-
lenge tests the systems against data derived from real applications and
with realistic loads, with an emphasis on dealing with changing data in
the form of streams or updates. Virtuoso, by OpenLink Software, is a
modern enterprise-grade solution for data access, integration, and rela-
tional database management, which provides a scalable RDF Quad Store.
In this paper, we present the final challenge results from MOCHA 2018
for Virtuoso v8.0, compared to the other participating systems. Based
on these results, Virtuoso v8.0 was declared as the overall winner of
MOCHA 2018.

Keywords: Virtuoso, Mighty Storage Challenge, MOCHA, Benchmarks,
Data Storage, Linked Data, RDF, SPARQL

1 Introduction

Last year’s Mighty Storage Challenge, MOCHA 2017, was quite successful for
our team and Virtuoso – we won the overall challenge [6, 11]. Building on that, we
decided to participate in this year’s challenge as well, in all four challenge tasks:
(i) RDF data ingestion, (ii) data storage, (iii) versioning and (iv) browsing. The
Mighty Storage Challenge 20184 aims to provide objective measures for how well
current systems perform on real tasks of industrial relevance, and also help detect
bottlenecks of existing systems to further their development towards practical
usage. This arises from the need for devising systems that achieve acceptable
performance on real datasets and real loads, as a subject of central importance
for the practical applicability of Semantic Web technologies.

4 https://project-hobbit.eu/challenges/mighty-storage-challenge2018/



2 Jovanovik and Spasić

2 Virtuoso Universal Server

Virtuoso Universal Server5 is a modern enterprise-grade solution for data ac-
cess, integration, and relational database management. It is a database en-
gine hybrid that combines the functionality of a traditional relational database
management system (RDBMS), object-relational database (ORDBMS), virtual
database, RDF, XML, free-text, web application server and file server function-
ality in a single system. It operates with SQL tables and/or RDF based prop-
erty/predicate graphs. Virtuoso was initially developed as a row-wise transaction
oriented RDBMS with SQL federation, i.e. as a multi-protocol server providing
ODBC and JDBC access to relational data stored either within Virtuoso itself
or any combination of external relational databases. Besides catering to SQL
clients, Virtuoso has a built-in HTTP server providing a DAV repository, SOAP
and WS* protocol end-points and dynamic web pages in a variety of scripting
languages. It was subsequently re-targeted as an RDF graph store with built-in
SPARQL and inference [2, 3]. Recently, the product has been revised to take
advantage of column-wise compressed storage and vectored execution [1].

The largest Virtuoso applications are in the RDF and Linked Data domains,
where terabytes of RDF triples are in use – a size which does not fit into main
memory. The space efficiency of column-wise compression was the biggest incen-
tive for the column store transition of Virtuoso [1]. This transition also made
Virtuoso a competitive option for relational analytics. Combining a schemaless
data model with analytics performance is an attractive feature for data inte-
gration in scenarios with high schema volatility. Virtuoso has a shared cluster
capability for scaling-out, an approach mostly used for large RDF deployments.

A more detailed description of Virtuoso’s triple storage, the compression
implementation and the translation of SPARQL queries into SQL queries, is
available in our paper from MOCHA 2017 [11].

3 Evaluation

Here we present the official challenge results for Virtuoso v8.0 for all MOCHA
2018 tasks, based on the challenge data and benchmark parameters specified by
the organizers. Additionally, we give a brief comparison of Virtuoso v8.0 with
the other participating systems.

The results presented in this section are publicly available at the official HOB-
BIT platform6, where the challenge and all its tasks took place. The platform
allows execution of different benchmarks in order to evaluate the performance of
different systems. A specific benchmark was implemented and used for each task
of the MOCHA challenge. These benchmarks share a common API which eases
the work of the challenge participants. For the benchmarking of the participant
systems, a server cluster was used. Each of the systems could use up to three

5 https://virtuoso.openlinksw.com/
6 https://master.project-hobbit.eu/



Benchmarking Virtuoso 8 at MOCHA 2018: Challenge Results 3

servers of the cluster, each of them having 256 GB RAM and 32 CPU cores.
This enabled benchmarking of both monolithic and distributed solutions.

