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Abstract—The Semantic Web architecture choices lead to
a tremendous amount of information published on the Web.
However, to query and build applications on top of Linked Open
Data is still significantly challenging. In this work, we present
Knowledge Box (KBox), an approach for transparently shifting
query execution on Knowledge Graphs to the edge. We show
that our approach makes the consumption of Knowledge Graphs
more reliable and faster than the formerly introduced methods.
In practice, KBox demands less time and resources to setup than
traditional approaches, while being twice as fast as SPARQL
endpoints, even when serving a single client.

I. INTRODUCTION

Since the inception of the Web of Data, many open knowl-
edge graphs were made available in RDF format. Examples
of such knowledge graphs are DBpedia [11], Freebase [4]
and Wikidata [19]. Together, these knowledge sources alone
encompass more than three billions facts covering a multitude
of domains. Despite this data is freely available, lay users
as well as researchers and enterprises still face difficulties in
consuming RDF. The main obstacle is that using the data
is still a very cumbersome and resource-demanding task.
As a result, users often rely on publicly available SPARQL
endpoints and RDF dump files.

On the one hand side, SPARQL endpoints are not reliable,
as it has been shown that the query evaluation problem for
SPARQL is “PSPACE-complete even without filter condi-
tions” [15]. Therefore, high demand services are generally
expensive to host, “which makes reliable public SPARQL end-
points an exceptionally difficult challenge” [17]. For instance,
a study monitoring 427 endpoints for 27 months shows that
SPARQL endpoints have “an average fixed HTTP cost of
∼300 ms per query”. Moreover, the mean endpoint availability
of the SPARQL enpoints decreased over time (i.e., from 83%
in the beginning to 51% at the end of the experiment), while at
least 24.3% of the SPARQL endpoints were always down [5].
To tackle the reliability problem of SPARQL endpoints, some
proposed approaches reach from (i) improved indexing tech-
niques [20], [8] to (ii) novel architecture patterns such as
Linked Data fragments [17]. However, these methods often
impute limitations as, for example, high network bandwidth
consumption [17] as well as restrictions on SPARQL features
– i.e., some indexes restrict the SPARQL query features to
only basic graph patterns [8].

On the other hand side, consuming RDF dump files can be
a very cumbersome, time-consuming and resource-demanding
task as there is a high effort necessary for: (1) identifying; (2)
downloading, and; (3) setting up the infrastructure for RDF
data management including indexing the desired portion of
the RDF graph (see Section V). All these obstacles make
it difficult for users to query Linked Data as well as build
applications on top of it.

In this work, we present the Knowledge Box (KBox) ap-
proach to transparently shift the query execution on knowledge
graphs to the user or application (i.e., the edge of the network).
The main contributions of this work are:

• an approach for transferring the query execution from the
server to the user or application;

• a decentralized architecture for publishing and derefer-
encing RDF Knowledge Graphs;

• an extensive evaluation of different methods for publish-
ing RDF on the Web, including KBox.

The remainder of this article is structured as follows.
Section II presents the preliminaries. Section IV presents the
approach, its concept and architecture. Section V evaluates the
scalability of the approach by comparing it with the state-of-
the-art semantic technologies as well as standard benchmarks
using the DBpedia knowledge base. Related work is reviewed
in Section III. Section VI concludes with an outlook on future
work.

II. PRELIMINARIES

The Linked Open Data (LOD) was built on top of the
Resource Description Framework (RDF). The main idea is
that resources are published on the Web where they can be
dereferenced and consumed. A resource is the most atomic
unity of the Web of Data. RDF adds meta information to
existing resources and allows applications to better process the
data. Therefore, the Web of Data is composed of resources and
their meta information. An RDF knowledge base is composed
of triples (or statements) which consist of: (1) subject, (2)
predicate and (3) object. The definition of an RDF is closely
following [15].

Definition 1 (RDF definition): Let I , B, and L be pairwise
disjoint infinite sets of IRIs, blank nodes, and RDF literals,
respectively. A triple (vs, vp, vo) ∈ (I ∪B)× I × (I ∪B ∪L)



is called an RDF triple. In this tuple, vs is the subject, vp the
predicate and vp the object. T = I ∪B ∪L is the set of RDF
terms.

A set of such triples is called an RDF graph.1 In this work,
we refer to an RDF graph as an RDF knowledge graph or
simple knowledge graph.

