
Benchmarking Faceted Browsing Capabilities of Triplestores
Henning Petzka

Fraunhofer Institute IAIS
Schloss Birlinghoven

53757 Sankt Augustin, Germany
University of Bonn
Roemerstrasse 164

53117 Bonn, Germany
henning.petzka@iais.fraunhofer.de

Claus Stadler
University of Leipzig
Augustusplatz 10

04103 Leipzig, Germany
cstadler@informatik.uni-leipzig.de

Georgios Katsimpras
NCSR "Demokritos"

Neapoleos
Ag. Paraskevi 153 10, Greece
gkatsibras@iit.demokritos.gr

Bastian Haarmann
Fraunhofer Institute IAIS
Schloss Birlinghoven

53757 Sankt Augustin, Germany
bastian.haarmann@iais.fraunhofer.

de

Jens Lehmann
Fraunhofer Institute IAIS

Schloss Birlinghoven, 53757 Sankt
Augustin

University of Bonn
Roemerstrasse 164, 53117 Bonn
jens.lehmann@cs.uni-bonn.de

ABSTRACT
The increasing availability of large amounts of linked data creates
a need for software that allows for its efficient exploration. Systems
enabling faceted browsing constitute a user-friendly solution that
need to combine suitable choices for front and back end. Since a
generic solution must be adjustable with respect to the dataset, the
underlying ontology and the knowledge graph characteristics raise
several challenges and heavily influence the browsing experience.
As a consequence, an understanding of these challenges becomes
an important matter of study. We present a benchmark on faceted
browsing of triple stores, which allows systems to test their per-
formance on specific choke points on the back end. Further, we
address additional issues in faceted browsing that may be caused
by problematic modelling choices within the underlying ontology.

CCS CONCEPTS
• Information systems→ Database performance evaluation;

KEYWORDS
Faceted Browsing, Benchmarking, Choke Points, Linked Data

ACM Reference format:
Henning Petzka, Claus Stadler, Georgios Katsimpras, Bastian Haarmann,
and Jens Lehmann. 2017. Benchmarking Faceted Browsing Capabilities
of Triplestores. In Proceedings of Semantics2017, Amsterdam, Netherlands,
September 11–14, 2017, 8 pages.
https://doi.org/10.1145/3132218.3132242

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Semantics2017, September 11–14, 2017, Amsterdam, Netherlands
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5296-3/17/09. . . $15.00
https://doi.org/10.1145/3132218.3132242

1 INTRODUCTION
Faceted Browsing stands for a session-based and state-dependent
interactive method for query formulation over a multi-dimensional
information space. It provides a user with an effective way for
exploration of a search space. In the setting of linked data, where the
dataset consists of a knowledge graph defined by triples of subject,
predicate and object, faceted browsing is a particularly suitable
method for exploration as the graph structure can be used to suggest
promising edge-based transitions to the user. After a definition of
the initial search space, i.e., the set of resources of interest to the
user, a browsing scenario consists of applying (or removing) filter
restrictions defined by object-valued properties or of changing the
range of a property value of various data types. Those properties
that can be used from a certain state in a browsing scenario can be
easily and automatically read off from the knowledge graph.

For a well-established example of an implementation of faceted
browsing consider an online shopping portal. There, the search
space could be a certain type of clothes and, amongst others, the
facets could be the size, color and price of clothes. Using filtering
operations, the user is able to browse between different states of the
search space in order to select the items with the desired properties.

As a second example, consider logs of a machine in an industrial
setting. An engineer might want to browse through the log data of
the machines to search for malfunctions. He or she may select and
unselect specific machines, specific variables, and narrow down
the data selection by specifying a range of measurement results
(for example to find incidences involving very high temperatures).
The increasing awareness of the value of industrial data and its
increasing collection create a need for software that enables faceted
exploration and is at the same time easy to deploy on any given
dataset.

We assume that the dataset to be explored is available in RDF/S
format1. A browsing scenario is then characterized by its sequence

1https://www.w3.org/TR/rdf-schema/

https://doi.org/10.1145/3132218.3132242
https://doi.org/10.1145/3132218.3132242
https://www.w3.org/TR/rdf-schema/

Semantics2017, September 11–14, 2017, Amsterdam, Netherlands H. Petzka et al.

of queries, which are written in the SPARQL query language2. Each
query defines a transition from one state of the browsing scenario
to the next one. Here, a state consists of the chosen facets, their
corresponding facet values and the set of instances satisfying all
chosen constraints.

In a browsing scenario it is then the effective transition from one
state to the next one that determines the user experience. Ideally, a
system uses information about the state of the browsing scenario
to efficiently return its answer to the SPARQL query that makes
up the desired transition, instead of answering the query on the
basis of the entire dataset in its original form. An efficient system
for faceted browsing supports these transitions where, quite possi-
bly, choices have to be made whether to better support a certain
transition or the other. Runtime performance improvements can
be achieved through an intelligent database structure or through
certain precomputations.

