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4 University of Bonn, Römerstraße 164, 53117 Bonn, Germany
[jabeen,sejdiu,jens.lehmann]@cs.uni-bonn.de

5 University of Athens, Ilisia, Panepistimioupolis, 15703 Athens, Greece
gioargyr@di.uoa.gr

6 Fraunhofer IAIS, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
luigi.selmi@iais.fraunhofer.de

7 Semantic Web Company GmbH, Mariahilfer Strasse 70, 1070 Vienna, Austria
juergen.jakobitsch@semantic-web.com

Abstract. The growing digitization and networking process within our
society has a large influence on all aspects of everyday life. Large amounts
of data are being produced continuously, and when these are analyzed
and interlinked they have the potential to create new knowledge and
intelligent solutions for economy and society. To process this data, we
developed the Big Data Integrator (BDI) Platform with various Big Data
components available out-of-the-box. The integration of the components
inside the BDI Platform requires components homogenization, which
leads to the standardization of the development process. To support
these activities we created the BDI Stack Lifecycle (SL), which consists
of development, packaging, composition, enhancement, deployment and
monitoring steps. In this paper, we show how we support the BDI SL
with the enhancement applications developed in the BDE project. As
an evaluation, we demonstrate the applicability of the BDI SL on three
pilots in the domains of transport, social sciences and security.
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1 Introduction

Digitization is taking an increasingly important role in our everyday life. The
analysis and interlinking of the large amounts of data generated permanently
by our society has the potential to build the foundation for novel insights and



intelligent solutions for economy and society. However, processing this informa-
tion at scale remains the privilege of a chosen few, who can integrate and deploy
the plethora of Big Data processing tools currently available. What is needed
are innovative technologies, strategies and competencies for the beneficial use
of Big Data to address societal needs. In the Big Data Europe (BDE) project,
we address this need by developing the Big Data Integrator (BDI) Platform.
This platform is designed to accommodate various Big Data components such
as Hadoop8, Spark9, Flink10, Hive11 and others12 available out-of-the-box. The
BDI Platform is based on the Docker technology stack and seamlessly inte-
grates components into complex architectures necessary to solve societal data
challenges. The platform is being used in 7 pilots in the areas of Health, Food,
Energy, Transport, Climate, Social Sciences, and Security. Each of the pilots
builds upon available Big Data components13 and develops new ones specific to
the challenge.

The integration of the components inside the BDI Platform requires an ap-
proach to the homogenization of components. To support the development of the
BDI components and their integration in the BDI platform, we propose a novel
methodology of developing Big Data applications dubbed BDI Stack Lifecycle
(SL). Our methodology is based on the experience of developing Docker images
inside the BDE project and their integration in the pilots. It consists of the fol-
lowing steps: (1) development, (2) packaging, (3) composition, (4) enhancement,
(5) deployment and (6) monitoring. The prime goal of BDI SL is the creation of
complex Big Data applications dubbed BDI Stacks. Each instantiation of BDI
Stack methodology is a complex use-case-driven application designed to address
a particular challenge (e.g., processing sensor data from taxi drives in Thessa-
loniki).

The BDI Platform itself was described in the previous work [1]. In this pa-
per, we focus on the methodology for developing BDI Stack applications. In
particular, the contributions of this paper are as follows:

– We propose a methodology for developing and maintaining complex Big Data
applications using Docker containers dubbed BDI Stack Lifecycle.

– We describe the supporting tools for the six steps of the BDI SL.
– We apply our methodology on the real-world pilots and show its applicability.

2 Related Work

The BDI Platform is a distribution of Big Data components available out-of-the-
box for easy installation and setup. The idea of creating library of components
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is not novel and a lot of other distributions are available at the time of writ-
ing [8]: Hortonworks14, Cloudera15, MapR16, Bigtop17. Most of distributions are
provided as open source software under Apache 2.0 license. The key difference
between the BDI Platform and other distributions are (1) the flexibility of the
Platform, which enables creating custom stacks for the pilots, and (2) the avail-
ability of documentation and use cases. To the best of our knowledge, we are
the first project, which summarizes the development process and proposes a
methodology for developing big-data stack applications.

Data management lifecycles relevant to this work have been developed in the
domain of data warehousing. CRISP DM [17] is a generic data mining method-
ology, which can be applied in any kind of data mining tasks. CRISP DM breaks
down the lifecycle of a data mining project into six phases: business understand-
ing, data understanding, data preparation, modeling, evaluation, and deploy-
ment. It is common to extend or modify CRISP DM for particular needs of a
project. For example, in [5] the authors extend CRISP DM to process big sci-
entific data. CRISP DM is data centric and does not tackle service composition
or deployment problems in detail. In the scope of our BDI SL, CRISP DM only
covers the first development step, where a single Spark or Flink application is
being designed to address a particular data mining challenge.

