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ABSTRACT
More than 500 million facts on the Linked Data Web are statements

across knowledge bases. These links are of crucial importance for

the Linked Data Web as they make a large number of tasks possi-

ble, including cross-ontology, question answering and federated

queries. However, a large number of these links are erroneous and

can thus lead to these applications producing absurd results. We

present a time-e�cient and complete approach for the detection of

erroneous links for properties that are transitive. To this end, we

make use of the semantics of URIs on the Data Web and combine

it with an e�cient graph partitioning algorithm. We then apply

our algorithm to the LinkLion repository and show that we can

analyze 19,200,114 links in 4.6 minutes. Our results show that at

least 13% of the owl:sameAs links we considered are erroneous. In

addition, our analysis of the provenance of links allows discovering

agents and knowledge bases that commonly display poor linking.

Our algorithm can be easily executed in parallel and on a GPU. We

show that these implementations are up to two orders of magnitude

faster than classical reasoners and a non-parallel implementation.
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1 INTRODUCTION
Links across knowledge bases play a fundamental role in Linked

Data [3] as they allow users to navigate across datasets, integrate

Linked Data sources [17], perform federated queries [19] across data

sources and perform large-scale inference on the data. Given the im-

portance of links, corresponding repositories such as sameas.org1

and LinkLion [14] (of which sameas.org is a subset) have been

created. In addition to facilitating the �nding of links between

resources and knowledge bases, these repositories also allow de-

tecting signi�cant errors across links. For example, according to
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LinkLion and by virtue of transitivity, the resources orca:21075
and orca:19462

stand for the same entity of the real world but

have di�erent URIs within the same knowledge base. This clearly

goes against the de�nition of URIs as used in RDF. Figure 1 shows

a �ctional example to help illustrate such problems, which can

be classi�ed as contradiction problems, according to the qual-

ity dimension of consistency [26]. In our example, we can infer

that one of the links along the path that led to this inference is

wrong or that the knowledge base in itself contains an error. While

such errors can be potentially detected by computing the closure

of equivalence links using the characteristics of equivalence rela-

tions and an inference engine, our experiments with Pellet [8] –

the fastest inference engine to the best of our knowledge – suggest

that inference engines do not scale to the millions of links found

on the Web of Data.

The poor performance on closure computations is also known

from literature (see, e.g., [5]). For instance, the computation of

closures in RDF graphs has several drawbacks. Firstly, it is known

that the size of the transitive closure of a graph G is of quadratic
order in the worst case, making the computation and storage of the

closure too expensive for web-scale applications. Secondly, once

the transitive closure has been computed, all queries are evaluated

over a data source which can be much larger than the original one.

This can be particularly ine�cient for queries that must scan a

large part of the input data.

Our intuition is that it is actually not necessary to compute

the closures; instead, we can use adjacency lists and create graph

partitions based on an algorithm called Union Find [21]. Therewith,

we obtain a solution with a time complexity that is decreased from

O (n2) to O (m loд n), wherem is the number of operations (either

Union or Find) that are applied to n elements.

In this paper, we aim to �nd erroneous links across knowledge

bases by reusing the uniqueness of the semantics of URIs within

given knowledge bases. We hence present a novel time-e�cient

algorithm called Consistency Error Detection Algorithm (CEDAL), in

which the error detection consists of �nding distinct resources (i.e.,

resources with distinct URIs) which share the same dataset, given

an RDF graph representing the union of all knowledge bases in a

link repository.

With our work, we address the following research questions:

(1) Is there a time-e�cient algorithm to detect erroneous links

in large-scale link repositories?

2orca stands for the namespace http://orca.cf.ac.uk/id/eprint/.

http://sameas.org/
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Figure 1: Manual detection of erroneous resource candidates.

(2) Is there an approach to discover whether a linkset
3

is con-

sistent without computing all closures required by the

property axiom?

The contributions of this work are listed below:

• A time-e�cient algorithm for the detection of erroneous

links in large-scale link repositories without computing all

closures required by the property axiom.

• An approach that brings the possibility to track the consis-

tency problems inside link repositories.

• A scalable algorithm that works well in a parallel and non-

parallel mode.

