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Abstract. With the significant growth of RDF data sources in both
numbers and volume comes the need to improve the scalability of RDF
storage and querying solutions. Current implementations employ various
RDF graph partitioning techniques. However, choosing the most suitable
partitioning for a given RDF graph and application is not a trivial task.
To the best of our knowledge, no detailed empirical evaluation exists to
evaluate the performance of these techniques. In this work, we present
an empirical evaluation of RDF graph partitioning techniques applied
to real-world RDF data sets and benchmark queries. We evaluate the
selected RDF graph partitioning techniques in terms of their partitioning
time, partitioning imbalance (in sizes), and query run time performances
achieved, based on real-world data sets and queries selected using the
FEASIBLE benchmark generation framework.

1 Introduction

Data partitioning is the process of logically and/or physically dividing datasets
into subsets to facilitate better maintenance and access. Data partitioning is
often used for load balancing, improving system availability and query processing
times in data management systems. Over recent years, several Big datasets
such as Linked TCGA3 (around 20 billion triples) and UniProt4(over 10 billion
triples) have been added to the Web of Data. The need to store and query such
datasets efficiently has motivated a considerable amount of work on designing
clustered triplestores [4,6,8,9,10,11,16,17,18,21,22,27], i.e., solutions where data is
partitioned among multiple data nodes. It is noteworthy that current triplestores
employ various graph partitioning techniques [22]. It is also well known that the
query execution performance of data storage solutions can be greatly affected
by the partitioning technique used in the data store [12]. However, no detailed
evaluation of the efficiency of the different RDF graph partitioning techniques in
terms of scalability, partitioning imbalance, and query run time performances
has been undertaken.

We address this research gap by presenting a detailed empirical evaluation
of different RDF graph partitioning techniques. We compare them according

3 TCGA: http://tcga.deri.ie/
4 UniProt: http://www.uniprot.org/statistics/
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to their suitability for balanced load generation, partitioning time, and query
runtime performance. Our contributions are as follows:

1. We compared seven RDF graph partitioning techniques in two different
evaluation setups.

2. We evaluate the selected RDF partitioning techniques using different per-
formance measures such as partitioning time, variation in the sizes of the
generated partitions, number of sources selected in a purely federated envi-
ronment, and query runtime performance.

3. We perform an evaluation based on two real-world datasets (i.e., DBpedia
and Semantic Web Dog Food), and real queries (selected from users’ queries
log) using the SPARQL benchmark generation framework from queries log
FEASIBLE [19].

All of the data, source code, and results presented in this evaluation are
available at https://github.com/dice-group/rdf-partitioning.

2 RDF Graph Partitioning

The RDF graph partitioning problem is defined as follows.

Definition 1 (RDF Graph Partitioning Problem). Given an RDF graph

G = (V,E), divide G into n sub-graphs G1, . . . Gn such that G = (V,E) =
n⋃

i=1

Gi,

where V is the set of all vertices and E is the set of all edges in the graph.

In this section, we explain commonly used [14,15,22,20] graph partitioning
techniques by using a sample RDF graph shown in Figure 1.

Horizontal Partitioning: This partitioning technique is adopted from [20]. Let
T be the set of all RDF triples in a dataset and n be the required number of
partitions. The technique assigns the first |T |/n triples in partition 1, the next
|T |/n triples in partition 2 and so on. In the example given in Figure 1, the triples
1-4 will be assigned to the first partition (green), triples 5-8 will be assigned to
the second partition (red), and triples 9-11 will be assigned to the third partition
(blue).
Subject-Based Partitioning: This technique assigns triples to partitions ac-
cording to a hash value computed on their subjects modulo the total number of
required partitions (i.e., hash(subject) modulus total number of partitions)[14].
Thus, all the triples with the same subject are assigned to one partition. However,
due to modulo operation this technique may result in high partitioning imbalance.
In our motivating example given in Figure 1, triples (3,10,11) are matched to the
red partition, only triple 7 is matched to the blue partition, and the remaining
are matched to the blue partition. Thus, a clear partitioning imbalance (3:1:7
triples) results.
Predicate-Based Partitioning: Similar to Subject-Based, this technique as-
signs triples to partitions according to a hash value computed on their predicates