To support a user-friendly and efficient browsing experience,
the system also has to be able to quickly compute the underlying
statistics. The statistics can then help the graphical user interface
to decide which of the facets should be displayed. In particular,
no facet should be suggested to the user, which leads to an empty
search space. Further, in an ideal setting, for each facet and facet-
value, the number of instances that remain after applying this facet
should be displayed to the user before its selection. This leads to
so-called facet counts, which are the second element of a faceted
browsing implementation.

The goal of a benchmark for faceted browsing techniques and
tools is to equip solution providers with a way to check their soft-
ware for their efficiency in navigating through large-scale struc-
tured datasets, where the navigation is driven by intelligent iterative
restrictions. We present a benchmark, which was built driven by
the goal to provide a platform for benchmarking faceted brows-
ing systems on browsing scenarios through a dataset of triples in
the RDF format, which reflect an authentic use-case and challenge
participating systems on different points of difficulty.

While exploring industrial datasets that could be used within our
benchmark, we came across additional problems for developers try-
ing to build a generic system for faceted browsing. Certain choices
in the modeling of the ontology seem to prevent generic faceted
browsing solutions by requiring human-driven preprocessing steps.
In other cases, a semantic understanding of properties and classes
seems to be required to only display sensible transitions from a
given state. We list these observations as additional choke points of
faceted browsing, with the hope to prevent such modeling choices
or to inspire other researchers for ideas how to overcome these
difficulties. Im summary, our contributions are the following:

• We collected a detailed list of transition centered choke
points for faceted browsing.

• We wrote SPARQL queries simulating real-world browsing
scenarios and representing all of the collected choke points.

• We present a benchmark on faceted browsing based on our
browsing scenarios. To our knowledge, this is the first bench-
mark that tests the performance on transition centered choke
points.

• We present preliminary results from our benchmark.

2https://www.w3.org/TR/rdf-sparql-query/

• We discuss problems in developing generic and dataset inde-
pendent faceted browsing solutions.

2 RELATEDWORK
Traditionally, information search falls into the two categories of
lookup (a.k.a. focalized) and exploratory search [16] [3]. In general,
the former is concerned with, given a carefully specified query, how
to obtain a result set with minimal need of examination. Thus, web
search engines are the most prominent representatives. In contrast,
defining characteristics of exploratory search includes imprecise
task requirements or open-ended search goals. Faceted search is a
widely used representative of the latter type.

A comprehensive survey on faceted search on RDF/S datasets
has recently been performed by [25]. There, the authors analyze
30 systems in regard to a formal state-based model that captures
the essential functionality of faceted exploration. On that basis,
different types of transitions are identified, relating to classes, prop-
erties, property paths, and complex transition markers (used e.g. to
handle blank nodes and support disjunctions). Further, the authors
present a terminology alignment of common fundamental concepts
in faceted search that in prior literature occurred under varying
names.

Faceted exploration overlaps with OLAP (OnLine Analytical Pro-
cessing) as both domains deal with multi-dimensional data, as each
facet can be seen as a dimension. However, the main distinguishing
element is, that OLAP cubes have both a fixed schema and informa-
tion demand (such as sales per month per department) [4]. Under
this perspective, it is unsurprising that faceted search systems have
also been employed as a means to select resources of interest carry-
ing statistical information (such as using the DataCube vocabulary)
for subsequent visualization [13] [17].

While several publications emphasize on (the evaluation of)
features implemented in a specific tool’s user interface, a potential
step towards increased reusability of solutions have been takenwith
the introduction of the Query-based Faceted Search paradigm [8],
where aspects of faceted search and SPARQL querying are being
consolidated into a common language and are thus independent
from user interface design choices.

A lot of research have been done on overcoming specific chal-
lenges in regard to the information overload [26] [5], a phenomenon
which occurs if the information available exceeds the user’s ability
to process it. Hence, in faceted exploration scenarios this happens
when any of the involved sets, namely those of facets, facet values
or result items, becomes too large. For example, datasets, such as
DBpedia, may contain thousands of predicates, triggering the need
for automatically determining an order of relevancy (possibly in
regard to the current state). But also a single relevant facet may
have several thousand of values (e.g. authors), hence clustering
approaches, such as referred to in [19] can be applied to obtain
reduction.

In [20] the authors summarize three approaches for present-
ing the user the most useful facets and facet values based on per-
sonalization. Thereby, these approaches fall into three categories:
collaborative [15], content-based and ontology-based [24].

Several benchmarks for assessing the SPARQL performance of
triple stores have been devised in the past, such as LUBM [11],

https://www.w3.org/TR/rdf-sparql-query/

Benchmarking Faceted Browsing Capabilities of Triplestores Semantics2017, September 11–14, 2017, Amsterdam, Netherlands

Entity-valued properties Numerically valued properties

Class-based transitions Property-based transitions

Property path-based transitions

CP5: Select a subclass CP1: Specified value

CP4: Any value (possibly
restricted to a class)

CP3: Specified value

CP2: Any value (possibly
restricted to a class)

CP6: General case

CP7: General case

CP8: More than one
dimension involved

CP9: Unbounded intervals

Complicated Paths
CP13: Traversing edges into
inverse direction involved

CP14: Traversing edges into
inverse direction involved

CP12: Advanced property
paths (e.g. involving circles)

Others

Entity type switch
CP11: Change of solution
space, while keeping
filtering restrictions

Caching

CP10: Going back to
a previous state

Figure 1: An overview of the choke points

SP2 [21], BSBM [6], and WatDiv [2]. Back in 2008, a lack for repeat-
able benchmarks for faceted browsing engines has been noted [15].
Since then, most progress in overcoming this lack has been made
in the geo-spatial domain, where simulated faceted browsing sce-
narios have been applied to evaluate the performance of queries
having varying numbers of restrictions along the spatial and the-
matic dimensions. These scenarios consist in general of simple
facet selections and iterative panning and zooming of the map [9].
It is noteworthy, that [1]3 considers tile-based precomputed facet
counts. However, to the best of our knowledge, our work introduces
the first system dedicated to a detailed list of specific choke points
of faceted browsing on RDF data.