• A study case applied to a link repository called LinkLion.

• A new linkset quality measure based on the number of

erroneous candidates.

The remainder of this paper is structured as follows: Section 6

presents related work; Section 2 introduces the de�nitions and con-

cepts used throughout this paper; Section 3 presents our algorithm

for the detection of erroneous links in large-scale link reposito-

ries; Section 4 presents the error types and a quality measure for

linksets; Section 5 presents the evaluation of our approach; and

�nally, Section 7 presents the conclusions and future work.

2 PRELIMINARIES
RDF graph. An RDF graph is a set of RDF triples which has

a set of subjects and objects of triples in the graph called

nodes. Given an in�nite set U of URIs, an in�nite set B of

blank nodes and an in�nite set of literals L, a RDF triple is

a triple 〈s,p,o〉where the subject s ∈ (U ∪B), the predicate

p ∈ U and the object o ∈ (U ∪ B ∪ L). An RDF triple

represents an assertion of a “piece of knowledge”, so if the

triple 〈s,p,o〉 exists, then, the logical assertion p (s,o) holds

true. An RDF graph is also represented by a collection

of RDF triples and it can be seen as a set of statements

describing, partially or completely, a certain knowledge.

Transitive property. De�ned by: ∀a,b, c ∈ X : (p (a,b) ∧
p (b, c )) =⇒ p (a, c ), wherep represents a relation between

two elements of a set X .

Equivalence. An equivalence relation is a binary relation

that is re�exive, symmetric and transitive. According to

OWL semantics, owl:sameAs is an equivalence relation.

Linkset. According to the W3C,
4

a linkset is a collection of

RDF links between two datasets. It is a set of RDF triples

3
We refer to the de�nition of linkset as de�ned in the W3C document at https://www.

w3.org/TR/void/.

4
https://www.w3.org/TR/void/#linkset

in which all subjects are in one dataset and all objects are

in another dataset. RDF links often have the owl:sameAs
predicate, but any other property could occur as the pred-

icate as well. Formally, according to [4], a linkset LS is a

set of RDF triples where for all triples ti = 〈si ,pi ,oi 〉 ∈ LS ,

the subject is in one dataset, i.e. all si are described in S ,

and the object is in another dataset, i.e. all oi are described

in T . We use the word linkset for either RDF knowledge

base �les and dump �les from RDF link repositories.

RDF graph partitioning. Given a graph G = (V ,E, lbl ,L),
a graph partitioning, C, is a division of V into k partitions

P1, P2, ..., Pk such that

⋃
1≤i≤k

Pi = V , and Pi ∩ Pj = ∅ for

any i , j . The edge cut Ec is the set of edges whose vertices

belong to di�erent partitions, lbl : E ∪V → L is a labeling

function, and L is a set of labels. The de�nition comes from

a recent survey about RDF graph partitioning [22].

3 METHOD
After introducing the terminology and symbolism used in this work,

in this section, we present our error detection algorithm.

3.1 Error Detection algorithm
Our algorithm targets consistency errors in large-scale link reposi-

tories. We assume a union of linksets L as given input. The aim

is to �nd cases in which equivalent resources (according to the

OWL semantics) in L share the same dataset. The basic intuition

here is equivalent resources (i.e., resources that stand for the same

entity from the real world) being in one knowledge base is a clear

hint towards (1) an error in the knowledge base itself or (2) an

error during the generation of the links that allowed generating

this equivalence.

In Figure 2, we show how our algorithm works. Given datasets

D1, ...,Dn , resources R = {a,b, c,d, e, f }, the idea is to detect two

or more resources sharing the same dataset inside the same cluster,

following the steps described in algorithm 1.

Our algorithm works by partitioning a graph inside an adjacency

list that contains: (1) An array per vertex for a total of V arrays,

where we are only considering the space for the array pointer, not

the contents of the array. (2) Each directed edge is contained once

somewhere in the adjacency list, for a total of E edges, where a

bidirectional edge is just 2 directed edges, assuming we are using

bi-directional edges.