The other relevant research field, which studies the software lifecycles is Con-
tinuous Integration/Continuous Delivery (CI/CD). CI/CD assumes that the new
software needs to be developed and has the goals of fast and frequent release,
flexible product design and architecture, continuous and rapid experimentation
etc. (see the recent state-of-the-art survey [14]). The main difference between
the methodologies represented in CI/CD studies and our approach is that we
reuse existing components for assembling complex architectures.

Mesosphere DCOS18 and Canonical Juju [18] simplifies the deployment of
complex architectures. Juju operates with charms, which are packaged compo-
nents with preprogrammed dependencies and connection logic. The charms can
be written in any programming language and are available in Juju Store 19

for reuse. Juju creates a thin layer over resource provisioning. To implement
an architecture using Juju, it is necessary to program deployment logic, when
the required components are not available in Juju Store or the available imple-
mentation does not fit the user requirements. For example, in [15] the authors
implement flexible architecture for deploying applications on Apache Storm. In
our approach the deployment logic is encapsulated into Docker images, which
allows user to employ default Docker facilities such as docker-compose.

The architectures for big data applications include Model Deployment and
Execution Framework (MDEF) [7], Extended IoT Framework [16], Big Data
Processing Framework for Healthcare Applications [13], and On Demand Data
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Analytics in High Performance Cluster (HPC) Environments [6] among others.
These architectures challenge a particular problem, which is often specific to
the infrastructure. For example, in [6] the authors claim that facility resources
(i.e. High Performance Cluster) cannot be simply partitioned or repurposed for
specific architectures. Therefore, they propose an on demand solution for creating
Spark instances on fly for HPC.

Packaging

CompositionMonitoring

EnhancementDeployment

Development

Fig. 1. BDI Stack Lifecycle.

3 BDI Stack Lifecycle

In this section, we describe BDI SL methodology (see Figure 1), which supports
the creation, deployment and maintenance of the complex Big Data applications
dubbed BDI Stacks. The BDI SL consists of the following steps:

1. Development includes the engineering of BDI Stack components such as,
for example, Spark or Flink applications.

2. Packaging is the dockerization and publishing of the developed or existing
third-party BDI Stack components.

3. Composition stands for the assembly of a BDI Stack, where we defined a
BDI Stack as the integration of several BDI components (most commonly
to address a particular data processing task).

4. Enhancement step is a process of extending BDI Stack with enhancement
tools such as, for example, Init Daemon for the creation of dataflow, and
Logging facilities for monitoring the health of a BDI Stack.



5. Deployment is the instantiation of a BDI Stack on physical or virtual
servers.

6. Monitoring consists of observing the status of a running BDI Stack and
can lead to a reiteration of the BDI components and architecture of the BDI
Stack.
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Fig. 2. BDI Stack Assembly and Architecture. (1) Picking up the ready-made BDI
components from BDE Components Library. (2) Adding custom applications such as
Spark applications. (3) Ensuring start-up of the BDI stack with BDI Workflows. (4)
Adding logging facility. (5) Integrating interfaces with UI Integrator. (6) Deploying
BDI Stack with Swarm UI.

To support the BDI SL methodology, we developed documentation and en-
hancement tools for each of the steps.

For the (1) development step we created application templates for Spark
and Flink for the most common programming languages (Java, Scala, Python) [3].
We also provide Spark Notebook and Apache Zeppelin as a part of Spark/HDFS
Workbench. Spark/HDFS Workbench is an integrated environment for develop-
ing, testing and running Spark applications. It can be deployed on any Docker
host with only one CLI command [2]. Spark Notebook and Apache Zeppelin
are the parts of the Spark/HDFS Workbench and can be used for interactive
programming and execution of Spark jobs.

For the (2) packaging step we provide a library of ready-made components,
which are created using best-practices on dockerization of Big Data technologies.
More than 30 components are available in the BDE Github organization20 at
the time of writing. Also, we use the open source Docker technology, which has a
community-driven components repository called Docker Hub. In case of a missing
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component or when BDI component does not meet project requirements, it is
always possible to search the Docker Hub.

All the components from the BDE Github repository have example docker-
compose snippets, which can be used for the (3) composition step. With this
comprehensive library, the users are able to reuse existing BDI Stacks and cre-
ate new ones by a simple extension. Additionally, we provide a graphical user
interface for assembling BDI Stacks dubbed BDI Stack Builder.

