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ABSTRACT

With the increasing uptake of knowledge graphs comes an increas-
ing need for validating the knowledge contained in these graphs.
However, the sheer size and number of knowledge bases used in
real-world applications makes manual fact checking impractical. In
this paper, we employ sentence coherence features gathered from
trustworthy source documents to outperform the state of the art in
fact checking. Our approach, FactCheck, uses this information to
score how likely a fact is to be true and provides the user the evi-
dence used to validate the input facts. We evaluated our approach
on two different benchmark datasets and two different corpora. Our
results show that FactCheck outperforms the state of the art by up
to 13.3% in F-measure and 19.3% AUC. FactCheck is open-source
and is available at https://github.com/dice-group/FactCheck.
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1 INTRODUCTION

With the increasing use of knowledge graphs (e.g., DBpedia [6],
Google Knowledge Vault [2], Yago [12]) in commercial applications
comes an increasing need to ensure that the facts contained in
knowledge graphs reflect reality. While knowledge base curation
has been performed manually in the past [4, 12], the growth of
knowledge bases in both size and number makes this approach
increasingly impractical. Hence, automatic approaches that support
validity checks for facts in a knowledge base have been devised
over the last few years. Fact validation systems (e.g., DeFacto [4])
often rely on word proximity analysis combined with string search
in a Web corpus to determine how likely a fact is to be true.

In this paper, we go beyond the state of the art in fact checking
by combining deep sentence parsing with topic coherence on static
corpora to determine how likely a fact is to be true. Our approach
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is implemented in the novel automated approach to validate RDF
triples dubbed FactCheck.

We evaluate our approach by using two static text corpora: the
English Wikipedia and ClueWeb12.1 We evaluate and report the
results of DeFacto and FactCheck using the existing benchmark
dataset FactBench [4] and a newly created dataset, which addresses
some of the known weaknesses of FactBench. Our experiments
show that FactCheck outperforms DeFacto on all datasets with
both reference corpora by up to 13.3% F-measure and 19.3% AUC.

2 RELATEDWORK

There are several approaches for validating a set of given facts
based on knowledge gathered from web searches or a reference
corpus. Most of these fact finders work in a similar way: First,
a bipartite graph of facts and sources is generated. A source is
connected to a fact if this source gives evidence for this particular
fact. The scores—trustworthiness of sources and truth values of
facts—are calculated based on this graph. [9] gives a good overview
of several implementation of this principle. The state of the art for
fact checking in RDF datasets is DeFacto[4]. In contrast to other
approaches, DeFacto focuses on evaluating single facts and uses a
combination of textual evidence and machine learning to this end.
However, it relies on string matching and string similarities and
does not take sentence structures into consideration. We address
this drawback with FactCheck.

3 FACTCHECK

The architecture underlying FactCheck is shown in Figure 1. The
input to the framework is an RDF triple, e.g., <Albert_Einstein,
:award, Nobel_Prize_for_Physics>. This input triple is first
verbalised, i.e., transformed into natural language. To this end, we
use surface form libraries for the resources (e.g., from [4, 5]) to gen-
erate possible verbalizations of the input triple. These verbalizations
of the triple are used to search through a static corpus and gather
documents containing sentences similar to the verbalizations (we
use Elasticsearch2). All sentences of the retrieve document which
are similar to a verbalization of the input triple are used as evi-
dence for the given fact. For every evidence, FactCheck extracts
evidence features and for every document, trust worthiness fea-
tures are further extracted. These features are used as input to a
trained machine learning model, which returns a confidence value
for the triple between 0 and 1. In the following, we focus on the
features that ensure FactCheck outperforms DeFacto—namely
dependency parsing and word coherence. The other features, which
FactCheck shared with DeFacto, can be found in Section 3.3.

1https://lemurproject.org/clueweb12/
2https://www.elastic.co/products/elasticsearch
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Figure 1: Overview of the architecture of FactCheck

3.1 Dependency Parse Features

To compute this feature, we begin by applying co-reference reso-
lution to the documents returned by the search engine. We then
extract sentence(s) that contain at least one verbalization of the
predicate of the input triple.We then construct the dependency trees
of these sentences and identify enhanced dependencies between the
words of these sentences [11]. These enhanced dependencies are
analyzed to detect the presence of direct dependencies involving
the subject, object and predicate of the input triple. For example,
consider the following input triple:

<Albert_Einstein, received, Nobel_Prize_in_Physics>

The textual evidences extracted for the input triple from two
different source documents are shown below.

Albert Einstein received the 1921 Nobel Prize in Physics "for his
services to theoretical physics, and especially for his discovery of
the law of the photoelectric effect", a pivotal step in the evolution of
quantum theory.