The Virtuoso v8.0 configuration parameters which we used for the challenge
are available at GitHub7.

Compared to MOCHA 2017, the tasks of MOCHA 2018 were significantly
more demanding and the datasets were larger, which lead to a tougher play-
ground. But, this tougher playground is also a better representation of the
real-world applications over large amounts of RDF and Linked Data, which the
benchmarks and the challenge aim to test.

3.1 Task 1 - RDF Data Ingestion

The aim of this task is to measure the performance of SPARQL query processing
systems when faced with streams of data from industrial machinery in terms of
efficiency and completeness. This benchmark, called ODIN (StOrage and Data
Insertion beNchmark), increases the size and velocity of RDF data used, in order
to evaluate how well a system can store streaming RDF data obtained from the
industry. The data is generated from one or multiple resources in parallel and
is inserted using SPARQL INSERT queries. At some points in time, SPARQL
SELECT queries check the triples that are actually inserted and test the system’s
ingestion performance and storage abilities [4, 5].

Table 1. ODIN Configuration.

Parameter Value

Duration of the benchmark 600000

Name of mimicking algorithm TRANSPORT DATA

Name of mimicking algorithm output folder output data/

Number of data generators - agents 4

Number of insert queries per stream 20

Number of task generators - agents 1

Population of generated data 10000

Seed for mimicking algorithm 100

Results: Our system, Virtuoso v8.0 Commercial Edition, was tested against
ODIN as part of the MOCHA challenge. The task organizers specified the bench-
mark parameters for the challenge and their values are shown in Table 1, while
the achieved KPIs for our system are presented in the Table 2.

The task has three KPIs:

7 https://github.com/hobbit-project/DataStorageBenchmark/blob/master/

system/virtuoso.ini.template



4 Jovanovik and Spasić

– Triples per Second: For each stream, a fraction of the total number of
triples that were inserted during that stream divided by the total time needed
for those triples to be inserted.

– Average Answer Time: A delay between the time that the SELECT query
has been generated and sent to the System Adapter and the time that the
results are received by the Evaluation Storage.

– Correctness: A recall, precision and F-measure of each SELECT query
by comparing the retrieved results and the expected ones obtained from an
instance of the Jena TDB storage solution.

Table 2. ODIN KPIs for Virtuoso v8.0.

KPI Value

Average Delay of Tasks (in seconds) 1.3398

Average Triples-Per-Second 11.1909

Macro-Average-F-Measure 0.8587

Macro-Average-Precision 0.8047

Macro-Average-Recall 0.9206

Maximum Triples-Per-Second 25.0410

Micro-Average-F-Measure 0.8945

Micro-Average-Precision 0.8442

Micro-Average-Recall 0.9511

We can divide the KPIs into two categories: Efficiency (Average Delay of
Tasks, Average Triples-Per-Second and Maximum Triples-Per-Second) and Cor-
rectness (Macro/Micro Average F-Measure/Precision/Recall). In terms of effi-
ciency, the Average Triples-Per-Second KPI is not relevant, as it mainly depends
from the benchmark parameters, and the values achieved by all tested systems
are very similar. The Average Delay of Tasks KPI shows the efficiency of the
system executing SPARQL SELECT queries, i.e. the average execution time of
SELECT queries, while the Maximum Triples-Per-Second KPI indicates how
fast can tripes be received by the system without any loss.

Our system takes about a second to process a SELECT query on average.
Virtuoso Opensource (VOS) is very similar, while all other participating systems
show worse results by two orders of magnitude (83-496s). Our achieved value for
Maximum Triples-Per-Second is 25, while most of the systems are around 5.
Blazegraph achieves the highest value here, but its average recall and f-measure
values are exceptionally low. Figures 1 and 2 showcase these results and identify
the overall winner of the task. Our system and VOS achieve very similar results
in terms of correctness, while Virtuoso v8.0 is undoubtedly better in terms of



Benchmarking Virtuoso 8 at MOCHA 2018: Challenge Results 5

Fig. 1. Task 1 - Correctness KPIs

Fig. 2. Task 1 - Efficiency KPIs

efficiency. The organizers confirmed this by declaring our system as the winner
in this task.

