
MaSQue: An Approach for Flexible Metadata Storage
and Querying in RDF

Johannes Frey, Sebastian Hellmann
AKSW/KILT, Leipzig University & Institute for Applied Informatics, Germany

{frey,hellmann}@informatik.uni-leipzig.de

Keywords: RDF, SPARQL, metadata representation, reification, provenance

Abstract

The maintenance and use of metadata, such as provenance and time-related information (when was
a data entity created or retrieved), is of increasing importance in the Semantic Web, especially for
Big Data applications, that work on heterogeneous data from multiple sources and which require
high data quality. In an RDF dataset it is possible to store metadata alongside the actual RDF data
and several possible Metadata Representation Models (e.g. Singleton Property and n-ary relation)
have been proposed. However, studies investigating the performance of these models show that
choosing the appropriate metadata representation depends on the used data and metadata, queries
and RDF store. To allow a flexible storage and querying of data and its metadata independent of the
applied Metadata Representation Model, we propose MaSQue (Metadata Storage and Querying).
The approach introduces an intermediate (meta)data serialization format and query annotations as
metadata layer on top of RDF and SPARQL.

Introduction

Within the “Smart Data Web” project1 data about persons, locations, companies and their products
is fetched from many different sources (government files, industry databases, websites and social
network texts) to extract, transform, integrate and aggregate the information to represent it in one
open industry knowledge graph. The involved tools generate a variety of metadata in every step of
the data processing pipeline. Such metadata (e.g. the name of the source the fact has been found in,
the retrieval date and license of that source, the version number of the (recognition) tool, which has
been used etc.) describes how a fact or piece of information has been derived.

The storage of such metadata alongside the data in the same RDF store allows to record fine-
grained traceability and provenance information, license and access rights, data trustworthiness and
confidence scores for every single fact in the knowledge graph. Detailed metadata increases data
quality and supports subsequent data processing steps. Resolving conflicting data values (like the
number of employees) for a company found in different sources, can be improved by metadata-
based heuristics, e.g. prefer newer facts or prefer values from a source, which is known to ensure
high data quality.

Besides the RDF Reification Vocabulary2 other Metadata Representation Models (MRMs) have
been presented. Figure 1 illustrates the MRMs considered in this work. Comparing the performance
of these models was subject of a few evaluations [2,4,5,6]. However, the performance results of the
MRMs differ significantly between the evaluation scenarios and can be influenced by use case
specific parameters like characteristics of data and metadata, complexity of the queries and the used
RDF store [1,4]. Thus it is challenging to determine the best MRM for a scenario beforehand. To
enable the development of an RDF application extensively using metadata, but without restricting it
a-priori to one concrete implementation of an MRM, we propose MaSQue (Metadata Storage and
Querying). MaSQue serves as an abstraction layer for different MRMs covering both the storage
and serialization of RDF (meta)data as well as querying RDF stores using SPARQL.

1 http://smartdataweb.de/
2 http://www.w3.org/TR/rdf11-mt/#reification

http://smartdataweb.de/
http://www.w3.org/TR/rdf11-mt/#reification

Metadata levels and Metadata Representation Models

As Metadata Representation Model (MRM), we define a strategy of splitting an RDF statement
or triple t and its set of key-value based metadata facts m into several triples or quads, such that we
can store and query metadata - for all statements individually - in an RDF Store. The MRMs
supported by MaSQue are displayed and briefly discussed in Figure 1. For a detailed explanation
we refer to [4] and [1] (cpprop and rdr). As metadata we understand the aforementioned detailed,
descriptive information (confidence, provenance, validity scope, traceability information, license
etc.) for an individual triple or a small subset of triples from the knowledge graph. Meta-metadata
is characterized by one or more nested layers of metadata, which describe metadata itself.

Metadata granularity levels, factorization and grouping

Metadata can be recorded for individual triples or sets of triples. In the context of MaSQue we
distinguish between three granularity levels. Metadata on graph-level provides information for all
entities and statements within the same named graph. It is typically applied to store provenance for
several or all entities/triples of an entire dataset. The entity/resource-level is the level where all
statements with the same subject (entity identifier) share meta information. The most fine-grained
metadata is on triple-level, where metadata is kept for each statement or triple (classic reification
scenario). As factorization we denote the feature of cpprop and ngraphs to store shared metadata
(on various granularity levels) only once. This is realized by using the same statement identifier for
all statements sharing the same metadata. The remainder MRMs are not capable of this technique
since they rely on the identifier to reconstruct the actual data triple or, in the case of rdr, do not use
an id. Within MaSQue we use a workaround. Instead of connecting the metadata to every statement,
the metadata will be linked to a new shared resource, and only the link from the statements to that
resource will be stored redundantly. Another requirement towards metadata storage (especially in
the Wikidata use case from [4]) is the creation of metadata fact groups or logical units. To give an
example: If a fact was retrieved from two sources with two different confidence scores, the source
and score form a logical unit. The confidence score does only make sense in the scope of the source.