3.1.1 Problem statement. We formalize the problem of detection
of erroneous links in large-scale link repositories as follows.

https://www.w3.org/TR/void/
https://www.w3.org/TR/void/
https://www.w3.org/TR/void/#linkset
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Algorithm 1 Consistency Error Detection Algorithm (CEDAL)

Input: L : Li = (s,p,o) : s ∈ D
(s )
i ,o ∈ D

(t )
i

Output: An error list with erroneous nodes.

1: procedure CEDAL(G (V ,E))
2: P = getPartitions(G (V ,E))
3: for all p ∈ P do (in parallel)
4: for all r ∈ p do push onto clusterDataset r,

MapResourcesDataset .дet (r )
5: end for
6: for all r ∈ clusterDataset do
7: if countDataset (r ) > 1 then push onto ErrorList

resource.originalFileName + resource.dataset + resource.path

8: end if

9: end for
10: end for
11: return ErrorList
12: end procedure
13: procedure getPartitions(G (V ,E))
14: for all v ∈ V do
15: push onto MapResourcesDataset v, extracDataset (v )t
16: push all nodes connected to v ontoV . UnionFind

algorithm

17: pushV onto P

18: end for
19: return P

20: end procedure

Figure 2: Error detection.

From this section on, we will refer to the union of all linksets

as L =
⋃
i Li , the set of all datasets as D, the clusters (or graph

partitions) as C, the candidates (i.e., set of resources belonging to

the same dataset) P. A linkset L ∈ L contains triples (or links)

(s,p,o) such as:

(s,p,o) ∈ L : s ∈ Di ,o ∈ D j , i , j (1)

Each candidate P abides by the following restriction:

∀ri , r j ∈ P : ri , r j ⇒ (ri ,x , r j ) ∈ L
∗ ∨ (r j ,x , ri ) ∈ L

∗
(2)

where x is a property (e.g., owl:sameAs). In other words, each

element in P is linked to at least another element in the set. Candi-

dates are assigned one of two classes, positive (i.e., candidates with

errors) or negative. The positive cases are represented as follows.

P ∈ P+ ⇐⇒ (∃r1 ∈ P ∩ D1, r2 ∈ P ∩ D2) ∴ D1 = D2 ⇒ r1 , r2
(3)

The negative cases are de�ned in the following equation.

P ∈ P− ⇐⇒ (∀r1 ∈ P ∩ D1, r2 ∈ P ∩ D2) ∴ D1 = D2 ⇒ r1 = r2
(4)

The target is thus to �nd the set of erroneous candidates P+. As

shown in the next section, we cannot state that a link connecting

these resources is wrong, but we can state that the error lies some-

where between the links that connect them and the organization

of the dataset they belong to.

4 ERROR TYPES AND QUALITY MEASURE
FOR LINKSET REPOSITORIES

The application of the two measures requires the output from

CEDAL, allowing to identify two types of errors among the er-

roneous candidates from the output.

4.1 Error Types
We identi�ed two types of errors, in which can be de�ned in quality

dimensions by [26]. (1) Semantic accuracy errors, in which we

detect if data values correctly represent the real world facts. (2)

Consistency and Conciseness errors where a knowledge base

is free of logical or formal contradictions concerning particular

knowledge representation and inference mechanisms and the mini-

mization of redundancy of entities at the schema and the data level.

Figure 3 shows a �ctional example of both error types, in which we

represent links between GeoNames
5

and DBpedia.
6

(a) Error type (1). (b) Error type (2).

Figure 3: Detected error types.

In this example, Figure 3(a) shows an error of type (1), in which

an erroneous owl:sameAs link between the city of Dresden and

the city of Leipzig was detected. The �g. 3(b) shows an error of

type (2) where the resource about the city of Leipzig is duplicated

within the DBpedia dataset.

5
http://www.geonames.org/

6
http://dbpedia.org/

http://www.geonames.org/
http://dbpedia.org/
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We manually analyzed a random sample of the errors. Among

100 occurrences, 90% are of type (2). It was not feasible in practice

to perform this evaluation in an automatic way, due to the fact

that it involves semantic accuracy and thus needs human feedback.