3 CHOKE POINTS OF FACETED BROWSING
In a browsing scenario, where a dataset is being explored by ap-
plying and unapplying filter restrictions, the user expects that all
transitions should run smoothly and within reasonable time. To
enable efficient transitions, the information of the current state can
be used instead of replying every one of the queries that make up
the browsing scenario on basis of the entire dataset. Alternatively,
strategically chosen precomputations may be taken into considera-
tion when responding to a desired transition.

Therefore, the different choke points correspond each to certain
transitions from one state to the other during the browsing scenario.
For example, a transition might consist of choosing a property value
of a directly related property (which we will call a property value
based transition). Or, as another example, a property value behind
a property path of length strictly larger than one edge may be
chosen (which we will call a property path value based transition) .
In the latter case it is, in comparison to the first example, a more
challenging task to prepare the system for the upcoming transition,

3Latest version: https://github.com/GeoKnow/GeoBenchLab/tree/master/FacetBench

and it requires a more complex choice of the system’s database
structure.

In a survey on faceted browsing, Tzitzikas et al. list in [25] four ba-
sic faceted browsing choke points: class-based transitions, property-
based transitions, property path-based transitions and entity type
switches. For the evaluation of our benchmark we divided these
points further. We split the property-based transitions according
to Tzitzikas et al. into two cases. In the first case, one aims to fix
the value behind the property (CP1), while in the second case one
simply asks for the existence of any value realizing the property,
possibly only restricted to lie in a certain class (CP4). If, in the latter
case, containment in a specified class was requested, another choke
point lies in a further restriction by selecting a subclass of the class
in question (CP5). The same splitting into the two cases of selecting
a specific value or merely asking for containment in some class is
performed for property path value based transitions (CP3 & CP2).

Further, we consider properties with numerical values separately,
for which the value can be restricted to a specified interval. Again,
we distinguish behind numerical values behind a direct property
(CP6) and behind a property path of length strictly greater than one
(CP7). We also test whether multi-dimensional numerical data (CP8)
or unbounded intervals (CP9) provide difficulties to the system.
Caching abilities are checked by a simulation of a transition, where
the user wants to recover a previous state (CP10).

The choke point of entity type switches (CP11) remains un-
touched from the formulation in [25], i.e., we simulate the transi-
tion of changing the solution space while keeping the current filter
selections.

Finally, we distinguish between regular property paths and more
complicated ones. We consider property-paths that involve travers-
ing edges in the inverse direction for entity-valued properties (CP13)
and numerical values (CP14) at the end of a property path.

https://github.com/GeoKnow/GeoBenchLab/tree/master/FacetBench

Semantics2017, September 11–14, 2017, Amsterdam, Netherlands H. Petzka et al.

Additionally, we consider a class of advanced property paths
(CP12). Under advanced property paths, we here understand prop-
erty paths that involve an additional difficulty compared to themore
simpler ones from CP2, CP3 and CP13. For example, this could be
property paths in the knowledge graph that involve circles. In the
dataset of train connections, described in Section 4.1, circles occur
when a user is looking for all train stations that lie on a train route
which also serves a certain different station.

Another example for a more advanced property path on the
transport dataset is to select all stations that belong to one trip,
which has a delay somewhere during its timeline. Here, the same
result will appear multiple times in the result list and such double
entries should be avoided.

Overall, this resulted in a list of 14 transitions that make up the
choke points of our benchmark on faceted browsing. This means
that systems can be compared on quite a large set of different aspects
of performance. Note that the list is not exclusive in the sense that
one transition may cover more than one of the mentioned choke
points.

4 THE BENCHMARK
We implemented a benchmark on faceted browsing, which we
present in this section. The benchmark is integrated into the HOB-
BIT platform4, the description of which can be found in Deliv-
erable 2.2.1 for the HOBBIT project5. On the HOBBIT platform,
participants can readily test their systems after writing a system
adapter following the Common API for the Mighty Storage Chal-
lenge (MOCHA)6 of the ESWC 20177, which the benchmark of
faceted browsing was part of. The source code of the benchmark is
publicly available.8

In this section, we describe the different parts of our benchmark.

4.1 The underlying dataset
The data generator PoDiGG9, described in [22], creates a transport
dataset containing train connections between stations on an arti-
ficially created map. It also includes the possibility of delays that
the trains may experience during their trajectory. The simulation
of delays includes not only a time value, but also a reason for the
delay (Figure 3).