MaSQue Approach

MaSQue is a Java-based framework and command line utility. Its paradigm is to hide the
complexity and individual characteristics of various MRMs behind a uniform “mask”. The usage of
MaSQue in a scenario, in which storage and retrieval of extensive and fine grained RDF metadata is
crucial, allows to switch between different MRMs without rewriting the application logic. It
consists of 2 major components meta-RDF and meta-SPARQL, which establish an abstraction layer

Figure 1: Structure of different Metadata Representation Models: Six different ways of describing (or reifying) an
RDF triple s, p, o with a metadata key and value pair are supported by MaSQue; Companion property (cpprop),
nary relation (nary), named graphs (ngraphs), singleton properties (sgprop), standard reification (stdreif), and the
Blazegraph-specific Reification Done Right (rdr). Besides rdr, which is based on the vendor-independent RDF* and
SPARQL* [2], all approaches use an explicit statement identifier (red), which is used to attach metadata (green) to the
data (grey). Cpprop and stdreif are based on additional triple handlers (white). Properties which also occur as subject in
another triple are drawn with dashed lines.

for RDF data and its metadata for storage & serialization and querying respectively. The software
architecture enables extensions for other MRMs (besides the supported ones from Figure 1).

Meta-RDF

Meta-RDF3 had been designed to convert datasets into various MRMs. The component features a
novel JSON representation, which allows the association of metadata to quad(s) for different levels
of granularity. Moreover it supports meta-metadata. Once the source dataset is converted into the
JSON representation, this intermediate format can be used to create NQuads files for the various
MRMs. The JSON representation is optimized for a parallel conversion of huge datasets, which do
not fit into main memory. Meta-RDF supports different serialization and optimization schemes4
(factorization for all MRMs, combination of ngraphs with other MRMs for efficient meta-metadata
representation, logical metadata groups etc.) for the MRMs. While the JSON format is intended for
a batch conversion of a complete dataset, applications can also use the integrated Java data model
abstraction (DAO) to convert RDF metadata on-the-fly. The data model is described in Listing 1.
The model was introduced to explicitly represent different aspects of metadata storage which can be
leveraged by different MRMs. It allows among others to express different granularity and share
levels, an easy way of nesting metadata and the definition of logical metadata groups.

{ "statementgroups":[***contains all data triples/quads (of one resource) separated into groups
 { ***one statement group contains all triples sharing the same metadata (entity granularity level)
 "groupid":"<http://ex.org/id>", ***id used as (graph) identifier for this group
 "statements":[
 {
 "tuple":"<http://ex.org/person> <http://ex.org/name> \"Person\".", ***raw ntriple/nquad
 "sid":"" *** optional, can be used to specify an explicit statement identifier for triple
 }
],
 "mids":[***list of metadataUnits (link to its groupid field) which hold for that statement group
 "<http://ex.org/meta-1>", "<http://ex.org/meta-2>" ***meta-2 not listed for brevity
]
 }
],
 "metadata": [***contains all metadataUnits referenced in the statementgroups
 { ***a metadataUnit groups metadata facts which belong together or which have the same meta-metadata
 "groupid": "<http://ex.org/meta-1>", ***the id, if empty the id refers to the number
 "metadataFacts": [
 {
 "type": "kv-meta", ***use simple key value metadata (later version supports triples as ‘values’)
 "key": "metadatakey", "value":"example value"
 }
],
 "grouptype": "flat" , ***shows that the metadata within the group is logically independent: ‘strong’ for

 logical unit
 "hasMetadata": "" ***optionally specify another metadataUnit id describing this metadata unit
 }
],
}

Listing 1: Excerpt from meta-RDF JSON data model.

3 http://github.com/AKSW/meta-rdf
4 http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/masque/meta-rdf/

http://ex.org/meta-1
http://ex.org/meta-2
http://ex.org/meta-1
http://ex.org/name
http://ex.org/person
http://ex.org/id
http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/masque/meta-rdf/
http://github.com/AKSW/meta-rdf

Meta-SPARQL

In order to enable MRM-independent SPARQL queries, the generic and extensible tool meta-
SPARQL5 has been developed. It allows automatic rewriting of SPARQL queries for different
MRMs. The idea is, to replace every triple pattern within a SPARQL query by a set of special
annotations, which will be translated by meta-SPARQL into the appropriate format. Every query
needs to be written as a template in an intermediate SPARQL dialect based on these annotations. It
consists of 4 annotations explained in Table 1. The template can be converted into query instances
of the various MRMs. Therefore query templates can be written independent of granularity support
and other MRM-specific characteristics. The semantics of every annotation is further illustrated by
a set of examples online6. Meta-SPARQL features a file format to convert several query templates at
once, which can be used for MRM benchmarking purposes, but also exposes functions for the
conversion of single queries or annotations.