3.2 Task 2 - Data Storage

This task uses the Data Storage Benchmark (DSB) and its goal is to measure
how data storage solutions perform with interactive read SPARQL queries, ac-
companied with a high insert data rate via SPARQL UPDATE queries. This
approach mimics realistic application scenarios where read and write operations
are bundled together. It also tests systems for their bulk load capabilities [7, 12].

Results: The benchmark parameters for the task are shown in Table 3, and
the achieved KPIs for our system are presented in Table 4.

The main KPIs of the task are:

– Bulk Loading Time: The total time in milliseconds needed for the initial
bulk loading of the dataset.



6 Jovanovik and Spasić

Table 3. DSB Configuration.

Parameter Value

Scale Factor 30

Time Compression Ratio 0.5

Warm-up Percent 20

Enable/Disable Query Type 01100111011010

Number of Operations 15000

Enable Sequential Tasks False

Seed 100

– Average Query Execution Times per Query Type: The execution
time is measured for every single query, and for each query type the average
query execution time is calculated.

– Query Failures: The number of returned results that are not as expected,
obtained from the triple store used as a gold standard.

Table 4. DSB KPIs for Virtuoso v8.0.

KPI Value

Average Query Execution Time 64.9332

Average Q02 Execution Time 344.6176

Average Q03 Execution Time 329.1667

Average Q06 Execution Time 314.3750

Average Q07 Execution Time 1943.5962

Average Q08 Execution Time 45.9784

Average Q10 Execution Time 1761.2794

Average Q11 Execution Time 112.3680

Average Q13 Execution Time 336.1515

Average S1 Execution Time 84.2704

Average S2 Execution Time 78.9440

Average S3 Execution Time 25.5088

Average S4 Execution Time 26.0392

KPI Value

Average S5 Execution Time 20.0040

Average S6 Execution Time 30.6064

Average S7 Execution Time 43.5408

Average Update2 Execution Time 27.6351

Average Update3 Execution Time 23.7248

Average Update4 Execution Time 25.5625

Average Update5 Execution Time 22.6334

Average Update6 Execution Time 30.2792

Average Update7 Execution Time 41.9760

Average Update8 Execution Time 38.2564

Loading Time (in ms) 3301449

Query Failures 17

Throughput (queries/s) 17.6797

In this task, the organizers wanted to stress the scalability of the system
by specifying a large dataset with over 1.4 billion triples. Virtuoso justified its



Benchmarking Virtuoso 8 at MOCHA 2018: Challenge Results 7

Fig. 3. Task 2 - Main KPIs

Fig. 4. Task 2 - Average Complex Query Execution Time per Type

dominance with a huge victory in this task, showing why it was well known to be
a scalable system. Unfortunately, Blazegraph, GraphDB, and Jena were not able
to even load the dataset in the maximum experiment time of 3 hours, thus the
only comparable system here was VOS. The comparison of these two systems
is given in the Figures 3, 4 and 5. In the domain of efficiency, Virtuoso v8.0
is 32% faster than VOS regarding average query execution times, and around
6% faster in data loading. In the domain of correctness, Virtuoso v8.0 made 17
query failures compared to the 4 made by VOS; however, having in mind the
fact that VOS was used as a golden standard for calculating the expected query
results, this KPI is biased, and should not be considered as a weakness of the
latest version of Virtuoso.



8 Jovanovik and Spasić

Fig. 5. Task 2 - Average Short and Update Query Execution Time per Type

3.3 Task 3 - Versioning RDF Data

The aim of this task is to test the ability of versioning systems to efficiently man-
age evolving datasets, where triples are added or deleted, and queries evaluated
across the multiple versions of said datasets. It uses the Versioning Benchmark
(VB) [9, 8].

Table 5. Versioning Benchmark Configuration.

