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ABSTRACT
Over the last decade, we observed a steadily increasing amount of
RDF datasets made available on the web of data. The decentralized
nature of the web, however, makes it hard to identify all these
datasets. Even more so, when downloadable data distributions are
discovered, only insu�cient metadata is available to describe the
datasets properly, thus posing barriers on its usefulness and reuse.
In this paper, we describe an attempt to exhaustively identify the
whole linked open data cloud by harvesting metadata from multiple
sources, providing insights about duplicated data and the general
quality of the available metadata. This was only possible by using a
probabilistic data structure called Bloom �lter. Finally, we published
a dump �le containing metadata which can further be used to enrich
existent datasets.
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1 INTRODUCTION
Linked Open Data (LOD) comprises an unprecedented volume of
structured data on the Web. The LOD cloud grew up from a handful
of datasets in 2007 to thousands in recent years. There have been
e�orts to create diagrams of the LOD cloud and depict the connec-
tions among di�erent datasets. The latest e�ort was in 2014 [17].
However, the data sources are continuously increasing in num-
ber, size, and means of publication, thus, identifying a dataset has
become a very challenging task.
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So far, the main source of dataset metadata were metadata reg-
istries like the Comprehensive Knowledge Archive (CKAN) engine1,
especially the http://datahub.io CKAN instance given as recommen-
dation for LOD. For the creation of the �rst version of the LOD
cloud, dataset maintainers were requested to create an entry for
their dataset landing page and de�ne a set of required and optional
dataset metadata. The e�ort was driven by the LATC2 and Planet-
data3 EU projects, creating and cleaning an initial metadata collec-
tion. However, metadata is not systematically maintained in a sus-
tanaible manner and models such as the one used by datahub.io
lack granularity. For example, the DBpedia entry still marks the
3.7, which dates back to 2010, as the latest release4, and lists one
large tar �le (no further metadata is available, and not all DBpedia
release �les are in the archive). The problem got ampli�ed when
other metadata registries were created that describe both new and
overlapping datasets, making the exact mapping of downloadable
�les and versions to its dataset grouping complex. On top of that,
there are now meta-registries (registries of registries) that further
increase the di�culty of accessing dataset metadata without any
homogenization.

In recent years, the semantic web technologies and tools have
matured and new standardized vocabularies like DCAT [10], VoiD
[1], and DataID [7] have vastly improved to capture the metadata of
a dataset. We argue, however, that the approaches described above
have not proven to be e�ective, we need to de�ne a new paradigm
on how to identify and describe datasets on the data web and
how to make this information discoverable. Human intervention
is obviously a required step but should be minimized to the extent
possible.

In this paper, we employ automatic methods to gather a com-
prehensive and up-to-date dataset list of the whole LOD cloud. We
achieve this by harvesting all existing metadata registries, as well
as registries of metadata registries. We then stream, explore and an-
alyze all dataset RDF contents. This paper has two main goals: First,
to assess RDF metadata in terms of the content quality, and, sec-
ondly, to explore the metadata registries providing insights about
how much duplicated content exists across datasets. Detecting du-
plicate data is crucial as it allows us to obtain information on how

1See http://ckan.org
2Website defunct, cf. instead http://aksw.org/Projects/LATC
3See http://www.planet-data.eu/
4https://datahub.io/dataset/dbpedia

http://aksw.org
http://aksw.org
http://aksw.org
http://aksw.org
http://sda.tech
http://aksw.org
http://datahub.io
http://ckan.org
http://aksw.org/Projects/LATC
http://www.planet-data.eu/
https://datahub.io/dataset/dbpedia


Semantics2017, September 11–14, 2017, Amsterdam, Netherlands C. Baron et al.

much the current representations of the LOD-cloud are in�ated by
redundant data. Our coverage reaches dozens of billions of triples,
and in order to not exceed main memory and space limitations,
we focused on using probabilistic space-e�cient data structures.
Therefore, we use Bloom �lters to compute subset overlaps across
di�erent datasets. Finally, we enrich the harvested metadata with
our analysis and re-publish them through a dump �le endpoint
with standard vocabularies.

The rest of the paper is structured as follows: In Section 2 we
explain the necessary background concepts. In Section 3 we describe
all the data sources used in this paper . Section 4 provides details on
the proposed implementation. We discuss our results in Section 5
and conclude in Section 6.