https://github.com/dice-group/rdf-partitioning


@prefix hierarchy1: <http://first/r/> . @prefix hierarchy2: <http://second/r/> .
@prefix hierarchy3: <http://third/r/> . @prefix schema: <http://schema/> .
hierarchy1:s1 schema:p1 hierarchy2:s11 . #Triple 1
hierarchy1:s1 schema:p2 hierarchy2:s2 . #Triple 2
hierarchy2:s2 schema:p2 hierarchy2:s4 . #Triple 3
hierarchy1:s1 schema:p3 hierarchy3:s3 . #Triple 4
hierarchy3:s3 schema:p2 hierarchy1:s5 . #Triple 5
hierarchy3:s3 schema:p3 hierarchy2:s13 . #Triple 6
hierarchy2:s13 schema:p1 hierarchy2:s8 . #Triple 7
hierarchy1:s1 schema:p4 hierarchy3:s9 . #Triple 8
hierarchy3:s9 schema:p1 hierarchy2:s4 . #Triple 9
hierarchy2:s4 schema:p4 hierarchy2:s13 . #Triple 10
hierarchy2:s11 schema:p2 hierarchy1:s10 . #Triple 11

(a) An example RDF triples
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(b) Graph representation and partitioning. Only node numbers are shown for simplicity.

Fig. 1: Partitioning an example RDF into three partitions using different parti-
tioning techniques. Partitions are highlighted in different colors.

modulo the number of required partitions. Thus, all triples with the same pred-
icate are assigned to the same partition. In our motivating example given in
Figure 1, all the triples with predicate p1 or p4 are assigned to the red partition,
triples with predicate p2 are assigned to the green partition, and all triples with
predicate p3 are assigned to the blue partition.

Hierarchical Partitioning: This partitioning is inspired by the assumption
that IRIs have path hierarchy and IRIs with a common hierarchy prefix are often
queried together [14]. This partitioning is based on extracting path hierarchy from
the IRIs and assigning triples having the same hierarchy prefixes into one partition.
For instance, the extracted path hierarchy of “http://www.w3.org/1999/02/22-
rdf-syntax-ns#type” is “org/w3/www/1999/02/22-rdf-syntax-ns/type”. Then,
for each level in the path hierarchy (e. g., “org”, “org/w3”, “org/w3/www”, ...)
it computes the percentage of triples sharing a hierarchy prefix. If the percentage
exceeds an empirically defined threshold and the number of prefixes is equal to
or greater than the number of required partitions at any hierarchy level, then
these prefixes are used for the hash-based partitioning on prefixes. In comparison
to the hash-based subject or predicate partition, this technique requires a higher
computational effort to determine the IRI prefixes on which the hash is computed.



In our motivating example given in Figure 1, all the triples having hierarchy1
in subjects are assigned to the green partition, triples having hierarchy2 in
subjects are assigned to the red partition, and triples having hierarchy3 in
subjects are assigned to the blue partition.
Recursive-Bisection Partitioning: Recursive bisection is a multilevel graph
bisection algorithm aiming to solve the k-way graph partitioning problem as
described in [15]. This algorithm consists of the following three phases: (1))
Coarsening: The initial phase is coarsening the graph, in which a sequence of
smaller graphs G1, G2, ..., Gm is generated from the input Graph G0 = (V0, E0)
in such a way that |V0| > |V1| > |V2| > ... > |Vm|. (2) Partitioning In the second
phase, computation of a 2-way partition Pm of the graph Gm takes place, such
that Vm is split into two parts and each part contains half of the vertices. (3)
Uncoarsening The third and last phase is uncoarsening the partitioned graph. In
this phase the partition Pm of Gm is projected back to G0 by passing through
the intermediate partitions Pm−1, Pm−2, ..., P1, P0.

In our motivating example given in Figure 1, triples (1,2,4,7,8) are assigned
to the green partition, triples (3,5,6,9,10) are assigned to the red partition, and
only triple 11 is assigned to the blue partition.
TCV-Min Partitioning: Similar to Recursive-Bisection, the TCV-Min also
aims to solve the k-way graph partitioning problem. However, the objective of the
partitioning is to minimize the total communication volume [2] of the partitioning.
Thus, this technique also comprises the three main phases of the k-way graph
partitioning. However, the objective of the second phase, i.e. the Partitioning,
is the minimization of communication costs. In our motivating example given
in Figure 1, triples (1,2,4,5,6,8,9) are assigned to the green partition, triples
(3,7,10) are assigned to the red partition, and only triple 11 is assigned to the
blue partition.
Min-Edgecut Partitioning: The Min-Edgecut [15] also aims to solve the k-
way graph partitioning problem. However, unlike TCV-Min, the objective is to
partition the vertices by minimizing the number of edges connected to them. In
our motivating example given in Figure 1, triples (1,2,4,7,8) are assigned to the
green partition, triples (3,5,6,9,10) are assigned to the red partition, and only
triple 11 is assigned to the blue partition.