For the integration of delays into the dataset, the Transport Dis-
ruption Ontology10 [7] is used, which models possible events that
can disrupt the schedule of travel or transport plans. A dataset from
this generator is used for the development of simulated browsing
sessions in our benchmark and its underlying ontology allows us
to test on all choke points described in Section 3.

4.2 Scenarios
We created several lists of ordered SPAQRL queries, where each
list simulates one browsing scenario (Figure 2). The development
of the browsing scenarios took place with the aim to guarantee

4http://master.project-hobbit.eu/
5https://project-hobbit.eu/wp-content/uploads/2017/04/D2.2.1.pdf.
6https://project-hobbit.eu/challenges/mighty-storage-challenge/
7http://2017.eswc-conferences.org/
8https://github.com/hobbit-project/faceted-benchmark
9https://github.com/PoDiGG/podigg-lc
10https://transportdisruption.github.io/

Figure 2: One example scenario annotated with its related
choke points

two requirements. Firstly, we wanted to come up with browsing
sessions that make sense in a real-world browsing scenario. Sec-
ondly, the scenarios should also cover all types of transitions as
specified by the choke points from Section 3. The overall workload
of the benchmark comprises 173 SPARQL queries divided up into
11 scenarios, each simulating a single user browsing through the
dataset. Every choke point appears at least a few times throughout
all scenarios and one SPARQL query may contribute to the score
related to several choke points.

To allow for randomness in the SPARQL queries that make up
the benchmark, we wrote additional queries computing several
variables, which are placeholders either for instances or for val-
ues of types xsd:dateTime, xsd:duration or xsd:decimal. In the case
of instances, for each of the preparatory queries, one instance is
randomly selected from the result list and plugged into the corre-
sponding placeholder to complete one of the queries belonging to
a browsing scenario. In the latter case, the value for the variable
is either computed from dataset-dependent numbers (such as the
minimum and maximum values for latitude and longitude value
of stations), or selected from a strategically chosen interval in a
random fashion. By choosing intervals, we can assure that values
will definitely increase, or alternatively definitely decrease instead.
Proceeding in this way of precomputing parameters, equips us with
a method that can easily lead to varying browsing scenarios by
simply changing a seed for the generation of random numbers. The
seed can be specified when creating a benchmark on the platform
by the user of the platform.

Having introduced randomness into the generation of our scenar-
ios requires us to compute the gold standard on the fly. According
to our tests, the open source triple store "Virtuoso"11 correctly an-
swered queries in a reliable fashion and therefore proved itself
suitable as the system of choice to compute the gold standard. In
a future version we aim to integrate a second system to compute

11https://virtuoso.openlinksw.com/

http://master.project-hobbit.eu/
https://project-hobbit.eu/wp-content/uploads/2017/04/D2.2.1.pdf.
https://project-hobbit.eu/challenges/mighty-storage-challenge/
http://2017.eswc-conferences.org/
https://github.com/hobbit-project/faceted-benchmark
https://github.com/PoDiGG/podigg-lc
https://transportdisruption.github.io/
https://virtuoso.openlinksw.com/

Benchmarking Faceted Browsing Capabilities of Triplestores Semantics2017, September 11–14, 2017, Amsterdam, Netherlands

Figure 3: The ontology of the underlying dataset

results upfront and allow only result lists as a gold standard that
both systems agree upon.

4.3 KPIs
As Key Performance Indicators, we set the usual suspects: precision,
recall, F1-score and, of course, we collect the time between query
formulation and receiving of an answer and record it in form of
a score measuring queries per second. These four performance
values (precision, recall, F1-score and query-per-second score) are
registered over all queries of all scenarios combined and additionally
for each of the above choke points individually. For the calculation
in the latter case, the procedure is to only include those SPARQL
queries that make up transitions corresponding to the choke point
in question.

Measuring the KPIs of precision, recall and F1-score aims to
check whether the returned list of results is incomplete (false nega-
tives) or contains wrong results (false positives). Duplicated results
here count as false positives, too. The idea behind measuring these
quantities is that a system may choose to return incomplete results
to save time, when the result sets become very large in size.

Whereas the just mentioned KPIs measure only the performance
on instance retrievals (i.e. SELECT queries asking to return all
instances satisfying or implementing certain relations) there is
another type of queries important in faceted browsing: SELECT
COUNT queries, which count the number of instances with respect
to certain additional restrictions. These counts are important for
suggesting possible transitions to the user and to guide in the
browsing session. From a given state, only transitions leading to
a sensible number of results should be suggested. Therefore, we
included six SELECT COUNT queries into each of our 11 scenarios.
Performance on these facet counts is also measured in more than
one way to give a more complete picture of performance. In the
following, we mean by ’error’ on a single count query the absolute
value of the differences between expected and received count result.
For the performance on the count queries we record the following:

• The overall error, equal to the sum of individual errors over
all count queries

• The average error which is simply the overall error divided
by the number of queries.

• The overall error ratio as the overall error divided by the
sum of expected count results

• The average error ratio as the sum of "error divided by ex-
pected result" over all queries.