Annotation Description

#!data(?s,?p,?o)!# replacing a regular data triple pattern (for regular data queries)

#!reif(?id,?s,?p,?o)!# analogous to #!data but retrieving statement id as well

#meta(?id,?k,?v)!# retrieve metadata key and value, using a statement id

#meta2(?id,?k,?v)!# retrieve metadata key and value, which is reified itself (due to meta-metadata), using a
statement id

Table 1: Meta-SPARQL query translation annotation types. Every annotation type corresponds to a function in the
meta-SPARQL tool, which expects one or more parameters. The parameters can be SPARQL variables or RDF names
(IRI, literal).

Conclusions and Future Work

To the best of our knowledge we proposed the first generic approach, which allows the conversion
and querying of RDF data(sets) with metadata and meta-metadata while retaining the flexibility to
exchange the underlying MRMs and featuring multiple granularity levels. We applied MaSQue in
two usage scenarios (a DBpedia-based company dataset with revision metadata on entity-level7 and
an artists knowledge8 graph with provenance on triple-level. However these scenarios where read-
only and did not consider SPARUL queries, which need to be studied in the future. Furthermore a
user, which wants to use the SPARQL endpoint UI (containing data and metadata), still needs to
know the details of the used MRM. To address this issue, we could think of extending and utilizing
MaSQue as a SPARQL proxy. To go one step further, a more sophisticated metadata-aware system
could be developed, which allows unified querying, regardless the used MRMs, granularity levels
and metadata levels. To improve the support of meta-SPARQL query templates by SPARQL APIs,
the definition of a mapping from ngraphs’ intuitive and standard compliant queries to meta-
SPARQL’s annotations using designated (“magic”) properties could be investigated.

Acknowledgements

This work was supported by grants from the Federal Ministry for Economic Affairs and Energy of
Germany (BMWi) for the Smart Data Web project (GA-01MD15010B)9, as well as from the
European Union for the Horizon 2020 project ALIGNED (GA-644055)10. MaSQue has been
developed in the Master's thesis of the first author. Special thanks go to Kay Müller, who supervised
and mentored that thesis.

5 http://github.com/AKSW/meta-sparql
6 http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/masque/meta-sparql/
7 https://github.com/AKSW/dbpedia-revision-meta-convert
8 https://github.com/Vehnem/metardf-converter
9 http://smartdataweb.de/
10 http://aligned-project.eu/

http://aligned-project.eu/
http://smartdataweb.de/
https://github.com/Vehnem/metardf-converter
https://github.com/AKSW/dbpedia-revision-meta-convert
http://vmdbpedia.informatik.uni-leipzig.de:8088/frey/masque/meta-sparql/
http://github.com/AKSW/meta-sparql

References

[1] FREY, J., MÜLLER, K., HELLMANN, S., RAHM, E., AND VIDAL, M.-E. Evaluation of metadata
representations in RDF stores. Under review in SWJ special issue on Linked Data Benchmarking,
http://www.semantic-web-journal.net/content/evaluation-metadata-representations-rdf-stores

[2] FU, G., BOLTON, E., QUERALT-ROSINACH, N., FURLONG, L. I., NGUYEN, V., SHETH, A. P., BODENREIDER, O.,
AND DUMONTIER, M. Exposing provenance metadata using different RDF models. In Proceedings of
8th SWAT4LS Conference. (2015), pp. 167–176.

[3] HARTIG, O. Foundations of RDF* and SPARQL* (An Alternative Approach to Statement-Level
Metadata in RDF). In 11th Alberto Mendelzon Workshop on Foundations of Data Management
(2017).

[4] HERNÁNDEZ, D., HOGAN, A., RIVEROS, C., ROJAS, C., AND ZEREGA, E. Querying wikidata: Comparing
sparql, relational and graph databases. In ISWC 2016 Proceedings, Part II (2016), pp. 88–103.

[5] HERNÁNDEZ, D., HOGAN, A., AND KRÖTZSCH, M. Reifying rdf: What works well with wikidata? In
SSWS@ISWC (2015), vol. 1457 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 32–47.

[6] NGUYEN, V., BODENREIDER, O., AND SHETH, A. P. Don’t like rdf reification?: making statements about
statements using singleton property. In WWW (2014), ACM, pp. 759–770.

http://www.semantic-web-journal.net/content/evaluation-metadata-representations-rdf-stores

	Abstract
	Introduction
	Metadata levels and Metadata Representation Models
	Metadata granularity levels, factorization and grouping

	MaSQue Approach
	Meta-RDF
	Meta-SPARQL

	Conclusions and Future Work
	Acknowledgements
	References