3 Evaluation

In this section, we present our evaluation setup followed by evaluation results.

3.1 Evaluation Setup

Partitioning Environments: We used two distinct evaluation environments
to compare the selected RDF graph partitioning techniques. (1) Clustered
RDF Storage Environment In this environment, the given RDF data is
distributed among different data nodes within the same machine as part of a
single RDF storage solution. Figure 2a shows the very generic master-slave
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Fig. 2: Evaluation Environments

architecture used in our clustered environment. The master assigns the tasks
and the slaves perform RDF storage and query processing tasks. There are
many RDF storage solutions [4,6,8,9,10,11,16,17,18,21,22,27] that employ this
architecture. We chose Koral [14] in our evaluation. The reason for choosing this
platform was because it allows the data partitioning strategy to be controlled,
it is a state-of-the art distributed RDF store, and it is well-integrated with
the famous RDF partitioning system METIS [15]. (2) Purely Federated
Environment In this environment, the given RDF data is distributed among
several physically separated machines and a federation engine is used to do the
query processing task. We chose the well-known SPARQL endpoint federation
setup [20] in which data is distributed among several SPARQL endpoints and a
SPARQL federation engine is used to do federated query processing over multiple
endpoints. Figure 2b shows the two main components (i.e., the federation engine
and the SPARQL endpoints) of this architecture. The general steps involved to
process a SPARQL query in this evaluation environment are as follows: Given
a SPARQL query, the first step is to parse the query and get the individual
triple patterns. The next step is source selection, for which the goal is to identify
the set of relevant data sources (endpoints in our case) for the query. Using
the source selection information, the federator divides the original query into
multiple sub-queries. An optimized sub-query execution plan is generated by
the optimizer and the sub-queries are forwarded to the corresponding data
sources. The results of the sub-queries are then integrated by the integrator. The
integrated results are finally returned to the agent that issued the query. Many
SPARQL endpoint federation engines [23,3,25,1,7] abide by this architecture. We
chose FedX [23] and SemaGrow [3] in our evaluation. The reason for choosing
these two federation engines is their use of different query execution plans. FedX
is an index-free heuristic-based SPARQL endpoint federation engine, while
SemaGrow is an index-assisted cost-based federation engine. Note that the query
execution plan greatly affects the query runtime performances, therefore we



wanted to choose federation engines that employ different query planners (FedX
is left-deep-trees-based, and SemaGrow is a busy-tree-based solution).

Datasets: We wanted to benchmark the selected partitioning techniques based
on real-world RDF datasets and real-world SPARQL queries submitted by users
to the SPARQL endpoints of underlying datasets. To achieve this goal, we used
two real-word datasets: DBpedia 3.5.1 and the Semantic Web Dog Food (SWDF)
for partitioning. The reason for choosing these two datasets is that they are used
by the FEASIBLE [19] SPARQL benchmark generation framework to generate
customized SPARQL benchmarks from the queries log of the underlying datasets.
These two datasets vary greatly in their high-level statistics: the DBpedia
3.5.1 contains 232,536,510 triples, 18,425,128 distinct subjects, 39,672 distinct
predicates, and 65,184,193 distinct objects while SWDF contains 304,583 triples,
36,879 distinct subjects, 185 distinct predicates, and 95,501 distinct objects.

Queries: We generated the following benchmarks for evaluation using FEA-
SIBLE: (1) SWDF BGP-only benchmark contains a total of 300 BGP-only
SPARQL queries from the queries log of the SWDF data set. These queries only
contain single BGP; the other SPARQL features such as OPTIONAL, ORDER BY,
DISTINCT, UNION, FILTER, REGEX, aggregate functions, SERVICE, property
paths etc. are not used, (2) SWDF fully-featured contains a total of 300
queries which are not only single BGPs and may include more features (e.g., the
above mentioned) of the SPARQL queries, (3) DBpedia BGP-only contains
300 BGP-only, and (4) DBpedia fully-featured contains 300 fully-featured
SPARQL queries selected from the queries log of DBpedia 3.5.1. Thus, in our
evaluation we used a total of 1200 SPARQL queries selected from two different
data sets. Note that we only used BGP-only benchmarks with Koral since it does
not support many of the SPARQL features used in the fully-featured SPARQL
benchmarks.