5 EXPERIMENTS
The benchmark on faceted browsing is a result of the European
funded project HOBBIT [18]. HOBBIT stands for "Holistic Bench-
marking of big linked data" and aims to benchmark several tasks
around the linked data value chain. As part of the HOBBIT project,
experiments for our benchmark can be run on the HOBBIT plat-
form. A detailed description on how to benchmark a system can be
found on the project-related webpages12.

In Figure 4, we see results from the MOCHA challenge at the
ESWC 2017. In that challenge, three systems participated and one
of them, Ontos system QUAD 13, experienced a time out during the
run of the benchmark on faceted browsing. Unfortunately, we were
therefore left with results for only two participating systems. Firstly,
we have the implementation of a system adapter for Virtuoso 7.2
Open-Source Edition by OpenLink Software that follows a common
API for all tasks of the MOCHA challenge. Because it follows the
common API of the MOCHA challenge, this system served as our
MOCHA baseline. The second contestant is the Virtuoso 8.0 Com-
mercial Edition (beta release) by OpenLink Software. Our results
show that both versions of Virtuoso show similar performance on
instance retrieval and facet counts. More detailed results of that
challenge will be published in the ESWC challenge proceedings [10].
Interestingly, the query-per-second score was the lowest for choke
points 6, 7 and 12 (see Figure 4). While choke point 12 concerns

12https://github.com/hobbit-project/platform/wiki/Benchmark-your-system
13http://ontos.com/products/platform/

https://github.com/hobbit-project/platform/wiki/Benchmark-your-system
http://ontos.com/products/platform/

Semantics2017, September 11–14, 2017, Amsterdam, Netherlands H. Petzka et al.

advanced property paths, both choke points 6 and 7 concern the
performance on numerical data restrictions.

Figure 4: Preliminary results from the MOCHA challenge -
Query-per-second score [10]

While the challenge was run with limited success in terms of
the number of participating triple stores, further iterations of the
faceted browsing challenge will be organized within the project
over the next 18 months allowing further systems to participate.

6 ADDITIONAL PROBLEMS FOR GENERIC
SOLUTIONS

In this section we will discuss additional choke points of faceted
browsing. By example, we will demonstrate several difficulties in
building a generic solution for faceted browsing of linked data
functioning independently from the dataset and without human
adjustments. These difficulties show a possible need for standards
on how to model ontologies of datasets that allow to efficiently
apply faceted browsing software.

We would like to stress that the examples we demonstrate here
are not purely theoretical constructs, but situations we have en-
countered in industrial and other datasets.

In [23], the authors point out three challenges to extend faceted
browsing solutions to large datasets: How to automatically generate
metadata, how to decide on which facets to surface, and how to
accurately preview facets and facet counts. These three points are
related to the challenges discussed here, but they are of a different
nature being rather general and less dependent on the modeling of
the knowledge graph.

6.1 Example 1: Multiple facets, ’and’ or ’or’
In the common graphical interface for faceted browsing, the facets
to choose from are displayed in one of the corners. When a user
wants to select one of these facets, he may set a check mark for
the chosen facet to initiate the corresponding filtering equation.
An obvious question is then: If a user sets multiple check marks,
does that correspond to an ’and’ or an ’or’ relation? In other words,
should both facet selections hold at the same time, or should only
at least one of them hold?

Or should it even depend on the semantics? Suppose a user
is looking to buy a car and searches for purchase opportunities
with the help of a faceted browsing implementation. In this case,
selecting multiple colors probably means that he prefers either one
color or the other. But if the user is looking to buy a bouquet of
flowers instead, then probably he wants a mixture of both colors,
so both colors should be specified by a property.

This does not constitute a major hurdle as it is easy to image
a more complex graphical interface that has one box for ’and’ se-
lections and another box for selections of type ’or’. This has for
example been considered and implemented under the terminology
of multi-facet search in Flamenco [12] and the Ontogator [14]. In
multi-select faceting approaches14, multiple facet selections within
one facet are considered as a selection of type "or", while facet selec-
tions for different facets are considered as a selection of type "and".
We still wanted to point out that if no consensus should be made
whether to always mean ’and’ or always mean ’or’ when selecting
multiple facets, then the graphical interface of a faceted browsing
solution has to be at least as complex as to allow for both multiple
facet selections of type ’and’ and ’or’.

6.2 Example 2: Dependencies
Consider the excerpt from an industrial knowledge graph in Figure
5.

Figure 5: An excerpt fromaknowledge graph demonstrating
dependency issues

We have a class containing measurements of all sorts, each hav-
ing a unit of measurement and a value. The problematic dependence
in this simple example is the one between the value and the choice
of the unit. A sensible restriction on the value only makes sense af-
ter the choice of the unit has taken place. Possibly even, the type of
value (being a string, a boolean or a decimal number for example) of
the measurement might depend on the chosen unit. A user-friendly
interface should probably not suggest the numerical restriction of
the value (with sensible maximal and minimal values) before the
user has chosen the unit.