For the (4) enhancement step we provide a set of enhancement applications
aimed to improve usability of a BDI Stack. The enhancements include UI In-
tegrator, Init Daemon, Healthchecks, Workflow Monitor, and Logging together
with ELK Stack for logs visualization. We describe the enhancements in more
detail in section 4.

The (5) deployment step can be done by using both widely adopted docker-
compose application or with our Swarm UI interface.

The (6) monitoring step is performed using Logging facility and visualized
with ELK stack.

4 BDI Stack Assembly and Architecture

The central steps of BDI Stack assembly are (3) composition and (4) enhance-
ment steps. In this section we describe them in more detail.

Table 1. Use Cases Summary.

Pilot Name SC4 SC6 SC7

Domain Transport Social Sciences Security
Data Format Sensor Data Tabular Data (CSV) Satellite Images
Number of components in
BDI Stack

9 8+ 11

In Figure 2 we show the process of BDI Stack assembly as well as resulting
architecture of an example BDI Stack. As shown in Figure 2, user employs
Stack Builder application21 (1) to select required BDI components from BDE
Components Library and have an initial version of BDI Stack with Hadoop,
Spark and Kafka22. Then, the user adds custom applications (2) such as Spark
App in the example, which performs the use case specific tasks. Often it is desired
to ensure the execution order of a BDI Stack, for example, data processing should
happen after data acquisition. The execution order can be controlled using docker
native HEALTHCHECK Docker facility. However, due to the limitations of the
native solution, we introduce an approach based on Init Daemon. With Init
Daemon enabled components, it is possible to assemble a workflow (3) using

21
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Workflow Builder application23. The Workflow Service24 executes a workflow
during the BDI Stack deployment and ensures the correct execution order of
the components of the stack. The logging facility25 needs to be added as a
Logging Service (4) together with ELK Stack for logging visualization. Interfaces
from all the BDI Stack components (e.g. Hadoop, Spark, Kafka, Spark App)
are aggregated using UI Integrator26 (5) and can be accessed with a common
GUI [4]. The resulting BDI Stack, which has docker-compose format, is deployed
with Swarm UI27 (6).

The enhancement applications such as mu-bde-logging and mu-pipeline-service
are developed using mu.semte.ch semantic technology stack [19].

5 Use Cases

Fig. 3. Transport pilot architecture.

In this section we present three selected pilots developed with the BDI SL
methodology. Each of the pilots correspond to a societal challenge. As shown in
the summary Table 1, the pilots process the data in various formats and have
different number of components in a BDI Stack. In the following, we describe
the pilots in more detail.
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5.1 Transport

The H2020 Societal Challenge 428, Smart Green and Integrated Transport, covers
a broad topic ranging from urban mobility, to safety, logistics, transport system
integration, infrastructure monitoring and planning. Transport systems consume

Setup Zookeeper/Kafka

Fig. 4. Transport pilot initialization workflow.

huge flows of data to provide services, monitor infrastructures and discover the
usage patterns in order to forecasting what will be the status in the near or
distant future. All these systems consume streams of data from different sources
and in different formats. In the SC4 pilot we have therefore decided to build a
pilot that can ingest, transform, integrate and store streams of data that have
spatial and temporal dimensions. One of the project partner, CERTH-HIT, is
managing a system that monitors the traffic flow in Thessaloniki, Greece, using
floating car data from a transport company. The legacy system is based on a
relational database, stored procedures and R scripts to map-match the location
of the vehicles to the road segments and compute the traffic flow and average
speed among other statistical parameters. The result of the computation is used
for monitoring and as input for forecasting the value of the parameters in the
near future and is made available through a web service. The aim of the pilot is to
address the scalability issues of the current system leveraging the availability of
distributed frameworks and the containerization technology for the deployment
of services in different environments.