2 BACKGROUND
2.1 Bloom Filters
Bloom �lters (BF) [3] play a major role in our approach, since they
are used for subset detection. A Bloom �lter is a compact, prob-
abilistic data structure designed to check the membership of an
element x in a set S , i.e. the lookup operation. BF is a type of ap-
proximate member query (AMQ) �lter since this data structure has
100% recall rate (false negative (f n) matches are impossible), while
a small percentage of false positives (f p) is condoned and the f p
margin of error can be adjusted in advance. The false positive prob-
ability (f pp) is calculated according to the size of the distributions.
Equation 1 de�nes the f pp value used in our experiments. A f pp of
0.9/distributionSize guarantees an expected value (EV) of �nding
0.9 links per distribution that are not links (false positives).

f pp =

{
0.9/distributionSize, if size > 100000,
0.0000001, otherwise.

(1)

In order to have a �xed f p rate, the length of the structure must
grow linearly with the number of elements. The total number of
bitsm for the desired number of elements n and f p rate p, is de�ned
as:

m = −
n lnp
(ln 2)2

(2)

An optimal number of hash functions is given by:

k = (m/n) ln 2. (3)

These methods are based on the optimal number of hash functions,
since reducing the number of hashes would signi�cantly decrease
the BF precision. Space and time advantages of this probabilistic
data structure are more coherent in this scenario compared to more
commonly-used data structures, such as binary search trees, hash
tables, arrays, or linked lists. In fact, the reason why BF was pre-
ferred over other data structures is that, as shown in Table 1, it
provides a constant run-time for Lookup and Insertion operations
(regardless of the number of elements, depending only on the num-
ber of hashes), as well as an e�cient space complexity with a low
memory footprint. In [5], the quality assessment of linked data de-
tecting duplicated instances was done using BF Randomised Load
Balanced Biased Sampling based Bloom Filter (RLBSBF). Loizos et.
al. [13] state that union and intersection operations are also applica-
ble to Bloom �lters. The basic idea of an intersection operation is
to perform a bitwise AND operation between the bits of the �lters.

After the operation, the likelihood of all bits be set to true can be
estimated by:((

1 −
(
1 −

1
m

)kn1
)
∗

(
1 −

(
1 −

1
m

)kn2
))k

(4)

In the best case scenario, however, the false positive probability
of an intersection will be 0.953156 (using the optimal number of
hashes and bits). A better precision can be achieved by oversized
�lters, i.e. adding fewer elements than n. Clearly, this leads to a
major drawback w.r.t. the memory footprint. A second concern
about the intersection operation is that the �lters should have
equivalent size rendering �lters oversized for datasets with less
than n elements, and for larger datasets, multiple �lters would be
used. The problem with this approach is that the false positive
value propagates proportionally with the number of intersections
needed to compare large datasets (e.g., for comparing two datasets
with three �lters each, nine intersection operations are required).
Table 1 provides a comparison of bloom �lters to other related data
structures.

2.2 Dataset, Subset and Distribution De�nition
We de�ne the terms dataset, subset and distributionwith the DCAT [10]
and VoID [1] vocabularies to clarify the variables used in this paper.

• ID: a dataset, described by void:Dataset or dcat:Dataset;
• SID : the set of subsets, described by void:subset of a

given dataset ID
• 〈s,p,o〉: the RDF triple which represents the subject s , pred-

icate p and object o for a given relation.
• dn : the n-th distribution consisting of a set of RDF triples.
• DID : the set of distributions, described by dcat:distributions

of the dataset ID .
• SdS→dT : the subset of existing triples common to two

distributions, having dS as a source distribution and dT
as a target distribution. We de�ne that a subset occurs
from a distribution dS to a distribution dT whenever dS
contains one or more tS = 〈sS ,pS ,oS〉 and dT contains
tT = 〈sT ,pT ,oT 〉 such that tS = tT .

2.3 Survey of Metadata
Vocabularies like DCAT [10], VoID [1] and DataID [7] can be used
to de�ne dataset metadata, and provide information such as sub-
sets, distributions, license, dataset title, etc. A subset is a distinct
part of a dataset that can be di�erentiated for a number of reasons,
such as di�erences in provenance, publication dates, accessibility or
language5. Distributions describe the speci�c �les or resources by
which the datasets might be accessed or acquired6. These resources
can be dump �les, SPARQL CONSTRUCT queries or a SPARQL end-
point. A thorough metadata example comes from DBpedia, where
DataID7 is used to describe multiple datasets in multiple formats
and multiple languages.