Number of partitions: Inspired by [20], we created 10 partitions for each of
the selected data sets and the partitioning technique. In Koral, we ran 10 slaves
each containing one partition. In the purely federated environment, we used 10
Linux-based Virtuoso 7.1 SPARQL endpoints, each containing one partition.

Performance measures: We used six performance measures to benchmark the
selected partitioning techniques – partitions generation time, overall benchmark
execution time, average query execution time, number of timeout queries for
each benchmark, the ranking score of the partitioning techniques, total number
of sources selected for the complete benchmark execution in a purely federated
environment, and the partitioning imbalance among the generated partitions.
Three minutes was selected as the timeout time for query execution [19]. In addi-
tion, we also measured the Spearman’s rank correlation coefficients to ascertain
the correlation between the sources selected and the query run time in a purely
federated environment. The rank score of the partitioning technique is defined as
follows:



Definition 2 (Rank Score). Let t be the total number of partitioning tech-
niques and b be the total number of benchmark executions used in the evaluation.
Let 1 ≤ r ≤ t denote the rank number and Op(r) denote the occurrences of a
partitioning technique p placed at rank r. The rank score of the partitioning
technique p is defined as follows:

s :=

t∑
r=1

Op(r)× (t− r)

b(t− 1)
, 0 ≤ s ≤ 1

In our evaluation, we have a total of seven partitioning techniques (i.e., t = 7)
and 10 benchmarks executions (b = 10, 4 benchmarks by FedX, 4 benchmarks
by SemaGrow, and 2 benchmarks by Koral).

The partitioning imbalance in the sizes of the generated partitions is defined as
follows:

Definition 3 (Partitioning Imbalance). Let n be the total number of parti-
tions generated by a partitioning technique and P1, P2, . . . Pn be the set of these
partitions, ordered according to the increasing size of number of triples. The
imbalance in partitions is defined as Gini coefficient:

b :=

2
n∑

i=1

(i× |Pi|))

(n− 1)×
n∑

j=1

|Pj |
− n + 1

n− 1
, 0 ≤ b ≤ 1

Hardware and software configuration: All experiments were run on an
Ubuntu-based machine with intel Xeon 2.10 GHz, 64 cores and 512GB of RAM.
We conducted our experiments on local copies of Virtuoso (version 7.1) SPARQL
endpoints. We used METIS 5.1.0.dfsg-2 5 to create TCV-Min, Min-Edgecut and
Recursive-Bisection. We used default configurations for FedX, SemaGrow and
Koral (except the slaves were changed from 2 to 10 in Koral).

3.2 Evaluation Results

Partition Generation Time: Figure 3 shows a comparison of the time taken
by each technique to generate the required 10 partitions, both for DBpedia 3.5.1
and SWDF datasets. As an overall evaluation, the Horizontal partitioning method
requires the smallest time followed by the Subject-Based, Predicate-Based, Hierar-
chical, TCV-Min, Recursive-Bisection, and Min-Edgecut, respectively. The reason
for the Horizontal partitioning taking the least time lies in this simplicity: the tech-
nique creates the range of triples and assigns them to the desired partitions in the
first come first server basis. Both Predicate-Based and Subject-Based partitioning
techniques take almost the same time because both techniques simply traverse
each triple in the dataset and apply hash functions on the subject or predicate

5 http://glaros.dtc.umn.edu/gkhome/metis/metis/download
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Fig. 3: Time taken for the creation of 10 partitions

of the triple. Thus, they have the same computational complexity. Hierarchical
partitioning takes more time compared with the Subject and Predicate-Based
hash partitioning techniques due to the extra time required to compute path
hierarchies before hash function is applied. The k-way implementations of graph
partitioning, i.e., TCV-Min, Min-Edgecut and Recursive-Bisection consumed even
more time (almost double) compared to the other techniques. This is because of
their higher complexity in terms of the time required to perform the coarsening,
partitioning, and uncoarsening phases.