The pilot is based on the microservices architecture where different soft-
ware components, producers and consumers, communicate through a messaging
system connecting data sources to data sinks. Producers and consumers are im-
plemented as Flink jobs while Kafka has been chosen as the messaging system.
The producer fetches the data every two minutes from the web service, stores the
records sets into Hadoop HDFS, transforms the records into a binary format,
using a schema shared with the consumer, and finally sends the records to a

28
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Kafka topic. The consumer reads the records from the Kafka topic and process
them at event time applying the map matching function. The consumer must
connect to an R server where an R script has been installed to perform the com-
putation for the map matching using the road network data from Open Street
Map stored in a PostGIS database. The consumer adds the identifier of the road
segment as an additional field to the original record and finally aggregates the
records per road segment and in time windows to compute the traffic flow and
the average speed in each road segment. The result of the aggregation can be
sent to Hadoop HDFS or to Elasticsearch29. From Elasticsearch different visu-
alizations can be created easily with Kibana30. The records with the aggregated
values stored in Elasticsearch will be used as input to a forecasting algorithm
to predict the traffic flow. All the components are available as Docker images
and a docker-compose file has been created adding the initialization service and
the UI provided by the BDI Stack in order to start the services in the right
sequence from the browser (e.g. Zookeeper before Kafka and PostGIS as well as
Elasticsearch before the consumer).31

5.2 Social Sciences

The H2020 societal challenge 632, ”Europe in a changing world - Inclusive, inno-
vative and reflective societies” roughly covers topics improving the understanding
of European societies in the context of the public sector. The Big Data Europe
pilot implementation for this societal challenge exposes the foundation of mak-
ing budget data comparable across European municipalities. Additionally the
pilot architecture (see Figure 5) can be used as a base for document processing
at scale. The basic implementation is ingesting budget data from three Greek
municipalities: Athens, Thessaloniki and Kalamaria. These datasets (in CSV
format) are collected on a daily basis and transformed to RDF using ELOD’s
schema3334. The transformed datasets are used to calculate financial ratios35

and compare incomes/expenses of the municipalities.
The entry point for input data is Apache Flume agents36, which can be

configured according to the availability and format of budget datasets. All Flume
agents are configured to store raw data into Hadoop HDFS and create an Apache
Kafka message for each file, containing the name of the source document as
key and the contents of the file as an array of bytes. Apache Spark acts as
a consumer of Kafka messages. The Spark job consumes messages in parallel
with the possibility of being scaled to any number of nodes. SC6 pilot makes
use of SPI37 to determine a suitable parser for a given file, which in turn will
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transform the source file into RDF and upload the resulting triples to a Virtuoso
Triple Store38. After a successful upload financial ratios39 are calculated for
the newly added data. Those aggregations are done using the SPARQL40 query
language. Both steps, the creation of the initial RDF dataset and the calculation
of the financial ratios make use of PoolParty Semantic Suite’s41 capabilities as
a clearing house for all literal terms that are involved. This means that financial
terms, unknown to a wider public, can be translated, annotated and unified for
municipalities of different languages. Finally a dashboard of financial ratios is
created based on PoolParty’s GraphSearch42. This way financial ratios are easily
comparable. Financial ratios and periods of time as well as municipalities can
be chose to be compared.

Source B

Source C

Source A

Data Sources

Flume Agent A

Flume Agent B

Flume Agent C

Kafka Topic

HDFS

Triple Store Spark SKOS PoolPartyUser InterfaceSPARQL

Data Acquisition Messaging

Storage

StorageData PresentationAnalytics Processing (Triplification)

Fig. 5. Social sciences pilot architecture.

Note that the pilot setup can also be used as a template to get started with the
relevant Big Data technologies. It comprises core Big Data tools such as Flume,
Kafka, HDFS and Spark and shows how these can be setup to work together.
The architecture is driven by the requirement of making the cooperation between
a technical expert and a domain expert as easy as possible in that both have
distinct points of control, for example, in the selection of source data and the
transformation of the source files into RDF.

The pilot’s stack is configured as a whole using a single docker-compose file,
which can be run by Docker Swarm.43 Although all involved docker images sup-
port BDE’s Init-daemon, docker-compose ”depends on” feature is sufficient in

38
https://virtuoso.openlinksw.com/

39
https://en.wikipedia.org/wiki/Financial_ratio

40
https://www.w3.org/TR/sparql11-query/

41
https://www.poolparty.biz/

42
https://www.poolparty.biz/poolparty-semantic-graph-search-server/

43
https://github.com/big-data-europe/pilot-sc6-cycle2

https://virtuoso.openlinksw.com/
https://en.wikipedia.org/wiki/Financial_ratio
https://www.w3.org/TR/sparql11-query/
https://www.poolparty.biz/
https://www.poolparty.biz/poolparty-semantic-graph-search-server/
https://github.com/big-data-europe/pilot-sc6-cycle2


the case of SC6. The pilot, however, makes use of Docker HEALTHCHECK44

facility. The BDI Logging collects the health information about docker contain-
ers and store it in the ELK stack, thus the applications, that do not expose a
graphical user interface can be monitored (e.g. Apache Kafka). Apache Spark’s
BDE UI as well as unified logging45 make sure the pilot’s general working can
be followed easily.