III. RELATED WORK

In this section, we discuss different approaches that are
related to our work. We start by discussing the most common
architecture patterns for publishing RDF graphs. Thereafter,
we discuss repositories designed to facilitate the RDF graph
discovery. Finally, we present some approaches that make use
of decentralized architectures as well as RDF.

A. LOD Architectures

The use of RDF technologies leads to a tremendous growth
of data published as RDF. However, RDF graphs may be
published using different approaches, according to server
specifications and end-user requirements. The most common
architecture patterns to publish RDF data on the Web are:
(1) data dump files, (2) publication of data as individual
de-referenceable resources, (3) SPARQL endpoints and (4)
Linked Data Fragments.

a) Dump Files: The first and most widely adopted
architecture choice is publishing RDF in a raw format as
dump files. Examples of serialization formats for RDF dump
files are Turtle and N-triples. However, the effort required to
start querying such data is very time-consuming. For instance,
to download the RDF dump files and load DBpedia 2015-
10 into a triple store may take as long as 15 hours using
standard hardware (see section V). In addition, expertise and
time are required for: (1) identifying; (2) downloading; and
(3) setting up the infrastructure for RDF data management
including indexing the desired portion of the RDF graph (see
Section V).

Alternatively, indexing and querying functionality can be
provided by the data provider itself at the expense of additional
resource requirements. Publication patterns in this regard are
SPARQL endpoints and LDFragments.

b) SPARQL endpoints: The second most used architec-
ture pattern is to publish RDF graphs via directly queryable
SPARQL [10] endpoints. With SPARQL endpoints, the client
uses the HTTP protocol and the SPARQL query language2

in order to create views on the available RDF graphs. In this
approach, the data processing is performed by the sever that
handles the treatment of complex SPARQL queries. There
are many triple stores designed for publishing RDF data
as SPARQL endpoints. Examples of such triple stores are
Virtuoso [7] and Apache Jena TDB [9].

The SPARQL endpoint architecture is less cumbersome for
users as the data published via SPARQL is ready-to-use. How-
ever, SPARQL endpoints suffer from reliability, scalability and

1http://www.w3.org/TR/rdf-concepts/
2https://www.w3.org/TR/sparql11-query/
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Fig. 1. Network Traffic, CPU and Setup time consumption requirements
on the Client and Server for the different LD publication architecture pat-
terns (Dump files, SPARQL endpoints, LDFragments, and KBox).

resource requirement problems when compared to the method
of distributing the data as dump files. The main problem is that
the “majority of public SPARQL endpoints had an uptime of
less than 95%” [17]. An additional challenge for publishing
RDF graphs as SPARQL endpoints is that the total number of
users, requests, and the processing cost can be very high due
to the SPARQL expressivity and the popularity of the data. As
a result, publishing RDF data via SPARQL endpoints might
not be a feasible option for many data providers.

c) LDFragments: The third architecture pattern is LD-
Fragments [18], which was proposed in 2014 with the aim
of tackling the reliability and scalability problems prevalent
with SPARQL endpoints. LDFragments introduces a low-cost
query technique based on triple pattern fragments. Here, the
concept of fragments can be aligned with the notion of query
evaluation. However, fragments are extended to triple patterns,
pages and collections. The core idea is to restrict the operations
handled by the server to simple SPARQL Basic Graph Patterns
(BGP). Therefore, the portion of the RDF graph defined by
the BGP is transferred to the client where the view is finally
projected. This architecture is more scalable compared to tradi-
tional SPARQL endpoints. However, the use of LDFragments
increases the network traffic as well as the processing and
memory consumption in the client. LDFragments can fetch
data either from an HDT index or triple store. HDT [8]
is a binary, compressed RDF representation addressing the
problem of efficient formats for publication and exchange of
RDF data.

As a result, in all of these various architecture patterns,
RDF consumption is still a very cumbersome, time-consuming
and resource-demanding process. Figure 1 illustrates the ef-
fect of the different architecture patterns on CPU, Network
Traffic, and Setup time consumption.

B. RDF Repositories

A challenge with current architectures is to localize the
desired RDF graph, which leads to the creation of many
RDF repositories. LOD Laundromat [2] harvests data from

http://www.w3.org/TR/rdf-concepts/
https://www.w3.org/TR/sparql11-query/


the web, extracts statistical data and filters duplicate triples
in order to publish the data in a uniform way. Hence, the
data is republished as ‘clean’ dump files also providing a
considerable amount of metadata. Moreover, other services
aim to centralize either SPARQL endpoints or dump files.
CKAN (Comprehensive Knowledge Archive Network)3 is an
open-source data portal repository, which provides metadata
for datasets and other resources. The most well-known CKAN
instance is The Datahub4, which provides an API that can be
used to retrieve, update, and insert datasets. Although RDF
data can be stored, the client must know how to use CKAN’s
API, which might be considered an extra layer of difficulty.
RE3data [14] is a project which aims to centralize repositories
like CKAN. Again, the client should have knowledge of
consuming data from the API.