Online repositories such as CKAN often provide metadata re-
garding dataset description, format, indegree/outdegree, creator,

5See http://www.w3.org/TR/void/#subset
6See http://www.w3.org/TR/vocab-dcat/#class-distribution
7See http://downloads.dbpedia.org/2016-04/2016-04_dataid_catalog.ttl and http:

//wiki.dbpedia.org/projects/dbpedia-dataid
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Table 1: Average run-time, space complexity and feature comparison between di�erent data structures, where: y =maximum
length of the string, k = number of hash functions, m = number of bits, n = number of elements in the set and f pp = false
positive probability.

Algorithm Lookup Insert Space Complexity Intersection Precision

Radix tree O(y) O(y) O(n) O((n1)(n2))) determ.

AVL tree O(logn) O(logn) O(n) O((n1)(n2))) determ.

Hash table O(1) O(1) O(n) O(n) determ.

Quotient �lter O(logm) O(n) ≈ O(n log2(1/f pp)) ∗ 1.2 X probab .

Bloom �lter O(k) O(k) O(n log2(1/f pp)) O(m) probab .

maintainer, etc. Nevertheless, the metadata is in many cases insuf-
�cient or unreliable, leading to several drawbacks. Since certain
types of data are manually inserted by the dataset maintainer, there
is no guarantee that the provided data is accurate, complete or up
to date. With that said, we can classify the metadata de�nitions
into three distinct categories: manual metadata, heuristic metadata,
and analytical metadata.

2.3.1 Manual Metadata. Certain types of metadata cannot be
automatically generated and, thus, depend on human interactions.
These metadata are often required for the dataset maintainability.
For example, if we analyze the Dublin Core Metadata Speci�cation8,
we can �nd solid examples of properties that have a high impact
on the dataset maintenance and can only be created manually.
Properties like dc:license, dc:creator and dc:contributor are
important for the situations where a user needs information which
cannot be derived from the metadata description, such as requests
for dataset error correction or content integration/improvement.

2.3.2 Heuristic Metadata. Important metadata can also be ex-
tracted through the analysis of the dataset content. This process
is done by machine learning or rule-based approaches, and most
of the time extracting data, using supervised methods. Whilst ma-
chine learning has an important role in the Linked Data domain,
some drawbacks should be considered, such as its limited preci-
sion and required resources. Therefore, using supervised methods
requires a considerable amount of datasets to be used as training
sets in order to achieve su�cient precision and recall. In [12], the
authors use dataset features (e.g., Class Names, Property URIs, text
from rdfs:label, etc.) to discover dataset topics or categories. The
achieved accuracy is up to 81%. Likewise, in [16] the authors aim
to extract topics not from datasets, but rather from ontologies and
vocabularies.

2.3.3 Analytic Metadata. The third type of metadata is the one
which can be automatically generated with 100% of accuracy since
it is deterministic. Usually, this kind of metadata is technical and
related to the dataset structure and can be easily measured. Exam-
ples of such metadata, which can be generated on-the-�y, are links
between datasets, number of triples and �le statistics (e.g., �le size
and format).

8See http://dublincore.org/

3 DATA SOURCES AND REPOSITORIES
We have retrieved RDF data from 8 data sources. For each of them,
we fetched all datasets (regardless of their format) and identi�ed
the ones containing RDF data. Most �les were compressed resources
(e.g., zip �les) where multiple �les are bundled together. In such
cases, we extracted and analyzed all �les. We noticed that low-
quality metadata is a common issue in all repositories, as noted
already by [4]. Although the metadata was manually inserted by the
dataset creator or maintainer, it is not guaranteed that the provided
data is accurate. For instance, multiple unnecessary variations of
MIME-types were found (e.g., ttl, turtle, rdf/turtle, etc.). To
correctly identify the RDF serialization format, we used regular
expressions in order to normalize these �elds and then parsed the
�le contents with di�erent RDF parsers.

3.1 Data sources
DBpedia Datasets. The �rst data source we crawled was DB-
pedia[9]. The DBpedia community maintains the DataID project,
which aims at describing datasets in a uniform way with a consid-
erable amount of details. Hence, we crawled the DataID description
�le9 to gain easy access to all RDF �les to be streamed as well as
additional metadata, e.g., subsets, language, etc. The dataset con-
sists of 476 subsets (separated out by languages and categories) and
7,229 distributions.
The LOD laundromat [2] initiative aims at republishing other
people’s “dirty” RDF data, improving data quality and making it
available for reuse. Moreover, the process involves the detection
of the serialization format, �ltering duplicated triples (within the
same distribution), syntax error detection, and others. The clean
data is �nally republished in a uniform serialization format, and
either a SPARQL endpoint or dump �les are provided. Additionally,
the data can be accessed as HDT or using Linked Data Fragments
[19]. The pipeline for acquiring data from LOD laundromat consists
of the following steps: 1) reading and parsing the metadata �le10;
2) for each dataset found, stream the clean data; 3) based on the
original dataset download URI, we fetch metadata in any of the
CKAN repositories analyzed. The last phase is necessary since LOD
laundromat only provides analytical metadata (such as dataset size,
the number of triples, etc.) and it does not keep metadata which