Probably a reader might want to argue that this issue is not a
major issue either. Why not display both facets for unit and value
at once and then the user should have the responsibility to choose
values that make sense for the measurements he is looking for. But
we should keep in mind that this is just an excerpt of a larger graph.
14http://yonik.com/multi-select-faceting/

http://yonik.com/multi-select-faceting/

Benchmarking Faceted Browsing Capabilities of Triplestores Semantics2017, September 11–14, 2017, Amsterdam, Netherlands

The number of facets to choose from might be higher than the
number of facets one can display at once in a legible fashion. In
that case, how can we make sure that the facet specifying the value
is not suggested to the user without the facet specifying the unit of
measurement?

6.3 Example 3: Non-changing transitions
Let us consider now the excerpt from an industrial knowledge
graph in Figure 6. We have a class of energy measurements with
a property for the unit of measurements. In the dataset, the unit
of every instance of the class of energy measurements is ’Joule’.
While the declaration of the unit provides useful information to a
user investigating the dataset, it is obsolete from a faceted browsing
perspective.

Figure 6: Some transitions may not change the solution
space. Here, every energy measurement will have the unit
’Joule’.

This raises the following problems for the implementation. On
the back end, the system should recognize that the transition cannot
change the solution space and an immediate return is possible
and hence would be desirable. On the front end, the transition of
selecting the unit should not have a high priority to be displayed
to the user.

A solution to this problem could be to agree upon that this situa-
tion should be modeled with an artificial triple containing metadata
that specifies this situation, or even using the "ObjectAllValues-
From" expression of the OWL Web Ontology Language15.

In both cases the faceted browsing software can then pick up on
the given information.

6.4 Example 4: Tree based transitions
While the above issues have rather been on the front end and
concern which facets should be displayed and which should not, we
consider now a choke point on the back end that does not fall under
the ’traditional’ choke points from Section 3. Consider the excerpt
of an ontology in Figure 7. We have a class ’Measurement Group"
which contains a collection of measurements at a certain point in
time. The ’Measurement Group’ contains several measurements,
each having a unit and a value. We suppose that each instance
of the ’Measurement Group’ contains the same measurements of
sensors, but taken at different times.

15https://www.w3.org/TR/owl2-direct-semantics

Measurement
Group

Measurement

Unit

Value Decimal

String

DateTime
time

label

value

Figure 7: An excerpt fromaknowledge graph demonstrating
the necessity for tree based transitions

We suppose further that our search space is the the set of mea-
surement groups. We may, for example, be interested in all inci-
dences where a certain temperature had an exceptionally high value
while a certain energy value was exceptionally low.

How would we proceed with the transitions considered in Sec-
tion 3? First, we could make a property path value based transition,
fixing the value ’Joule’ behind the property path given by

”contains + hasUnit + label”.

Note that this does not change the solution space, just as we dis-
cussed in 6.3, because every measurement group contains measure-
ments of energy values. We could then try to additionally fix the
temperature unit as ’Kelvin’ at the end of the same property path as
before. Also this does not change the solution space as in 6.3, and
we assume the possibility to select multiple facets with the ’and’
relation as discussed in 6.1. Now, trying to select a range for one of
the values, energy or temperature, behind the property path given
by

”contains + hasValue +value”,
it is not clear which of the two measurements and units the value
belongs to!

There are (at least) three ways out of this complication. Firstly,
we could allow "tree-based transitions", where multiple paths and
values are chosen simultaneously, and the involved paths span a tree.
Since one can imagine almost arbitrarily more complex situations,
supporting many such transitions might be a very hard problem
for a generic solution.

Secondly, such situations could be modeled differently, for ex-
ample by using the RDF Data Cube Vocabulary16 or by providing
metadata that follows a possible standard for faceted browsing.

Thirdly, human interaction could resolve the problems within
the knowledge graph by extending it.

In any case, the bottom line remains that there are more difficul-
ties in developing a generic faceted browsing system for RDF data
than those covered by our choke points. An interesting study could
be the investigation of possible RDF graph modeling standards for
faceted browsing that limit the number of difficulties while being
sufficiently expressive. Nevertheless, the choke points from Sec-
tion 3 provide an important baseline of transitions that a solution
with high performance should be efficient on.
16https://www.w3.org/TR/vocab-data-cube/

https://www.w3.org/TR/owl2-direct-semantics
https://www.w3.org/TR/vocab-data-cube/

Semantics2017, September 11–14, 2017, Amsterdam, Netherlands H. Petzka et al.

7 CONCLUSIONS
Wedemonstrated a transition centered benchmark on faceted brows-
ing. Our benchmark provides the possibility for systems to test im-
provements on specific traditional faceted browsing choke points
as the outcome of changes to their system’s implementation.

The benchmark is based on browsing scenarios for a specific
dataset consisting of RDF triples. In future work, it would be in-
teresting to transfer the ideas to a benchmark, where both dataset
and browsing scenarios are easily exchangeable. We further dis-
cussed problems of such an approach, by exemplifying that what is
commonly considered as the choke points of faceted browsing is ac-
companied by more points of difficulty, when the goal is to develop
generic software for faceted browsing that should be easily and
automatically adjusted to new linked datasets. Our hope is that, by
pointing out additional choke points, researchers will be motivated
to overcome these problems next to the implementation of systems
with good performance on the choke points from Section 3.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s H2020
research and innovation action program under grant agreement
number 688227. The project runtime is December 2015 until No-
vember 2018.