Parameter Value

Generated Data Form IC/CS/IC+CS

Initial Version Size (in triples) 200000

Number of Versions 5

Version Deletion Ratio (%) 10

Version Insertion Ratio (%) 15

A seed for data generation (%) 100

Results: Table 5 shows the benchmark configuration and Table 6 shows the
results achieved by Virtuoso v8.0 for the versioning task. The evaluation is based
on the following performance KPIs:

– Query Failures: The number of queries whose returned results are not
those that were expected.

– Throughput (in queries per second): The execution rate per second for all
queries.

– Initial Version Ingestion Speed (in triples per second): The total triples
that can be loaded per second for the dataset’s initial version.



Benchmarking Virtuoso 8 at MOCHA 2018: Challenge Results 9

– Applied Changes Speed (in triples per second): The average number of
changes that can be stored by the benchmarked system per second after the
loading of all new versions.

– Average Query Execution Time (in ms): The average execution time,
in milliseconds, for each one of the eight versioning query types.

Table 6. Versioning Benchmark KPIs for Virtuoso v8.0.

KPI Value

Applied Changes (changes/s) 19831.2070

Initial Ingestion (triples/s) 43793.0820

QT1, Avg. Exec. Time (ms) 16861.0000

QT2, Avg. Exec. Time (ms) 147.6667

QT3, Avg. Exec. Time (ms) 11944.0000

QT4, Avg. Exec. Time (ms) 142.3889

KPI Value

QT5, Avg. Exec. Time (ms) 7186.0000

QT6, Avg. Exec. Time (ms) 165.7500

QT7, Avg. Exec. Time (ms) 17.0000

QT8, Avg. Exec. Time (ms) 155.6389

Queries Failed 2

Throughput (queries/s) 1.2068

Fig. 6. Task 3 - KPIs and Final Score

Apart from the same five systems which participated in the previous tasks,
two additional ones (specialized in storing different versions of datasets) took
part at Task 3. These two system, as well as some other versioning systems



10 Jovanovik and Spasić

are not mature enough to handle very large datasets, so the organizers decided
to decrease the dataset size and give them the opportunity to compete. Rela-
tively small datasets result in comparable throughput achieved by our and the
other systems (Figure 6). Judging by the previous tasks, we would expect for
our system to have better throughput compared the rest of the participants if
the datasets were larger. Still, Virtuoso v8.0 acted better in the initial load-
ing, applied changes per second and correctness (Figure 6). Therefore, the an-
nouncement of the winner here was not straightforward, and the organizers com-
bined the results of the four most important KPIs with their assigned weights
(Throughput - 0.4, Queries Failed - 0.3, Initial Version Ingestion Speed - 0.15
and Applied Changes Speed - 0.15). With this, they calculated the final scores
which range from 0 to 1. The final scores for all participant systems are shown
on Figure 6, with Virtuoso v8.0 providing the best performance in the task.

3.4 Task 4 - Faceted Browsing

This task uses the Faceted Browsing Benchmark, which tests existing solu-
tions for their capabilities of enabling faceted browsing through large-scale RDF
datasets, that is, it analyses their efficiency in navigating through large datasets,
where the navigation is driven by intelligent iterative restrictions. The goal of
the task is to measure the performance relative to dataset characteristics, such
as overall size and graph characteristics [10].

Table 7. Faceted Browsing Configuration.

Parameter Value

Cells per LatLon 200

Delay Chance 0.2

Final Trip Time 977616000000

Initial Trip Time 0

Maximum Route Length 50

Minimum Route Length 10

Number of Connections 230000

Number of Routes 3000

Parameter Value

Number of Stops 3000

Preconfiguration mocha2018

Quick Test Run false

Random Seed 111

Region Size X 2000

Region Size Y 2000

Route Choice Power 1.3

Results: The benchmark parameters for the task are given in Table 7, while
Table 8 shows the Virtuoso v8.0 results. The evaluation is based on the following
performance KPIs:

– Correctness: The conformance of SPARQL query result sets with precom-
puted reference results in terms of precision, recall and F-Measure.



Benchmarking Virtuoso 8 at MOCHA 2018: Challenge Results 11

– Performance: Query-per-second rate.