Query runtime performances: One of the most important results is the
query runtime performances achieved by using each of the selected partitioning
techniques. We used the total benchmark (300 queries) execution time (including
timeout queries) and the average query execution time (excluding timeout queries)
to encapsulate the runtime performances of the partitioning techniques. To
measure the former performance metric, we executed the complete 300 queries
from each benchmark over the data partitions created by the selected partitioning
techniques and calculated the total time taken to execute the complete benchmark
queries. For each timeout query, we add 180 seconds to the total benchmark
execution time. For the latter performance metric, we only considered those
queries which were successfully executed within the timeout limit and present
the average query execution time for each of the selected partitioning technique.
Figure 4 presents the query runtime performances achieved by each of the selected
techniques pertaining to the two aforementioned query execution metrics.

Figure 4a shows the total execution time of the complete benchmarks for the
selected partitioning techniques based on FedX federation engine. Including all
the benchmark execution results (over 4 benchmarks), Horizontal partitioning
consumed the least time (26538.7 seconds), followed by Recursive-Bisection
(26962.6 seconds), Subject-Based (28629.3 seconds), TCV-Min (28739.9 seconds),
Hierarchical (28867.5 seconds), Min-Edgecut (30482.8 seconds) and Predicate-
Based (33864.2 seconds), respectively. The total benchmark execution time of the
individual benchmarks (i.e., two from SWDF and two from DBpedia3.51) can be
seen from the bar stacked graphs directly. Figure 4b shows the average query
execution times of the selected partitioning techniques based on four benchmarks
on FedX. The overall (over 4 benchmarks) average query execution results show



11 20 21 17 20 20 20

7467 5546 6246 3368 5531 6598 4782

11978 7958 7893 8287 8597 8686 7959

14408 15105 14708 14866 14592 15179 14202

1

10

100

1000

10000

100000

PB SB Hi Ho TC ME RB

B
e

n
ch

m
ar

k 
ex

e
cu

ti
o

n
 t

im
e

 in
 s

e
c 

(l
o

g 
sc

al
e

)

SWDF BGP-only SWDF fully-featured

DBpedia BGP-only DBpedia fully-featured

(a) FedX benchmarks execution time

0.04 0.07 0.07 0.06 0.07 0.07 0.07

4.40 4.44 4.43 4.19 4.39 4.44 4.85

23.20 10.10 10.49 10.06 8.67 9.00 8.20

5.59
11.62 9.16 7.60 8.66 8.22 6.96

0.01

0.10

1.00

10.00

100.00

PB SB Hi Ho TC ME RB

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 in

 s
e

c 
(l

o
g 

sc
al

e
)

SWDF BGP-only SWDF fully-featured

DBpedia BGP-only DBpedia fully-featured

(b) FedX average query runtimes

82 51 51
148

49 50 52

3815 4020 4041
3684

4029 4394 4236

7315 8412 7835 8411 7779 8473 8390
16017 17530 16995 18903 16916 17891 17307

1

10

100

1000

10000

100000

PB SB Hi Ho TC ME RB

B
e

n
ch

m
ar

k 
ex

e
cu

ti
o

n
 t

im
e

 in
 s

e
c 

(l
o

g 
sc

al
e

)

SWDF BGP-only SWDF fully-featured

DBpedia BGP-only DBpedia fully-featured

(c) SemaGrow benchmarks execution time
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Fig. 4: Benchmarks (300 queries each) total execution time including timeouts and
average query runtimes excluding timeouts. (PB = Predicate-Based, SB= Subject-
Based, Hi= Hierarchical, Ho = Horizontal, TC = TCV-Min, ME Min-Edgecut,
RB = Recursive Bisection)

Recursive-Bisection has the smallest average query runtime (5.020557271 seconds),
followed by Min-Edgecut (5.4330126 seconds), TCV-Min ( 5.4456308 seconds),
Horizontal (5.4801338 seconds), Hierarchical (6.0390115 seconds), Subject-Based
(6.5591146 seconds) and Predicate-Based (8.3071525 seconds), respectively.