9See http://downloads.dbpedia.org/2016-04/2016-04_dataid_catalog.ttl
10See http://download.lodlaundromat.org/dump.nt.gz
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cannot be automatically generated (Section 2.3.1). It is important
to emphasize that this repository has a dual purpose, i.e., it serves
both as a metadata repository and as a dataset endpoint repository.
More speci�cally, based on the metadata provided by the repository
it is possible to access the dataset in its original dataset location or
access a local copy. We detected 1,489 datasets, 1,259 subsets and
34,969 distributions.
The Registry of Research Data Repositories (re3data.org) is a
repository of repositories [15]. It contains over 400 repositories
which are based on di�erent software, from MySQL databases to
CKAN. For the scope of this work, we considered only reposito-
ries powered by CKAN for two main reasons: �rstly, the most
well-known RDF repositories (i.e., publicdata.eu and datahub.io) are
based on this technology; secondly, CKAN provides an API which
allows a client to easily query for datasets and resources, provid-
ing a centralized way to insert and access data. We fetched a total
of 20 CKAN repositories, including datahub.io, publicdata.eu and
healthdata.gov. We detected 2,098 datasets, 973 subsets and 11,930
distributions.
Linked Open Vocabularies (LOV) Repository [18] provides a
dataset which contains over 500 vocabularies and ontologies. More-
over, it is popular within the community, and a substantial amount
of vocabularies has been added since 2011. We access LOV via a
dump �le11 which uses N-Quad to describe all vocabularies. Simi-
larly to LOD Laundromat, this repository also has a dual purpose,
i.e., serving as a metadata repository and as a dataset endpoint
repository. We detected 579 datasets (ontologies and vocabularies),
6 subsets and 579 distribution (one for each dataset).
The LOD Cloud Diagram [17] created a snapshot12 of the cur-
rent LOD Cloud alongside an image depicting the interconnections
among di�erent datasets. They de�ne datasets according to the top-
level domain. The approach is not executed frequently as manual
work is involved in the analysis. They provide a zipped archive
13 containing DCAT metadata of the crawled datasets. It was pos-
sible to �nd 1,303 datasets distributed in 2,830 subsets and 2,262
distributions. Notice that the number of subsets is bigger than the
distributions, which means that some subsets are pointing to the
same distributions �les.
Linghub [11] is a portal that aggregates and indexes linguistic
datasets and exposes metadata under a common interface. Linghub
is widely used by the NLP community, since the list of corpora is
retrieved from repositories such META-SHARE14, Clarin VLO15,
and LRE-Map16. Furthermore, Linghub provides both a SPARQL end-
point and a dump �le containing metadata of the resources. The
metadata is described using DCAT and VoID vocabularies, thus,
it is possible to access the RDF resources reaching properties like
dcat:accessURL. Linghub has 175 datasets, 607 subsets and 640
distributions.
CKAN.org provides a list of instances17 available on the web. Al-
though there is no easy way to query all instances, we created an

11See http://lov.okfn.org/lov.nq.gz
12See http://lod-cloud.net/
13See http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-RDB/
14See http://www.meta-net.eu/meta-share
15See https://www.clarin.eu/content/virtual-language-observatory
16See http://www.resourcebook.eu/
17See http://ckan.org/instances/#

HTML parser which fetches the repositories’ URLs. We were able
to load 147 instances and we make the list available at our GitHub
webpage. As Re3Data, repositories like datahub.io and publicdata.eu
were available here. The list of catalogs can be found on our GitHub
webpage18. We could fetch 147 repositories, 7,043 datasets, 5,438
subsets and 17,993 distributions.
Sparqles.okfn.org SPARQL Endpoint Status SPARQLES19 monitors
SPARQL endpoints collected from datahub.io providing status of
availability, performance and interoperability. SPARQLES provides
an API20 in which users can access more than 500 SPARQL endpoints.
From SPARQLES, we could fetch 549 datasets and 6,143 distribu-
tions. The process of distribution detection for SPARQL endpoints
is described in section 4.