Moreover, some URIs are unreachable, resulting many times in

timeout errors, such as HTTP 404, 500 and 503 errors.
7

In summary,

it was not practicable to automatically distinguish these type of

errors among the erroneous candidates detected by CEDAL.

4.2 Quality Measure
Based on the error types from CEDAL, we present three linkset

quality measures, evaluating the information accessed by cross-

walking the linksets of LinkLion.

The SemanticAccuracy of linksets indicates whether the data

values from the RDF links represent real world facts. Example:
Let us assume that we have a linkset from DBpedia and Geonames.

A link <dbr:dresden owl:sameAs geo:leipzig> would clearly

be inaccurate, since Dresden and Leipzig are two di�erent cities.

The consistency and conciseness of links inform whether a

linkset is free of logical or formal contradictions with respect to par-

ticular knowledge representation and inference mechanisms and

the minimization of redundancy of resources that belongs to the

same dataset inside a linkset repository. Example: With a linkset

from DBpedia and Geonames, let us assume we found two links

represented by <dbr:leipzig1 owl:sameAs geo:leipzig> and

<dbr:leipzig2 owl:sameAs geo:leipzig>. Since dbr:leipzig1
and dbr:leipzig2 belong to the same dataset, this characterizes a

redundancy and it contradicts the assumption that two URIs in a

dataset cannot stand for the same thing from the real world.

In order to evaluate data quality in linksets, on the lines of the

works summarized in the Data Quality survey [26], we propose

three new metrics:

M1: Rate of consistent resources inside linkset repositories.

Let us consider a candidate P ∈ P containing only

resources which belong to the same dataset. The rate of

consistent candidates is de�ned as follows:

M1 =

∑
P ∈P− |P |∑
P ∈P |P |

(5)

where P− is the set of consistent (i.e., non-erroneous) can-

didates. We call M1 the consistency index.

M2: Rate of candidates in P containing resources whose in-

ternal links are real world facts. Let us introduce a function

f (s,p,o) which expresses the veri�cation of a triple (s,p,o)
in the real world, assuming value 1 if the statements holds

true and 0 otherwise. This metric addresses errors of type

(1).

M2 =
|{P ∈ P+ : ∀ri , r j ∈ P ri , r j ⇒ f (ri ,p, r j ) = 1}| + |P− |

|P |
(6)

M3: Rate of candidates in P which are free of redundant

resources. This metric addresses errors of type (2).

M3 =
|{P ∈ P+ : ∃ri , r j ∈ P ri , r j ⇒ f (ri ,p, r j ) = 0}| + |P− |

|P |
(7)

7
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

As can be seen, M2 and M3 are dependent on each other.

In this paper, we focus on the computation of M1. Although M2

and M3 are left for future research, we included them to encourage

their evaluation and use.

5 EVALUATION
To verify our hypothesis, in this section we show that CEDAL

brings an e�cient way to track the erroneous candidates inside

large-scale linkset repositories.

5.1 Experimental setup
As our study case, we use a linkset repository called LinkLion [14]

due to some advantages such as provenance, linksets from the most

used datasets, i.e. DBpedia, Yago and Opencyc, where the users are

empowered to upload links and specify how these were created.

Moreover, users and applications can select and download sets of

links via dumps or SPARQL queries.

The table 1 shows that 99.9% of links from LinkLion are owl:sameAs
links, amounting to 19, 200, 114 triples. Thus, in our experiments

we are using only owl:sameAs links.

Table 1: Link types

Property Triples
sameAs 19,606,657 (with duplicates)

country 1,309

author 766

spokenIn 624

locatedIn 250

exactMatch 167

near 30

spatial#P 28

seeAlso 14

organism 14

made 4

The experiments were performed using two con�gurations: (1) a

laptop with Intel Core i7, 8 GB RAM, a video card NVIDIA NVS4200,

Operational System MS Windows 10 and Java SE Development Kit 8.

(2) An Intel Xeon Core i7 processor with 40 cores, 128 GB RAM on

an Ubuntu 14.04.5 LTS with Java SE Development Kit 8. The results

including the output �le for LinkLion are available online. The total

number of 19.6million links was processed by our algorithm in

4.6 minutes with the con�guration (2). The total amount of errors

were 1, 352, 366 of candidates, where the total amount of domains

were 254 and the number of linkset �les was 553, where 48.3% of

these knowledge base �les has less than 10 resources detected as

erroneous candidates.