Figure 4c shows the total execution time of the complete benchmarks for the
selected partitioning techniques based on SemaGrow federation engine. From
all (over 4 benchmarks) benchmark execution results, Predicate-Based partition-
ing consumed the least time (27227.9 seconds) followed by TCV-Min (28772.8



seconds), Hierarchical (28921.6 seconds), Recursive-Bisection (29983.9 seconds),
Subject-Based (30012.5 seconds), Min-Edgecut (30807.5 seconds) and Horizontal
(31145.9 seconds), respectively. Figure 4d shows the average query execution
times of the selected partitioning techniques based on four benchmarks on Sema-
Grow. Of all (over 4 benchmarks) average query execution results, Predicate-
Based has the smallest average query runtime (2.857210203 seconds) followed
by Subject-Based (5.393390726 seconds), Hierarchical (5.349322361 seconds),
Horizontal (7.077052279 seconds), TCV-Min (4.024567032 seconds), Min-Edgecut
(5.850084384 seconds) and Recursive-Bisection (5.535637211 seconds) respectively.

Since both FedX and SemaGrow federation engines represent the purely
federated environment, we now present the combined results of the two feder-
ation engines. Including all (over FedX+SemaGrow and over 4 benchmarks)
benchmark execution results, Recursive-Bisection partitioning consumed the
smallest time (28473.233 seconds), followed by TCV-Min (28756.337 seconds),
Horizontal (28842.264 seconds), Hierarchical (28894.5275 seconds), Subject-Based
(29320.9305 seconds), Predicate-Based (30546.0905 seconds) and Min-Edgecut
(30645.1825 seconds), respectively. Considering all (over FedX+SemaGrow and
over 4 benchmarks) average query runtime results, TCV-Min has the smallest
average query execution time (5.278097241 seconds), followed by Recursive-
Bisection (5.278097241 seconds), Predicate-Based (5.582181367 seconds), Min-
Edgecut (5.641548479 seconds), Hierarchical (5.694166918 seconds), Subject-
Based (5.976252639 seconds) and Horizontal (6.27859305 seconds), respectively.

Figure 4e shows the total execution time of the complete benchmarks for the
selected partitioning techniques based on Koral. Including all (over two bench-
marks) benchmark execution results, the Min-Edgecut consumed the least time
(16839 seconds), followed by Subject-Based (34643 seconds), TCV-Min (40110
seconds), Predicate-Based (45170 seconds), Horizontal (45602 seconds), Hier-
archical (53539 seconds) and Recursive-Bisection (55798 seconds), respectively.
Figure 4f shows the average query execution times of the selected partitioning
techniques based on four benchmarks on Koral. From all (over the 4 benchmarks)
average query execution results, Horizontal partitioning has the smallest average
query runtime (4.393116824 seconds), followed by Min-Edgecut (10.48653731
seconds), Subject-Based (17.91570378 seconds), TCV-Min (25.26057554 seconds),
Predicate-Based (37.66883389 seconds), Hierarchical (40.43121192 seconds) and
Recursive-Bisection (554.618705 seconds), respectively.

The complete benchmark execution results are best summarized in terms of
total timeout queries, overall rankings, and the rank scores of the partitioning
techniques and are presented in the subsequent sections.

Number of timeout queries: Table 1 shows the total number of timeout
queries for each of the 4 benchmarks and for each of the partitioning techniques
using FedX, SemaGrow and Koral. Overall (i.e., over FedX + SemaGrow + Koral),
Min-Edgecut has the smallest timeouts (344 queries), followed by the Subject-
Based (422 queries), TCV-Min (455 queries), Predicate-Based (485 queries),



Table 1: Timeout queries using FedX, SemaGrow and Koral
FedX SemaGrow Koral

SWDF DBpedia SWDF DBpedia SWDF DBpedia

Partitioning BGP FF BGP FF BGP FF BGP FF BGP BGP

Predicate-Based 0 35 32 73 0 20 35 81 0 209
Subject-Based 0 24 29 69 0 20 35 83 0 162
Hierarchical 0 28 28 70 0 20 33 79 0 286
Horizontal 0 12 31 73 0 19 34 83 0 246
TCV-Min 0 24 35 70 0 20 33 85 0 188
Min-Edgecut 0 30 35 74 0 22 34 84 0 65
Recursive-Bisection 0 19 32 70 0 21 35 81 0 298

Horizontal (498 queries), Hierarchical (544 queries), and Recursive-Bisection (556
queries), respectively.