3.2 Related Work and Other Data Sources
We list other data sources here, which we considered for analysis,
but were eventually not included, since most of them are redundant
as they are built upon the above mentioned data sources or are not
relevant.
LODstats retrieves data from CKAN repositories, and at the time
of writing, LODstats reports 9,960 datasets. LODSats provides sta-
tistical data about the overall number of datasets and vocabulary
utilization. According to their report around 79% of the datasets
have errors or are not accessible21, therefore, a SPARQL endpoint22

containing the dataset descriptions is available. LODSats was not
included in our experiments, since it explores data from CKAN
datasets which is already analyzed in this work.
Swoogle 23 is a crawler-based indexing and retrieval system which
provides a search engine over RDF documents by means of an in-
verted keyword index and a relational database. Since this work
was �rst published in 2004, it can be considered one of the �rst
attempts to building a full search interface of documents published
in the Semantic Web. This approach was not included since, at
the moment of this writing, we could not �nd a working SPARQL
endpoint or RDF dump �les or any other published data.
UniProt 24is an example of a domain-speci�c dataset. The SPARQL
endpoint holds data of automatically annotated uncharacterized
protein sequences and has a remarkable size containing over 20 bil-
lion triples. The data is available as SPARQL endpoint and Dump �les.
Considering that this repository is speci�c for a unique domain, we
are not analyzing it, although this dataset might be included in a
future version of this work.
SWSE The Semantic Web Search Engine (SWSE) [8] is a complete
platform that provides several tools for entity search over instance
data, like crawlers, ranking algorithms, reasoning, etc. When com-
bined, the whole architecture provides a high-performance and
scalable search system. Again, we could not evaluate the approach
since there was no accessible SPARQL endpoint or RDF dump �le.

18See https://github.com/AKSW/IDOL/tree/master/json_resources
19See http://sparqles.ai.wu.ac.at/
20See http://sparqles.ai.wu.ac.at/api
21in comparison, we were actually able to access around 81% of all distributions
22See http://stats.lod2.eu/sparql
23See http://swoogle.umbc.edu/
24See http://www.uniprot.org/format/uniprot_rdf
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Figure 1: A pipeline showing an overview of IDOL architecture.

4 IMPLEMENTATION
Figure 1 depicts a high-level overview of the data �ow in our archi-
tecture.

4.1 Metadata extraction
We start by retrieving metadata from all data sources described in
Section 3.1. There are di�erent methods to access the metadata,
e.g., REST services, SPARQL endpoint, VoID �les, depending on the
various data sources. Parsers were customized accordingly to re-
trieve metadata records. We utilized repositories powered by CKAN
(e.g., datahub.io), which partially implement the DCAT data model,
thus facilitating the parsing process. In order to increase our cov-
erage, we �ltered properties which may indicate that the record
is a URL to access a dataset. When the repository retrieves RDF de-
scription �les, we explore properties such as dcat:downloadURL,
dcat:accessURL, void:dataDump. In some cases, repositories pro-
vide REST APIs for retrieving objects whose elements are key-value
pairs, for instance, JSON objects. In such cases, a set of regular
expressions is used in order to identify URLs of datasets or distribu-
tions.

SPARQL endpoints are also considered, and are analyzed in two
steps. First, a query is used to retrieve all named graphs available
in the triple store, and second, for every graph (which is now con-
sidered as a distribution) we run paginated queries as a CONSTRUCT
graph in order to further retrieve all triples. The pagination size
was di�erent for each endpoint: We started with page size of 1,000
and gradually increased it, depending on the endpoint response
time.

4.2 Streaming datasets
Once metadata is acquired, all the datasets or distributions identi-
�ed are streamed and processed. Distributions with the same URL,
as well as distributions with di�erent serialization formats for the
same URL are not streamed twice. For data sources that have dual
purposes (e.g., LOD laundromat and Linked Open Vocabularies) we
stream datasets from the repositories rather than from the original
locations. There are two main reasons for that: �rst, the reposito-
ries usually have high availability, which ensures that all datasets
should be accessible, and second, in many cases (as in LOD Laundro-
mat, for instance) the data provided has a better quality since it has
already been pre-processed. As data start to come in from a source