In 1945, after having been nominated by Albert Einstein, Pauli re-
ceived the Nobel Prize in Physics for his "decisive contribution through
his discovery of a new law of Nature, the exclusion principle or Pauli
principle".

For the first proof phrase, we find a dependency where the subject
and object depend directly on the predicate. This sentence will be
assigned the feature value 1. If no direct dependencies can be found
between the subject, object and predicate (see, e.g., Figure 2), the
feature is assigned the value 0.

Albert Einstein received the 1921 Nobel Prize...

...nominated by Albert Einstein, Pauli received the Nobel Prize... 

  dobj

nmod

advcl

nsubj

nsubj dobj

Figure 2: Dependency parse trees of the two example

evidences.

3.2 Topic terms based on word coherence

In FactCheck, we use a hybrid approach by combining word set
coherences [10] and topic indicators [7] to calculate trustworthiness

features of a document. A list of pages related to the input triple are
obtained by querying Wikipedia with the subject and object labels
separately. A frequency analysis is performed on the retrieved pages
and top n terms with highest frequencies are selected (excluding
stop words).3 We then calculate coherence values for these terms
by forming word sets with subject and object labels respectively. All
the terms whose coherence value is greater than a certain threshold
are selected and used as topic terms.4 Finally these terms are used
to calculate the trustworthiness features as described in [4].

For our experiments we use the normalized pointwise mutual
information (NPMI) coherence [1] defined as the average NPMI
value of all word pairs of the given word set. The NPMI value of a
word pairwi andw j is determined by Equation 1, where ϵ = 10−12
and P (wi ),P (w j ) aswell as P (wi ,w j ) are probabilities gathered from
the English Wikipedia using a sliding window of 10 words [10].

NPMI (wi ,w j ) =
*...
,

log
(
P (wi ,w j )+ϵ
P (wi )P (w j )

)
log
(
P (wi ,w j ) + ϵ

) +///
-

(1)

3.3 Other Features

The following features are shared with DeFacto.
EvidenceClassification:BOApattern score, token distance,Word-
net expansion, total occurrence, page title, end of sentence.
Trustworthiness: topic coverage, topic majority in search results,
topic majority in the web, domain and range verification, statistical
triple evidence. In addition, we also use combinations of features
from both categories. An exact description of the features can be
found in [4].

4 EXPERIMENTAL SETUP AND DATASETS

4.1 Reference corpora

Weused two reference corpora—ClueWeb and the EnglishWikipedia.
ClueWeb was generated by removing all HTML tags from the
orginal files of ClueWeb12 and extracting relevant information such
as pageid, text, URL and the page title. In addition, we also used
the PageRank information provided by the ClueWeb page rank5
to configure our search engine. Our final corpus contained approx.
3For our experiments, we are using n = 50.
4Based on our observation for a sample of topics chosen randomly, we are using 0.2
as threshold for the coherence value.
5http://www.lemurproject.org/clueweb12/PageRank.php
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420 million plain text documents. The second corpus was created
by extracting plain text from all articles of the English Wikipedia
and comprises 5.4 million plain text documents.6

4.2 Datasets

In our experiments, we used two different datasets for training
and evaluating the classifier underlying FactCheck: FactBench
from [4] and the BPDP dataset created by us. FactBench is a mul-
tilingual benchmark dataset for the evaluation of fact validation
algorithms[4].7 FactBench is divided into train and test sets both
containing positive and negative facts. The positive facts are gen-
erated by issuing SPARQL and MQL queries and selecting the top
150 results for each relation. The negative facts are derived by mod-
ifying positive facts. Given a KB K , let S and O be the set of all
subjects and objects respectively inK . Let P be set of all properties.8
Let triple X = (s,p,o) represent a positive example in K and r a
function which randomly selects an element from the given set.
The following negative facts sets are generated corresponding to X
while still following domain and range restrictions.
Domain: {(s ′,p,o) | s ′ = r (S ), (s ′,p,o) < K }
Range: {(s,p,o′) | o′ = r (O ), (s,p,o′) < K }
Domain-Range: {(s ′,p,o′) | s ′ = r (S ),o′ = r (O ), (s ′,p,o′) < K }
Property: {(s,p′,o) | p′ = r (P ), (s,p′,o) < K }
Random: {(s ′,p′,o′) | s ′ = r (S ),p′ = r (P ),o′ = r (O ), (s ′,p′,o′) < K }
Mix: This set is built by randomly selecting 20% of the triples of
each of the above sets

FactBench comprises 1,500 positive facts which are divided into a
training and a test set of equal size. For each of the six categories of
wrong facts, FactBench contains 1500 facts that are also separated
into two halves for training and testing.