Overall Ranking of Partitioning Techniques: Table 2 shows the results
of the overall rank-wise ranking of the selected partitioning techniques based
on the total benchmark execution time from a total of 4 benchmarks. Based
on FedX, Predicate-Based partitioning ranked 1st and 2nd once each,and 7th

twice, suggesting this technique either produces the best or worst query run-
time performances among the selected partitioning techniques. Subject-Based
partitioning ranked mostly in the middle (once 2nd, twice 4th and once 6th),
suggesting this technique produces average runtime performances among the
selected partitioning techniques. Hierarchical partitioning ranked in the top,
middle, and lower positions, suggesting unpredictable runtime performances.
Horizontal partitioning has given the best results twice and on the other two
occasions it gave the average results. TCV-Min was very consistent by producing
the third best result on three times. Min-Edgecut runtime performance is usually
on the lower side. Recursive-Bisection gave three results at the best side of the
scale, however it ranked 5th once.

Based on SemaGrow, Predicate-Based partitioning mostly results to good
query runtime performances. The query runtime performances of the Subject-
Based and Hierarchical partitioning techniques is on the average or lower sides.
Horizontal has given best results once and the rest three times were on the lower
ranked side. TCV-Min performance is mostly on the high ranked side. Again, Min-
Edgecut runtime performance is usually on the lower side. Recursive-Bisection,
however, has stayed on the lower side.

Based on Koral, Predicate-Based partitioning gave below average query run-
time performances. Subject-Based ranked 2nd and 6th one time each. Hierarchical
ranked on the lower side. Horizontal ranked 1st and 5th one time each. TCV-
Min has produced good results by ranking 2nd and 3rd one time each. Similar
to TCV-Min, Min-Edgecut also produced better query runtime performances.



Table 2: Overall rank-wise ranking of partitioning techniques based on two
benchmarks from SWDF and DBpedia each. (PB = Predicate-Based, SB=
Subject-Based, Hi= Hierarchical, Ho = Horizontal, TC = TCV-Min, ME Min-
Edgecut, RB = Recursive Bisection)

FedX SemaGrow Koral

PT 1st 2nd 3rd 4th 5th 6th 7th 1st 2nd 3rd 4th 5th 6th 7th 1st 2nd 3rd 4th 5th 6th 7th

PB 1 1 0 0 0 0 2 2 1 0 0 0 1 0 0 0 0 1 0 0 1
SB 0 1 0 2 0 1 0 0 0 2 0 1 1 0 0 1 0 0 0 1 0
Hi 1 0 0 1 1 0 1 0 0 2 1 1 0 0 0 0 0 0 1 1 0
Ho 1 1 0 1 1 0 0 1 0 0 0 1 0 2 1 0 0 0 1 0 0
TC 0 0 3 0 1 0 0 1 2 0 1 0 0 0 0 1 1 0 0 0 0
Mi 0 0 0 0 0 3 1 0 1 0 0 0 1 2 1 0 0 1 0 0 0
Re 1 1 1 0 1 0 0 0 0 0 2 1 1 0 0 0 1 0 0 0 1
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Fig. 5: Rank scores and partitioning imbalance of the partitioning techniques.
(PB = Predicate-Based, SB= Subject-Based, Hi= Hierarchical, Ho = Horizontal,
TC = TCV-Min, ME Min-Edgecut, RB = Recursive Bisection)

Recursive-Bisection ranked 3rd and 7th once each. Please note that Koral ranking
is based on a total of 2 (BGP-only) benchmarks.

Rank scores: From Table 2, it is hard to decide which partitioning technique
is generally ranked better. We used Table 2 to compute the rank scores (ref.,
Definition 2) pertaining to each of the partitioning techniques and presented in
Figure 5a. TCV-Min results in the highest rank score, followed by Property-based,
Horizontal, Recursive-Bisection, Subject-Based, Hierarchical, and Min-Edgecut
respectively.

Partitioning imbalance: Figure 5b shows the partitioning imbalance (defined
in Definition 3) values of the partitions generated by the selected partitioning tech-
niques. As expected, the Horizontal portioning results the smallest partitioning
imbalance, followed by Hierarchical, Subject-Based, Min-Edgecut, Recursive-
Bisection, TCV-Min and Predicate-Based, respectively.
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Fig. 6: Total distinct sources selected

Number of sources selected: The number of sources selected (SPARQL
endpoints in our case) by the federation engine to execute a given SPARQL
query is a key performance metric [20]. Figure 6 shows the total distinct sources
selected by FedX and SemaGrow. Note that the source selection algorithm of
both FedX and SemaGrow select exactly the same sources. Generally (over 4
benchmarks) source selection evaluation, Predicate-Based selects the smallest
number of sources, followed by Min-Edgecut, TCV-Min, Recursive-Bisection,
Subject-Based, Hierarchical and Horizontal, respectively.