5.2 Ranking the erroneous candidates
To evaluate how e�ective CEDAL is, we create a score in order to

rank the erroneous candidates based on the number of detected

resources with errors, in which the table 2, show two �ctional

examples of tuples in the same pattern of the output from CEDAL.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
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Table 2: Fictional example results.

Knowledge-base Data-set domain C µ

Linkset1.nt Data-set1 URI1,URI2 1

Linkset2.nt Data-set2 URI1,URI2,URI3,URI4 6

The µ score is calculated by µ =
|C |( |C |−1)

2
, in which we use

the cardinality of C representing the detected erroneous candi-

dates. The �gs. 4(a) and 4(b) shows the top 5 erroneous candidates

according to the rank score.

Table 3: Legend for the �gs. 4(a) and 4(b)

Label Knowledge Base

K1 dotac.rkbexplorer.com—eprints.rkbexplorer.com.nt

K2 d-nb.info—viaf.org.nt

K3 dblp.rkbexplorer.com—dblp.l3s.de.nt

K4 linkedgeodata.org—sws.geonames.org.nt

K5 citeseer.rkbexplorer.com—kisti.rkbexplorer.com.nt

K6 wiki.rkbexplorer.com—oai.rkbexplorer.com.nt

K7 www4.wiwiss.fu-berlin.de—dbpedia.org.nt

K8 southampton.rkbexplorer.com—nsf.rkbexplorer.com.nt

K9 rae2001.rkbexplorer.com—newcastle.rkbexplorer.com.nt

K10 lod.geospecies.org—bio2rdf.org.nt

Considering only linksets between di�erent datasets, the knowledge-

base with more errors comes from the links in

dotac.rkbexplorer.com - eprints.rkbexplorer.com

with 458, 324 links per mapping
8
, in which we found 53, 074 erro-

neous resource candidates resulting in a score of 1, 408, 398, 201.

The knowledge base with fewer errors comes from the links in

lod.geospecies.org - bio2rdf.org.nt

with 9, 723 links per mapping, in which we found 6 erroneous

resource candidates and a score of 15, also 193 datasets with no

errors at all.

5.3 Runtime experiments
The experiments were performed with the input size varying be-

tween 10
3

and 10
6

RDF triples using the con�guration (1), as shown

in Figure 5. Our algorithm processed all 19, 200, 114 links from Lin-

kLion in 4.6 minutes with the con�guration (2). The results indicate

that our algorithm scales well to large links repositories and can

also be adapted to the hardware on which it is executed. For exam-

ple, it can be easily implemented to make use of bene�ts of CPUs

and GPUs.

5.3.1 Scalability Evaluation. Our algorithm performs well in

parallel and non-parallel environments. The performance of our

algorithm improved in accordance to the number of CPUs, showing

that our algorithm is scalable, performing well with large linksets

with size more than 10
6

as shown in �gs. 5(a) and 5(b).

8
Links per mapping from http://www.linklion.org/

5.3.2 Parallel Implementation. Our algorithm implementation

contains parallel code snippets in which we perform a load-and-

balance of the data among CPU/GPU cores when available. This

speci�c characteristic o�ers the possibility for utilization when

hardware for parallel computing is available, such as CPU/GPU

processors.

To illustrate this part of our idea, we can state: Given a graph

G (V ,E), that contains all linksets from the repositoryG (V ,E) ⊆ L,

this graph has partitions P ⊂ G (V ,E). Thus, errors are calculated

for each partition, the processes are separated in threads and these

threads are spread among CPU/GPU cores. Thus, we process the

graph partitions in parallel, as shown in Figure 6.

Figure 6: CEDAL CPU/GPU processing

5.4 Consistency by provenance of links
Thanks to the information found in LinkLion, we are able to check

the provenance of links. This allowed us to analyze them more

in details by �nding which link discovery framework has created

the link. The links were generated by four types of frameworks:

LIMES [16], SILK [24], DBpedia Extraction Framework [12] and

sameas.org9
. The type of links provided by sameas.org were gener-

ated into human-curated knowledge bases, such as DBpedia (which

is based on Wikipedia), Freebase, and OpenCyc.