REFERENCES
[1] 2010. LOD2 Deliverable 5.1.4 LOD2 GeoBench v2.0 Evaluation. http://svn.aksw.

org/lod2/D5.1.4/public.pdf. (2010). Accessed: 2017-06-08.
[2] Güneş Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. 2014. Diversified

Stress Testing of RDF DataManagement Systems. Springer International Publishing,
Cham, 197–212. https://doi.org/10.1007/978-3-319-11964-9_13

[3] Kumaripaba Athukorala, Dorota Glowacka, Giulio Jacucci, Antti Oulasvirta, and
Jilles Vreeken. 2016. Is exploratory search different? A comparison of information
search behavior for exploratory and lookup tasks. Journal of the Association for
Information Science and Technology 67, 11 (2016), 2635–2651. https://doi.org/10.
1002/asi.23617

[4] Ori Ben-Yitzhak, Nadav Golbandi, Nadav Har’El, Ronny Lempel, Andreas Neu-
mann, Shila Ofek-Koifman, Dafna Sheinwald, Eugene Shekita, Benjamin Sznajder,
and Sivan Yogev. 2008. Beyond Basic Faceted Search. In Proceedings of the 2008
International Conference on Web Search and Data Mining (WSDM ’08). ACM, New
York, NY, USA, 33–44. https://doi.org/10.1145/1341531.1341539

[5] Sonia Bergamaschi, Francesco Guerra, and Barry Leiba. 2010. Guest editors’
introduction: information overload. IEEE Internet Computing 14, 6 (2010), 10–13.
https://doi.org/doi.ieeecomputersociety.org/10.1109/MIC.2010.140

[6] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL Benchmark. Int.
J. Semantic Web Inf. Syst. 5, 2 (2009), 1–24. http://dblp.uni-trier.de/db/journals/
ijswis/ijswis5.html#BizerS09

[7] David Corsar, Milan Markovic, Peter Edwards, and John D. Nelson. 2015. The
Transport Disruption Ontology. Springer International Publishing, Cham, 329–336.
https://doi.org/10.1007/978-3-319-25010-6_22

[8] Sébastien Ferré and Alice Hermann. 2012. Reconciling faceted search and query
languages for the Semantic Web. IJMSO 7, 1 (2012), 37–54. https://doi.org/10.
1504/IJMSO.2012.048508

[9] George Garbis, Kostis Kyzirakos, and Manolis Koubarakis. 2013. Geographica: A
Benchmark for Geospatial RDF Stores (Long Version). Springer Berlin Heidelberg,
Berlin, Heidelberg, 343–359. https://doi.org/10.1007/978-3-642-41338-4_22

[10] Kleanthi Georgala, Mirko Spasic, Milos Jovanovik, Henning Petzka, Michael
Röder, and Axel-Cyrille Ngonga Ngomo. MOCHA2017: The Mighty Storage
Challenge at ESWC 2017. In Accepted for publication in the ESWC 2017 Challenge
Proceedings, Portoroz, Slovenia, 2017. Springer International Publishing.

[11] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for
OWL knowledge base systems. Web Semantics: Science, Services and Agents on
the World Wide Web 3, 2 (2005), 158 – 182. https://doi.org/10.1016/j.websem.2005.
06.005 Selcted Papers from the International Semantic Web Conference, 2004.

[12] Marti Hearst, Ame Elliott, Jennifer English, Rashmi Sinha, Kirsten Swearingen,
and Ka-Ping Yee. 2002. Finding the Flow in Web Site Search. Commun. ACM 45,
9 (Sept. 2002), 42–49. https://doi.org/10.1145/567498.567525

[13] Jiří Helmich, Jakub Klímek, andMartin Nečaský. 2014. Visualizing RDFData Cubes
Using the Linked Data Visualization Model. Springer International Publishing,

Cham, 368–373. https://doi.org/10.1007/978-3-319-11955-7_50
[14] Eero Hyvönen, Samppa Saarela, and Kim Viljanen. 2004. Application of Ontology

Techniques to View-Based Semantic Search and Browsing. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 92–106. https://doi.org/10.1007/978-3-540-25956-5_7

[15] Jonathan Koren, Yi Zhang, and Xue Liu. 2008. Personalized Interactive Faceted
Search. In Proceedings of the 17th International Conference on World Wide Web
(WWW ’08). ACM, New York, NY, USA, 477–486. https://doi.org/10.1145/1367497.
1367562

[16] Gary Marchionini. 2006. Exploratory Search: From Finding to Understanding.
Commun. ACM 49, 4 (April 2006), 41–46. https://doi.org/10.1145/1121949.1121979

[17] Michael Martin, Konrad Abicht, Claus Stadler, Axel-Cyrille Ngonga Ngomo,
Tommaso Soru, and Sören Auer. 2015. Cubeviz: Exploration and visualization
of statistical linked data. In Proceedings of the 24th International Conference on
World Wide Web. ACM, 219–222.