Our second evaluation dataset, the Birth Place/Death Place (BPDP)
dataset, was created based on the observation that some fact check-
ing approaches only check if subject and object have a relation
to each other. However, the type of the relation, i.e., if it matches
the property of the given fact, is not always taken into account.
We hence created a more difficult dataset by generating false facts
involving pairs of entities that are part of a triple. To this end,
we queried DBpedia for persons which have their birth and death
places in two different countries. We sorted this list in descend-
ing order based on PageRank scores as implemented in [8]. Two
researchers checked this list to make sure that the countries were in-
deed different and not simply renamed because of historical events.
The first 103 correct persons the two researchers agreed on were
chosen. For each person, four facts were added to the dataset. Two
facts have the correct birth and death places while the other two
facts are generated by swapping birth and death place. Overall, the
BPDP dataset comprises 412 facts separated in a train and a test set
each containing an equal number of positive and negative facts.9

6We used the dump from the 1st October 2017. All documents of ClueWeb and
Wikipedia were indexed separately using Elasticsearch on a cluster of 7 nodes with a
combined storage capacity of 15TB and computing capacity of 32GB RAM per node.
7https://github.com/SmartDataAnalytics/FactBench
8FactBench contains 10 properties from the DBpedia ontology: award, birth, death,
foundationPlace, leader, nbateam, publicationDate, spouse, starring and subsidiary.
9The dataset is available at https://hobbitdata.informatik.uni-leipzig.de/FactCheck/.

Table 1: Classification results of DeFacto and FactCheck

on the Mix subset.

Wikipedia ClueWeb

P R F1 AUC RMSE P R F1 AUC RMSE

DeFacto

J48 0.809 0.802 0.803 0.827 0.392 0.832 0.830 0.830 0.829 0.384
Simple Logistics 0.795 0.784 0.784 0.847 0.394 0.819 0.818 0.818 0.871 0.378

Naive Bayes 0.726 0.600 0.554 0.820 0.620 0.762 0.740 0.740 0.863 0.480
SMO 0.787 0.777 0.777 0.782 0.471 0.821 0.820 0.820 0.816 0.424

FactCheck

J48 0.840 0.837 0.837 0.825 0.391 0.891 0.885 0.885 0.925 0.299
Simple Logistics 0.836 0.835 0.835 0.883 0.368 0.893 0.883 0.883 0.955 0.288

Naive Bayes 0.768 0.684 0.659 0.894 0.555 0.808 0.760 0.760 0.869 0.475
SMO 0.826 0.825 0.825 0.825 0.418 0.885 0.871 0.871 0.877 0.358

4.3 Preparations

For the experiments, DeFacto and FactCheck were trained on
the train part of the datasets used in the experiment. This includes
the generation of feature vectors for training classification models.
We use four different classifiers—J48, Simple Logistics, Naive Bayes
and sequential minimal optimization (SMO)—of the Weka machine
learning toolkit [3]. Once the final models were created, we gener-
ated the feature vectors for facts from the test set before classifying
each single fact to be either true or false. We carried out experi-
ments for DeFacto and FactCheck using all subsets of FactBench
as well as ClueWeb and Wikipedia as reference corpora. For the
BPDP dataset, only experiments with Wikipedia as reference were
carried out. Note that for a fair comparison, we extended DeFacto
to enable it to use our ClueWeb and Wikipedia as reference corpora.

The classification results were evaluated using precision, recall,
F1-measure, ROC-AUC as well as root mean square error (RMSE).
Owing to limited space, only a selected subset of the experimental
results will be presented and discussed in the following section.10

5 RESULTS AND DISCUSSION

The aim of our experiments is to answer the following questions.

5.1 Q1: Impact of Corpus Size on Classification

To answer Q1, we compare the results of both systems on the Mix

subset of FactBench using ClueWeb and Wikipedia as reference
corpora. Table 1 shows the results of DeFacto and FactCheck.
The F-Measures of both systems are higher for all four classification
algorithms when using the larger ClueWeb corpus. For the best
classifiers, the F1-score increases by 0.027 for DeFacto and 0.048
for FactCheck, respectively. The reason for this improvement is
that the number of source documents found in ClueWeb is higher
compared to Wikipedia for the majority of positive facts. In partic-
ular, no source documents for facts corresponding to the relations
foundationPlace and subsidiary are found in Wikipedia.