distribution dS , each triple ti = 〈si ,pi ,oi 〉 extracted is processed by
a three-stage pipeline:
1. Statistical Analysis. The �rst stage retrieves and organizes the
basic data. For instance, we break down the triples and extract the
fully quali�ed domain names (FQDN) of the subjects and objects
(and keep counters in case of redundancies), we count blank nodes,
literals, distinct subjects and predicates, and other resources.
2. Bloom �lter creation. A Bloom �lter is created on the �y
(BFdS,T ) which stores all triples T of the current source distribution.
It is important to emphasize that Bloom �lters hash the triples, thus,
regardless of the triple size (e.g., triples containing long strings as
literals) the hash representing the triple will have constant size. Fur-
thermore, these �lters will later represent the current distribution
as a target distribution for content duplication detection.
3. Duplicate content detection In order to �nd which target
distribution (dT ) might contain the same triple ti we load into
the main memory all �lters of target distributions BFdT,T where
∃t ∈ dT .(FQDN (ti ) = FQDN (t)) where t is a triple in dt . The
reason that we check FQDN beforehand, is to avoid loading �lters
that describe dT that do not even have common namespaces with
dS . Detecting duplicate content is performed by looking up the
current triple (ti ) against all the BFdT,T distribution �lters.

Another solution for detecting content duplication would be to
get the value of BFdS,T ∩ BFdT,T . In fact, that was our �rst try.
However, as stated in section 2.1, the f pp increases proportion-
ally with the number of intersection operation, making the direct
intersection operation ine�ective.

4.3 Metadata Regeneration
Finally, we share the extracted metadata by republishing it to a
SPARQL endpoint. The new metadata generation complies with the
DataID25 ontology. We chose this format because its coverage al-
lows to describe multiple levels of relations among distributions,
datasets and subsets. DataID reuses vocabularies such as VoID,
Prov-O26 and SKOS. Currently, we republish dataset properties like
dcat:distribution, dcat:dataset, void:subset, void:linkset,
and others. We provide a dump �le27 with the available metadata.

A �nal consideration about the implementation is that depend-
ing on the number of datasets streamed, the growing amount of

25See http://wiki.dbpedia.org/projects/dbpedia-dataid
26See http://www.w3.org/TR/prov-o/
27See https://github.com/AKSW/IDOL/blob/master/dump.nt

http://wiki.dbpedia.org/projects/dbpedia-dataid
http://www.w3.org/TR/prov-o/
https://github.com/AKSW/IDOL/blob/master/dump.nt
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�lters might become an issue. Therefore, in order to avoid unneces-
sary overheads, we can considerably increase the throughput by
performing lookup operations in multiple hosts. Furthermore, the
data is stored using MongoDB which has native ability to scale
horizontally. The only bottleneck we encountered was the poor
endpoint performances.

All experiments were performed using Intel(R) Xeon(R) CPU
X5650, 64GB of memory and 25TB of SSD in RAID 5. IDOL was
written in Java using MongoDB v.3.4 as the database. Bloom �lters
were stored using GridFS28 over MongoDB. It is important to stress
that, although our model reads and retrieves RDF data, it does not
store any RDF. Our implementation creates RDF on the �y read-
ing documents from MongoDB and using Apache Jena to create
RDF models. Hence, no triplestore is required to be installed. Two
Bloom �lters implementations were used29,30. The IDOL project is
open-source, and the source code, documentation, as well as other
resources can be found on our GitHub web page31. Furthermore, we
exported the con�guration of the experiments based on the MEX
vocabulary [6] and stored these in the WASOTA repository [14],
following best practices in terms of reproducibility of experiments.

5 RESULTS AND DISCUSSION
Table 3 shows the general size of the retrieved dataset distributions.
As can be seen, 91% of the distributions have less than 1 million
triples, 7% have between 1 and 100 million, and only 2% are con-
sidered large, containing more than 100 million triples. With that
said, we describe now how much duplicated data was found, and
the general quality of the metadata.

5.1 Overview of repository data
Table 2 provides an overview of the processed repositories, datasets
and distributions. For each repository described in section 3.1, sepa-
rate or custom parsers were implemented to consume the repository
metadata. In the following, we describe each �eld of the table.