Table 8. Faceted Browsing Main KPIs for Virtuoso v8.0.

KPI Value

Total F-measure 1.0

Total precision 1.0

Total recall 1.0

Throughput (queries/s) 1.5755

The comparison of our system with the other participant systems for the
task are shown on the Figure 7. As we can see, Virtuoso v8.0 did not achieve
the best performance score for the task, and the task winner was VOS. One
possible reason why our system showed lower performance compared to VOS
and GraphDB should be sought in the small size of the dataset and the fact that
our system was pre-configured for significantly larger deployments. Even though
the training phase of this task used a smaller dataset, we still expected a larger
dataset for the challenge run, thus configured Virtuoso v8.0 accordingly.

Fig. 7. Task 4 - Correctness (left) and Performance (right)

4 Conclusion and Future Work

In this paper, we provide an overview of the setup, participation and results
of Virtuoso v8.0 at the Mighty Storage Challenge - MOCHA 2018, at the Ex-
tended Semantic Web Conference - ESWC 2018. Our system participated in all
four tasks of the challenge: (i) RDF data ingestion, (ii) data storage, (iii) version-
ing and (iv) faceted browsing, winning the first three. Therefore, the challenge
organizers declared Virtuoso v8.0 as a clear winner of MOCHA 2018.



12 Jovanovik and Spasić

As future work, a further Virtuoso evaluation has been planned, using other
dataset sizes and especially larger datasets, stressing its scalability. We can al-
ready foresee improvements of the query optimizer, driven by the current eval-
uation. The comparison of our performance with the other participant systems
also provides significant guidelines for the future development of Virtuoso.

Acknowledgments. This work has been supported by the H2020 project HOB-
BIT (GA no. 688227).

References

1. Orri Erling. Virtuoso, a Hybrid RDBMS/Graph Column Store. IEEE Data Eng.
Bull., 35(1):3–8, 2012.

2. Orri Erling and Ivan Mikhailov. RDF Support in the Virtuoso DBMS. In Networked
Knowledge-Networked Media, pages 7–24. Springer, 2009.

3. Orri Erling and Ivan Mikhailov. Virtuoso: RDF support in a native RDBMS. In
Semantic Web Information Management, pages 501–519. Springer, 2010.

4. Kleanthi Georgala. First Version of the Data Extraction Benchmark for Sensor
Data, May 2017. Project HOBBIT Deliverable 3.1.1.

5. Kleanthi Georgala. Second Version of the Data Extraction Benchmark for Sensor
Data, May 2018. Project HOBBIT Deliverable 3.1.2.

6. Kleanthi Georgala, Mirko Spasić, Milos Jovanovik, Henning Petzka, Michael Röder,
and Axel-Cyrille Ngonga Ngomo. MOCHA2017: The Mighty Storage Challenge at
ESWC 2017. In Semantic Web Challenges: 4th SemWebEval Challenge at ESWC
2017, pages 3–15. Springer, 2017.

7. Milos Jovanovik and Mirko Spasić. First Version of the Data Storage Benchmark,
May 2017. Project HOBBIT Deliverable 5.1.1.

8. Vassilis Papakonstantinou, Irini Fundulaki, and Giorgos Flouris. Second Version
of the Versioning Benchmark, May 2018. Project HOBBIT Deliverable 5.2.2.

9. Vassilis Papakonstantinou, Irini Fundulaki, Giannis Roussakis, Giorgos Flouris,
and Kostas Stefanidis. First Version of the Versioning Benchmark, May 2017.
Project HOBBIT Deliverable 5.2.1.

10. Henning Petzka. First Version of the Faceted Browsing Benchmark, May 2017.
Project HOBBIT Deliverable 6.2.1.

11. Mirko Spasić and Milos Jovanovik. MOCHA 2017 as a Challenge for Virtuoso.
In Semantic Web Challenges: 4th SemWebEval Challenge at ESWC 2017, pages
21–32. Springer, 2017.

12. Mirko Spasić and Milos Jovanovik. Second Version of the Data Storage Benchmark,
May 2018. Project HOBBIT Deliverable 5.1.2.