Spearman’s rank correlation coefficients: Finally, we want to show how
the number of sources selected affects the query execution time. To this end,
we computed the Spearman’s rank correlation between the number of sources
selected and the query execution time. Table 3 shows Spearman’s rank correlation
coefficients values for the four evaluation benchmarks and the selected partitioning
techniques. The results suggest that the number of sources selected, in general,
have a positive correlation with the query execution times, i.e. the smaller the
sources selected the smaller the execution time and vice versa.

4 Related Work

A plethora of clustered triplestores have been designed in previous works
[4,6,8,9,10,11,16,17,18,21,22,27] and mentioned across the paper. Here, we only
target the RDF graph partitioning literature. Koral [14] is a distributed RDF
triplestore which allows the integration of different RDF graph partitioning
techniques. An analysis of three partitioning techniques, i.e., Subject-Based,
Hierarchical and Min-Edgecut is presented in [5] based on synthetic data and
queries. A brief survey of RDF graph partitioning is provided in [24]. [13] suggests
that hash-based partitioning is more scaleable as hash values can be computed



Benchmark Pred Sub Hierar Horiz TCV Mincut Recur Average

F
e
d
X

DBpedia BGP-only 0.22 0.30 0.30 0.28 0.26 0.27 0.29 0.27
DBpedia Fully-featured 0.14 0.11 0.11 0.16 0.17 0.12 0.17 0.14
SWDF BGP-only −0.10 0.57 0.57 0.10 0.57 0.57 0.57 0.41
SWDF Fully-featured 0.22 0.11 0.13 0.09 0.11 0.13 0.10 0.12

S
-G

ro
w

DBpedia BGP-only −0.02 0.11 0.10 0.06 0.09 0.30 0.29 0.13
DBpedia Fully-featured 0.14 0.18 0.23 0.02 0.24 0.26 0.16 0.18
SWDF BGP-only 0.23 0.64 0.64 0.65 0.66 0.64 0.64 0.59
SWDF Fully-featured 0.07 −0.02 −0.02 −0.07 −0.02 −0.06 −0.01 −0.02

Average 0.11 0.25 0.26 0.16 0.26 0.28 0.28 0.23

Table 3: Spearman’s rank correlation coefficients between number of sources
selected and query runtimes. Pred: Predicate-Based, Sub: Subject-Based, Hierar:
Hierarchical, Horiz: Horizontal, TCV: TCV-Min, Mincut: Min-Edgecut, Recur:
Recursive-Bisection, S-Grow: SemaGrow.
Correlations and colors: −0.00...− 0.19 very weak ( -), 0.00...0.19 very weak
( +), 0.20...0.39 weak ( +), 0.40...0.59 moderate ( +), 0.60...0.79 strong ( +).

in parallel. A signature tree-based triple indexing scheme is proposed in [26] to
efficiently store the partitions of the RDF graph. To the best of our knowledge,
no detailed empirical evaluation exists to position the different RDF graph parti-
tioning techniques based on real data and real queries in two different evaluation
environments.

5 Conclusion and Future Work

We presented an empirical evaluation of seven RDF partitioning techniques. Our
overall results of query runtime suggest that TCV-Min leads to smallest query
runtimes followed by Property-Based,Horizontal, Recursive-Bisection, Subject-
Based, Hierarchical, and Min-Edgecut, respectively. Our T-test6 analysis shows
significant differences in the runtime performances achieved by different partition-
ing techniques. In addition, the number of sources selected has a direct relation
with query runtimes. Thus, partitioning techniques which minimize the total
number of sources selected generally lead to better runtime performances. In
future, we will add more querying engines into the clustered evaluation environ-
ment. We will test the scalability of the partitioning techniques using different
sizes of the same datasets and use some more Big RDF datasets. We will also
focus on the effects of partitioning pertaining to a given use-case, such as when
involving reasoning tasks or data updates etc.
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