Number of repositories (Rep.): is the number of repositories
available on the data source. Only CKAN.org and RE3Data
contain a list with more than one repository or catalog.
Some repositories were not accessible at the time this paper
was written.
Datasets and Subsets: A fundamental requirement is to iden-
tify whether distributions are part of a larger subset or
dataset. While some sources such as DBpedia were pro-
viding this kind of metadata, we approximated subsets for
other repositories (cf. Section 5.2 )
Distributions (Dist) and Accessible Distributions (AD): The
distributions are either dump �les or graphs from SPARQL
endpoints. Accessible distributions are the ones which were
accessible at the time of writing. Inaccessible distributions
includes the ones with HTTP response 4XX, 5XX and with
authentication-request.
Triples (T), Distinct Triples(DT) and Blank Nodes (BN): The
total number of triples of each data source at the end of the

28See https://docs.mongodb.com/v3.0/core/gridfs/
29See https://github.com/google/guava
30See https://github.com/Baqend/Orestes-Bloom�lter
31See https://github.com/AKSW/IDOL/

processing; it is a simple triple count. DT is the number of
distinct triples detected per data source, i.e. triples which
are replicated across datasets are not taken into considera-
tion here. Finally, BN is the number of blank nodes. Notice
that we discarded blank node component in order to count
the distinct triples.
Size and Bloom �lter size: The sum of the uncompressed
size of all distributions (all distributions were transformed
into N-TRIPLES format) and the sum of all Bloom �lters
of the data source. Bloom �lters tend to be more e�ective
when large datasets are used. As will be discussed, data
sources with a large number of small datasets usually have
bigger �lters.

5.2 Subset detection
Some repositories did not provide enough metadata for us to di�er-
entiate when two or more distributions belong to the same dataset.
Therefore, we did our best e�ort analyzing the downloadURL of
multiple distributions. When multiple downloadURL are within the
same FQDN (Fully Quali�ed Domain Name), we consider that these
distributions belong to the same dataset. For instance, http://example.com/d1
and http://example.com/d2 are two di�erent distributions which be-
long to the same dataset in example.com. Moreover, the distribution
location also gives important clues about whether the distribution
is part of a subset, in particular we assume that distributions within
the same directory tree normally belongs to the same subset.

5.3 Overlap analysis
Table 4 shows the amount of overlap between the distributions.
18.1% of all distributions streamed have at least 80% of data over-
lapped with another distribution. On the other hand, 81.1% of the
distributions have less than 20% of duplicated data or are completely
unique.

5.4 Discussion
Now, we discuss the columns T (triples), DT (distinct triples), BN
(blank nodes), size and BF size from table 2. DBpedia dataset con-
tains 19.8 billion triples, where 19.7 billion (99%) are distinct. Bloom
�lters were e�ective for representing the whole dataset using only
1.2% of the dataset’s original size. For LOV, only 1.7% of the triples
are duplicated, which is expected since each vocabulary or ontology
describe their own domain. Therefore, the �lters have 11.4% of the
dataset size, as they are not so e�ective for small �les. CKAN.org
and RE3 data data have both 17% of duplicated data, respectively.
This large amount of overlap is due to the fact that many datasets
are described twice, for instance, datahub.io (which is present in
both data sources) describes multiple versions of DBpedia. For both
data sources, Bloom �lter size is around 0.7% of the sum of the size
of the datasets (again, Bloom �lters tend to be more e�cient with
big sets).
LOD Laundromat contains over 27.7 billion triples, whereas only
98% are distinct. The �lter size is 1.9% of the dataset size. LOD-
cloud was indexed with 2.5 billion triples where 80% of them are
unique. Linghub contains 346 million triples, where 87,9% of them
are unique. Finally, we could fetch over 550 million triples from
SPARQLES, and 94,4% of them are unique.

https://docs.mongodb.com/v3.0/core/gridfs/
https://github.com/google/guava
https://github.com/Baqend/Orestes-Bloomfilter
https://github.com/AKSW/IDOL/
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Source Rep. Datasets Subsets Dist. AD T DT BN Size BF size

DBpedia (2016-10) 1 1 476 8,859 8,729 19.8B 19.7B 99k 3.3TB 41GB

LOV 1 579 6 579 579 654k 643k 162k 35MB 4.0MB

CKAN.org 126/147 7,043 5,439 17,993 13,591 6.3B 5.19B 314M 829GB 5.4GB

RE3 data 16/20 2,098 973 11,930 9,735 5.9B 4.93B 310M 774GB 5.1GB

LOD Laund. 1 1,489 1,259 34,969 33,619 27.7B 27.1B 362k 4.2TB 79GB

LOD-Cloud 1 1,303 2,830 2,262 741 2.5B 2.1B 256M 191GB 339MB

Linghub 1 175 607 640 402 346M 304M 2.6M 26GB 101MB

Sparqles 1 549 - 6,143 3,753 550M 519M 41M 92GB 189MB

Total 174 13,237 11,590 83,375 71,149 65.3B 62.0B 1.2B 9.4TB 120GB

Distinct total 163 - - 63,194 58,152 56.1B 56.1B - - -

Table 2: Overview of sources used to acquire datasets: Rep. is the number of repositories (accessible/available), datasets, subsets,
Dist. are distributions (including SPARQL endpoints), AD is accessible distribution, T triples, DT is distinct triples in the data
source, BN is blank nodes, Size of uncompressed �le size, and last, the storage size of Bloom Filters.