5.3 Security

The security pilot combines data relating to security domain46, the H2020 So-
cietal Challenge 7 (SC7). Sources of such data are Earth Observation products
and the combination of news articles with user-generated messages from social
media. In the first case, the pilot processes satellite images in order to detect
changes in land cover or land use. In the second one, it processes news from the
web sites and social media in order to detect events. Combining the outcomes,
we achieve an integration of remote sensing sources with social sensing ones.

…
News

Crawler

Image
Aggregator

User
Interface

Strabon

HDFS

Event
Detector

GeoTriples

Change
Detector

Lookup
Service

Fig. 6. Security pilot architecture.

The high-level architecture is depicted in Figure 6 and represents three
workflows. the top components (News Crawler, Cassandra, Event Detector and
Lookup Service) implement event-detection workflow. The middle layer (Sex-
tant, SemaGrow, Strabon and Geotriples) implements the activation-workflow.
The bottom layer (Image Aggregator, HDFS and Change Detector) implements
the change-detection workflow.

For the event-detection workflow, the News Crawler runs periodically and
ingests data from various public news streams like Twitter and Reuters. All
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these news are stored in Cassandra47 where they are processed by the Event
Detector. Event Detector periodically executes a Spark job to cluster the news
items into events and to associate them with one or more geo-locations with
the help of the Lookup Service. The Lookup Service is based on Lucene index.
It accepts location names in plain text and returns their geo-coordinates by
indexing 180,000 location names from the GADM dataset48.

The change-detection workflow processes satellite images from ESA’s Coper-
nicus Open Access Hub49 (Open Hub). The Image Aggregator downloads large
files that contain images with their metadata. These images cover a certain area
of interest during a specific time period as requested by the user. The images are
stored in Hadoop HDFS50 being accessible to Spark nodes and thus available to
the Change Detector. After each processing request51, two satellite images are
ingested in Change Detector and areas of highly possible changes are returned.

Sextant [12] is the basic component of the activation workflow and the entry
point for the pilot. It has been widely extended for the pilot’s needs and provides
a graphic interface for the user to select either an event or a change detection trig-
gering the corresponding workflow. SemaGrow, Strabon and GeoTriples provide
support for the event- and change-detection workflows and complement the ac-
tivation one. Geotriples [11] receives descriptions of areas (the output of Change
Detector) or summaries of events (the output of Event Detector) and converts
them into RDF. The output of the Geotriples is then stored in Strabon [10]
which is a spatio-temporal triplestore that efficiently executes GeoSPARQL and
stSPARQL queries. Sextant provides access and visualization the data that are
stored either in Cassandra and Strabon through Semagrow [9].

All components of the pilot are provided as Docker images.52 They run as
Docker containers within Docker Swarm in order to be enhanced as a BDI
Stack. The whole pipeline is deployed in the BDE Platform by running a docker-
compose file that describes all the services of the pilot.

Executing a Docker Compose application will launch all Docker containers
simultaneously. In order to avoid the immediate launch of all Docker containers
and to control the execution order we enrich each service of the pilot with the
native HEALTHCHECK Docker facility. Thus, we manage to keep a certain
order of the initiation of the services and we make sure that every service will
start running after it is confirmed that the services it is depended on, have
completed a healthy start.

Ensuring the correct execution order of the components of the stack we have
a ready pipeline for use. The user is able to select the provided functionality from
Sextant choosing either of the two workflows described earlier. Aggregating the
interfaces of the BDI Stack components (Sextant, Hadoop and Spark), which the

47
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SC7 pilot uses with the UI Integrator allows the user to monitor the progress of
the selected workflow.

6 Conclusions and Future Work

In this paper, we presented a Big Data Integrator Stack Lifecycle methodology
for creation, management and maintenance of Big Data applications. We showed
how the six steps of the lifecycle are supported within the BDI platform. Three
pilots are showcased as an evaluation of the presented lifecycle. The core of the
BDI SL methodology is a composition step, which depends on the underlying
technology (i.e. Docker). Thus, it will be hard to transfer the methodology to
generic environments or adapt it for usage in High Performance Clusters (HPC)
or vendor specific environments, which do not run on Docker or can not execute
docker containers. The linear initialization workflows as presented in the pilots
are tolerant to cascading failures. In the future, we will address this issue by
further developing Docker images for all the components to be fault-tolerant
and not dependent on the execution order. Additionally, we plan to test and
evaluate not only three, but all 7 pilots and report on the evaluation results.
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