We found a 13.5% error rate from sameas.org versus a 4.1% er-

ror rate of the algorithms such as LIMES [16]. They are all below

5% as table 4 shows; column Errors represents the rate of all re-

sources belonging to error candidates and column M1 represents

the respective quality measure.

According to this data, we can say that algorithms such as LIMES,

SILK, and the DBpedia Extraction Framework have a higher consis-

tency index than sameas.org. This might be explained by the fact

that no mechanism of link validation is present on sameas.org.

5.5 Comparison with other works
To the best of our knowledge, CEDAL is the �rst approach that aims

to detect the consistency of RDF link repositories. However, the

problem that CEDAL addresses can be solved in other ways. One

alternative to solving our problem is to use reasoning. However,

this approach requires the computation of all closures required

by the property axiom. To check whether our approach performs

better than a closure-based approach, we compared CEDAL with

an algorithm for computing closures – dubbed Closure Generator –

without using a reasoner and with Pellet, which is considered the

9
http://sameas.org

http://www.linklion.org/
http://sameas.org
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Figure 4: Error rank (legends: see table 3).
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Figure 5: Runtime results according to the input size, CPU and GPU.

Table 4: Comparison of results with respect to the provenance of the links.

Framework Errors Resources Errors (%) M1

sameas.org 3,792,326 28,130,994 13.5 0.865

LIMES 1,130 27,819 4.1 0.951

Silk 5,933 208,300 2.8 0.972

DBpedia Extraction Framework 12,615 914,180 1.4 0.986

All frameworks 3,812,004 29,281,293 13.0 0.870

state-of-the-art reasoner [8]. Figure 7 shows that CEDAL is signi�-

cantly faster than Pellet, reaching up to three orders of magnitude

of speedup when faced with 10
6

triples. This result can be partly

explained by Pellet also checks the knowledge base for every single

coherence and consistency axiom. However, we did not need such

an in-depth analysis.
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Figure 7: Pellet vs. ClosureGenerator vs. CEDAL
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6 RELATEDWORK
Our work has the aim of detecting erroneous links in large-scale

link repositories. Related works include the following:

• Albertoni et al. [3] focus on the quality dimension of com-

pleteness using scoring functions and also introduce a no-

tion of linkset quality, considering only owl:sameAs. The

work proposes three quality indicators to assess complete-

ness. The extension of this work [1] focuses on skos:exactMatch
linksets and a multilingual gain.

• The LINK-QA tool [11] uses two network measures de-

signed for Linked Data (i.e., open sameAs chains, and de-

scription richness) and three classic network measures (i.e.,

degree, centrality, clustering coe�cient) in order to deter-

mine whether a set of links can improve the quality of

linked data.

• DBpediaSameAs [23] is a work in which Transitive Redi-

rects Links are redundancies at DBpedia that supposes

a link to the same place, in other words, they use the

owl:sameAs property. These links will redirect other links,

to provide a transition between the links, hence the name

transitive. In this case, instead of using the transitive links

that point to the same �nal destination URI, the �nal URI

is used directly.

• The work proposed in [25] is a metric-driven approach for

interlinking assessment of a single dataset. It introduces

the concept of link-ability, which shows the potential of a

dataset being linked from other datasets, and in general,

assesses whether a dataset is good to be interlinked with

another dataset using three groups of metrics.

• The approach at [9] proposes strategies in order to reduce

the cognitive overhead of creating materialized owl:sameAs
linksets and to correctly maintain them using two types of

components that triple stores should include, which would

improve the support for materialized owl:sameAs linksets

in the creation and maintenance stages.

• [15] evaluates the quantity of links between distributions,

datasets, and ontologies categorizing and de�ning di�er-

ent types of links using probabilistic data structures. The

results show valid links, dead links, and a number of names-

paces described by distributions and datasets. The analysis

was conducted using LODVader [6]. An important point

here and in works such as [7, 13, 20] is that they do not

mention or use any quality dimension as de�ned in some

important works such as [1, 26]; moreover, they do not

consider the axioms related to the properties. The quality

is given solely by the number of links between datasets.