Size (triples) Distributions

<10k 44%

10k - 1M 47%

1M - 100M 7%

100M - 1B 1%

> 1B 1%

Table 3: Overview of the size of the dis-
tributions.

Overlap Distributions

80-100% 18.1%

60-80% 0.8%

40-60% 0.0%

20-40% 0.0%

0-20% 81.1%

Table 4: Overlap found vs. amount of
distributions.

L NP W

Access 9.7% 8.7% 18.4%

Structural 22.3% 25.2% 32%

License 54.3% 1% -

Informational 63% - -

Provenance 79.5% - 33%

Table 5: Detected metadata: L lack of
data, NP no pattern and W wrong.

In total, we have found 83,375 distributions of which 71,149 were
accessible. We streamed over 65.3 billion triples. In addition to the
intra-repository duplication check, which reduced the amount of
triples to 62.0B (95%), we did an additional cross-repository check
that amounted to a total of 56.1 billion distinct triples for the whole
web of data (85.9%).

5.5 Metadata Quality
We assessed the quality of the retrieved metadata from all data
sources and identi�ed three di�erent cases of quality issues: a)
the lack of a speci�c property using standard vocabularies, b) the
property can be found, however, has erroneous data, either wrong
datatype or inappropriate content, c) some property exists with the
metadata information, but it uses not standardized vocabularies and
can only be discovered by regex patterns (e.g.“license”, “description”)
or manually inspecting the data. For our assessment, we classi�ed
metadata in �ve di�erent groups. The access group provides infor-
mation about the access layer of a dataset, for instance, dump �le
location or SPARQL endpoints. The structural group provides data

for dataset size, serialization format, and compression format. The
licensing group provides data about the dataset license. The prove-
nance group shows data about the dataset origin or derivation and,
�nally, the informational group presents dataset title, description,
label and others.

Table 5 shows an overview of the metadata obtained. For the
access layer, 9.7% of the datasets had no data indicating a URI or
any address where the dataset could be obtained. 8.7% of the access
data could be found through regular expressions. Of the existing
metadata, for 18.4% of the data location URIs we received either
HTTP 4xx or HTTP 5xx error . Within the structural layer, 22.3%
of the distributions had no data w.r.t. size and format and 32%
were incorrect when compared to the data. 25.2% of the structural
data were found through regular expression (e.g., serialization and
compression format were extracted from the URI). 54.3% of the
datasets had no license description at all. 63% had no informational
data (more precisely, from this 63%, 71% have no description and 29%
have no title or label), and 79.5% of the datasets have no provenance
information. We could not validate this further as such information
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is considered manual metadata and authoritatively de�ned by the
publisher.

6 CONCLUSIONS
In this paper, we provide a comprehensive and as complete as pos-
sible, insight of the web of data overcoming many heterogeneous
technical barriers. We performed this by harvesting dataset meta-
data from a thorough list of metadata registries, processing all RDF
data. Through this process we observed a signi�cant amount of
duplicated data, reducing the de-facto amount of available triples
from 65.3 Billion to 56.1 Billion unique statements (85.9%) spread
across 71,149 accessible and distinct �les. Based on our theoretical
assessment of data structures, Bloom �lters were the best option
and we give concrete insight on the parameters to choose, resulting
in 120GB of compressed Bloom�lters, thus being space-e�cient
and also time-e�cient (analysis of all data takes 5 days on our –not
overpowered– machine).

While we managed to retrieve, analyse and normalise metadata
for the retrieved data, we would like to stress two very important
points: As previous work pointed out and has been con�rmed by
our �ndings, metadata is of poor quality. This has as a consequence
a large impact on the actual usability and interpretation of data, pre-
venting the generation of valuable structure across datasets. In this
work, we have investigated how to create complete and accurate
measures of data duplication, which is a necessary prerequisite for
future work focusing on cross-dataset manual metadata error cor-
rection as well as generation of analytic and heuristic metadata, in
particular accessibility (ease of retrieval), linking equivalent subsets,
and proper versioning/provenance tracing.
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