[18] Axel-Cyrille Ngonga Ngomo, Alejandra García-Rojas, and Irini Fun-
dulaki. 2016. HOBBIT: Holistic Benchmarking of Big Linked Data.
ERCIM News 2016, 105 (2016). http://ercim-news.ercim.eu/en105/r-i/
hobbit-holistic-benchmarking-of-big-linked-data

[19] Eyal Oren, Renaud Delbru, and Stefan Decker. 2006. Extending Faceted Navigation
for RDF Data. Springer Berlin Heidelberg, Berlin, Heidelberg, 559–572. https:
//doi.org/10.1007/11926078_40

[20] Giovanni Maria Sacco and Yannis Tzitzikas. 2009. Dynamic Taxonomies and
Faceted Search: Theory, Practice, and Experience (1st ed.). Springer Publishing
Company, Incorporated.

[21] Michael Schmidt, Thomas Hornung, Michael Meier, Christoph Pinkel, and Georg
Lausen. 2010. SP2Bench: A SPARQL Performance Benchmark. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 371–393. https://doi.org/10.1007/978-3-642-04329-1_
16

[22] Ruben Taelman, Ruben Verborgh, TomDe Nies, and ErikMannens. 2017. PoDiGG:
A Public Transport RDF Dataset Generator. In Proceedings of the 26th Interna-
tional Conference Companion on World Wide Web. http://rubensworks.net/raw/
publications/2017/PodiggPublicTransportRdfDatasetGenerator.pdf

[23] Jaime Teevan, Susan Dumais, and Zachary Gutt. 2008. Challenges
for Supporting Faceted Search in Large, Heterogeneous Corpora
like the Web. https://www.microsoft.com/en-us/research/publication/
challenges-supporting-faceted-search-large-heterogeneous-corpora-like-web/

[24] Michal Tvarozek and Mária Bieliková. 2007. Personalized faceted navigation for
multimedia collections. In Semantic Media Adaptation and Personalization, Second
International Workshop on. IEEE, 104–109.

[25] Yannis Tzitzikas, Nikos Manolis, and Panagiotis Papadakos. 2017. Faceted explo-
ration of RDF/S datasets: a survey. Journal of Intelligent Information Systems 48,
2 (April 2017), 329–364. https://doi.org/10.1007/s10844-016-0413-8

[26] Bifan Wei, Jun Liu, Qinghua Zheng, Wei Zhang, Xiaoyu Fu, and Boqin Feng.
2013. A Survey of Faceted Search. J. Web Eng. 12, 1-2 (Feb. 2013), 41–64. http:
//dl.acm.org/citation.cfm?id=2481562.2481564

http://svn.aksw.org/lod2/D5.1.4/public.pdf
http://svn.aksw.org/lod2/D5.1.4/public.pdf
https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1002/asi.23617
https://doi.org/10.1002/asi.23617
https://doi.org/10.1145/1341531.1341539
https://doi.org/doi.ieeecomputersociety.org/10.1109/MIC.2010.140
http://dblp.uni-trier.de/db/journals/ijswis/ijswis5.html#BizerS09
http://dblp.uni-trier.de/db/journals/ijswis/ijswis5.html#BizerS09
https://doi.org/10.1007/978-3-319-25010-6_22
https://doi.org/10.1504/IJMSO.2012.048508
https://doi.org/10.1504/IJMSO.2012.048508
https://doi.org/10.1007/978-3-642-41338-4_22
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1145/567498.567525
https://doi.org/10.1007/978-3-319-11955-7_50
https://doi.org/10.1007/978-3-540-25956-5_7
https://doi.org/10.1145/1367497.1367562
https://doi.org/10.1145/1367497.1367562
https://doi.org/10.1145/1121949.1121979
http://ercim-news.ercim.eu/en105/r-i/hobbit-holistic-benchmarking-of-big-linked-data
http://ercim-news.ercim.eu/en105/r-i/hobbit-holistic-benchmarking-of-big-linked-data
https://doi.org/10.1007/11926078_40
https://doi.org/10.1007/11926078_40
https://doi.org/10.1007/978-3-642-04329-1_16
https://doi.org/10.1007/978-3-642-04329-1_16
http://rubensworks.net/raw/publications/2017/PodiggPublicTransportRdfDatasetGenerator.pdf
http://rubensworks.net/raw/publications/2017/PodiggPublicTransportRdfDatasetGenerator.pdf
https://www.microsoft.com/en-us/research/publication/challenges-supporting-faceted-search-large-heterogeneous-corpora-like-web/
https://www.microsoft.com/en-us/research/publication/challenges-supporting-faceted-search-large-heterogeneous-corpora-like-web/
https://doi.org/10.1007/s10844-016-0413-8
http://dl.acm.org/citation.cfm?id=2481562.2481564
http://dl.acm.org/citation.cfm?id=2481562.2481564

	Abstract
	1 Introduction
	2 Related Work
	3 Choke Points of Faceted Browsing
	4 The benchmark
	4.1 The underlying dataset
	4.2 Scenarios
	4.3 KPIs

	5 Experiments
	6 Additional problems for generic solutions
	6.1 Example 1: Multiple facets, 'and' or 'or'
	6.2 Example 2: Dependencies
	6.3 Example 3: Non-changing transitions
	6.4 Example 4: Tree based transitions

	7 Conclusions
	Acknowledgments
	References