• The work described in [18] covers an unsupervised ap-

proach for �nding erroneous links, in which each link is

represented as a feature vector in a higher dimensional

vector space, and �nds wrong links by means of di�erent

multi-dimensional outliers.

• The W3C has a vocabulary to express the quality of data,

including a linkset
10

, that is based on the survey by Zaveri

et al. [26].

10
https://w3c.github.io/dwbp/vocab-dqg.html#ExpressQualLinkset

• The work described in [2] discuss results of quality evalua-

tion on linksets created using a framework called LusTRE

with two quality measures, the average linkset reachabil-
ity and the average linkset importing. Similar to CEDAL,

this work realizes that the research on Linked Data qual-

ity has been mainly focused on datasets, not on linksets.

However, they focus on the SKOS11
vocabulary, more pre-

cisely skos:exactMatch linksets, and the experiments

from CEDAL were processed in large scale link reposi-

tories with more than 10
7

triples, not only 31, 298 triples.

• The work described in [10] provides an algorithm with

the intention to mitigate the problem of constraints vio-

lations in sameAs links automatically. Our approach has

some di�erent characteristics, such as CEDAL provides a

classi�cation of errors and show that some of them cannot

be dealt with automatically in an accurate way, CEDAL

use graph partitions in which scales better than this ex-

isting approach. This is also shown by the evaluation of

CEDAL on larger datasets (19 million vs 3 million), CEDAL

preserves the provenance of the links, CEDAL does not

remove automatically constraints violations due to the fact

that the output results involves semantic accuracy and thus

needs human feedback. The similarities include the fact

that we also focus on owl:sameAs and we reveal a signif-

icant amount of sameAs links that do not adhere to the

strict semantics of the OWL standard and hence do not

re�ect genuine identity.

Common points among these existing works are the improvement

and maintenance of link repositories. Aspects include the use of

scoring functions, transitive and redirect links, metrics for inter-

linking datasets, probabilistic data structures, vector space mod-

els, and the creation of standards. Our approach provides a high-

performance way to dealing with heterogeneous knowledge bases

showing the provenance and detecting inconsistent links in large-

scale link repositories. Although our work bears some resemblance

to existing work on detecting erroneous link candidates in large

link repositories, none of the above has considered evaluating the

consistency of equivalence relations using a data quality measure.

The novelty of CEDAL with respect to the state-of-the-art can be

enumerated in �ve points. Our approach (1) uses graph partitions

and hence scales better than existing approaches using closures, (2)

can be applied to larger linksets, with more than 19 million triples,

(3) preserves the provenance of the links, (4) shows that some of

the error classi�cations cannot be dealt with automatically in an

accurate way and (5) does not remove automatically constraints

violations due to the fact that the output results involves semantic

accuracy and thus needs human feedback.

7 CONCLUSION AND FUTUREWORKS
In this paper, we present CEDAL, a new algorithm that allows track-

ing consistency problems inside linkset repositories. Our approach

allows detecting potential causes of errors, for example the linkset,

the underlying dataset(s) and the graph path where the problem

subsists. We showed that our approach scales well. In particu-

lar, we reduced the complexity of obtaining clusters by relying on

11
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graph partitions, thus decreasing the time complexity from O (n2)
to O (m logn). Our results showed that at least 13% of owl:sameAs
links we considered are erroneous, and algorithms LIMES, SILK and

DBpedia Extraction Framework have a better consistency index

than repositories such as sameas.org.

In future work, we will carry out a survey on Linkset quality.

To the best of our knowledge, the survey [26] is the most com-

plete collection of data quality measures, which, however, misses

speci�c measures for linkset quality, such as ways a linkset can

improve dataset quality [3, 9, 25]. Moreover, we will investigate

how our graph partition algorithms can improve the performance

of SPARQL endpoints by distributing resources among computer

clusters, core processors, and GPUs. The CEDAL repository
12

con-

tains all necessary resources to run CEDAL, verify and reproduce

our results.
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