5.2 Q2: Comparison of FactCheck and

DeFacto

Table 1 already showed that FactCheck performs better than De-
Facto on the Mix subset for both reference corpora. FactCheck’s

10All results are available in our appendix which can be accessed at https://hobbitdata.
informatik.uni-leipzig.de/FactCheck/cikm2018-appendix.pdf.

https://github.com/SmartDataAnalytics/FactBench
https://hobbitdata.informatik.uni-leipzig.de/FactCheck/
https://hobbitdata.informatik.uni-leipzig.de/FactCheck/cikm2018-appendix.pdf
https://hobbitdata.informatik.uni-leipzig.de/FactCheck/cikm2018-appendix.pdf


Table 2: Classification performance of FactCheck and De-

Facto on the Property and BPDP dataset.

FactCheck DeFacto

P R F1 AUC RMSE P R F1 AUC RMSE

Property subset

J48 0.819 0.819 0.819 0.865 0.374 0.713 0.703 0.700 0.758 0.452
Simple Logistics 0.806 0.805 0.805 0.860 0.381 0.709 0.700 0.700 0.781 0.441

Naive Bayes 0.677 0.660 0.660 0.747 0.551 0.661 0.654 0.650 0.724 0.519
SMO 0.812 0.812 0.812 0.812 0.434 0.720 0.710 0.710 0.719 0.530

BPDP dataset

J48 0.814 0.811 0.811 0.878 0.368 0.691 0.678 0.678 0.715 0.494
Simple Logistics 0.792 0.783 0.782 0.922 0.348 0.626 0.623 0.623 0.729 0.487

Naive Bayes 0.800 0.760 0.760 0.869 0.475 0.623 0.623 0.622 0.68 0.579
SMO 0.811 0.811 0.811 0.811 0.434 0.682 0.673 0.673 0.673 0.497

F1-score is 0.034 and 0.055 points higher compared to DeFacto
when using Wikipedia and ClueWeb, respectively.

According to [4], the Property subset is the most difficult part of
FactBench. Table 2 shows the results of both systems for this subset
using the ClueWeb reference corpus. Again, FactCheck clearly
outperforms DeFacto by 0.109 in terms of F1-measure and 0.084 in
terms of AUC. A comparison with other FactBench subsets shows
that while DeFacto is stable at classifying positive and negative
examples on the other sets, its ability to identify false facts of the
Property subset is limited. This is due to the fact that the classifica-
tion features in DeFacto merely check for the presence of property
patterns in the proof phrases and fail to consider their relation with
the subject and object label of the input triple. However, with the
Dependency Parse feature of FactCheck we pay attention to the
relations between subject, property and object of the input triple
while confirming facts from sentences. This enables FactCheck to
detect false facts more accurately.

This observation is supported by the comparison of the system
results for the BPDP dataset on the Wikipedia corpus. Although
the dataset has been created to be even more challenging than
the Property subset of FactBench, FactCheck still reaches a high
F1-measure which is 0.133 above the best F1-measure reached by
DeFacto as shown in Table 2. This supports FactCheck’s advan-
tage over similar systems. Note that, the Wilcoxon signed-rank
test for the scores of both systems for a sample of 150 examples
indicates the results are significant at p ≤ 0.01.

5.3 Q3: Feature subset analysis

Our third aimwas to checkwhich of the features used by FactCheck
are helpful for the classification of facts. To this end, we used subset
evaluation techniques offered by Weka.11 These evaluation tech-
niques are used to search for the best feature combination for the
Mix subset since it offers different types of false facts. We used the
ClueWeb corpus and the J48 and Simple Logistics classifiers owing
to their performance on the selected set. The results of the experi-
ment show that J48 and Simple Logistics achieve F-measures of up
to 0.898 and 0.892, respectively, when an optimized set of features
is used. In addition to search-related features (PageRank, number of
hits), both classifiers used the topic-related features and the features
based on dependency parsing presented in Section 3. The features

11We used the evaluators WrapperSubsetEval, ClassifierSubsetEval, FilteredSubsetEval,
CfsSubsetEval and ConsistencySubsetEval.

domain & range verification and statistical triple evidence are not
used by any of the classifier. This is probably an artifact of the use
of FactBenct, since the creators of the dataset made sure that the
domain and range of the properties are not violated.

6 CONCLUSION AND FUTUREWORK

In this paper, we presented FactCheck—a fact validation approach
based on machine learning and textual evidences gathered from a
reference corpus.We showed that FactCheck outperforms the state
of the art by up to 13.3% F1-measure and 19.3% AUC. Additionally,
we analyzed the influence of the reference corpus size and the
importance of the features used for the classification of facts. In the
future, we want to use this advantage to create fact checking web
services to enable access FactCheckś functionality directly and to
encourage other researchers to compare their own approaches with
FactCheck easily. Another interesting future work is to extend
FactCheck with more features and apply an ensemble learning
instead of a single classifier.
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