Several approaches cetralize SPARQL endpoints to facilitate
data search and discoverability. A good example is SPAR-
QLES [6], which monitors SPARQL endpoints collected from
datahub.io providing status of availability, performance and
interoperability. With SPARQLES, users can access more than
500 SPARQL endpoints.

C. Decentralized Architectures

Solid [13] (Social Linked Data) is a platform for social Web
applications which specifies protocols required for authenti-
cation, application-to-server, and server-to-server. The Solid
platform is based on CrossCloud5. The core server supports
storage of binary and text resources as well as RDF data, and
the graph engine is based on Apache Jena. Solid is a good
example of a decentralized storage network where a server
can communicate using Access Control Lists (ACL) and the
REST protocol. The data is stored in the application in a
form that supports interoperability, so users can use different
applications created independently, with the same data.

IV. THE KNOWLEDGE BOX

To overcome the problems imposed by existing architec-
ture patterns, we propose the Knowledge Box (KBox) con-
cept6. The KBox approach relies on distributing ready-to-
go knowledge graphs over the Web, transparently shifting
the query execution to the edge. Edge computing [12] is a
new paradigm that consists of pushing, data and processing
away from centralized infrastructure to the logical extremes
of a network (i.e., the client). This approach is based on
replicating the required information across distributed net-
works. With KBox, the knowledge graphs can be published
by communities—herein also called authorities—in a ready-
to-use format. Example of such authorities are, for instance,
DBpedia [11], Freebase [4], and Wikidata [19]. The KBox
architecture contains five components, shown in Figure 2:

1) the Knowledge Graph Name System (KNS);
2) the KNS Server;

3http://ckan.org/
4https://datahub.io/
5http://crosscloud.org
6https://github.com/AKSW/KBox
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Fig. 2. Comparison between the decentralized KBox architecture and the
traditional centralized architectures based on LDFragments and Triple Stores.

3) the Knowledge Graph Name (KGN);
4) the Knowledge Graph, and;
5) the User/Application–herein also called Edge.
In the KBox architecture, the user or application performs

queries targeting Knowledge Graph Names. The Knowledge
Graph Names (KG Names) are the target RDF graphs that the
user or application aims to query. The edge is where KBox
is being executed, i.e. a user or an application on a server or
a standard user machine. The Knowledge Graph Name is the
name of the graph, often represented by an URI. A Knowledge
Graph can have different names and be located at different
Web addresses.

A. The Knowledge Graph Name System

The KNS Server, the Knowledge Graph Name and the
target Knowledge Graph are important components of the
KBox architecture. Together, they form the Knowledge Graph
Name System or simple KNS. The KNS Server store records
comprising the Knowledge Graph Name and Web Address,
which enables the KBox Client to automatic identify, locate
and dereference knowledge graphs published on the Web. The
Knowledge Graph Name is the name of the graph represented
by an URI. As mentioned before, Knowledge Graph can have
different names and be located at different Web addresses.
With the KNS, the Knowledge Graph can be distributed by
different authorities in a decentralized manner. For instance,
a version of the DBpedia KG can be distributed not only by
DBpedia, but also by other authorities. Furthermore, one single
version of the same graph can also be distributed by the same
authority over different Web Addresses.

The KGN System reinforces the strengths of the KBox
architecture that does not rely on a centralized paradigm of
the traditional architectures, such as LDFragments and Triple
Stores. In fact, decentralized architectures are often used in
highly reliable, scalable and available systems such as the
Internet itself. Figure 2 depicts a comparision between KBox
and traditional architectures based on LDFragments and Triple
Stores.

https://github.com/AKSW/KBox


B. Querying Knowledge Graphs on the Edge

The rationale behind the KBox architecture is to transpar-
ently shift the execution of SPARQL queries to the Edge with-
out adding configuration or installation overhead. In order to
do that, the process flow of the query execution implemented
by previous architectures (LDFragments, Triple Stores) is
slightly modified (see Figure 3). In KBox, the query execution
starts when the User or application provides the KBox Client
with a SPARQL query and the target Knowledge Graph Name
as parameters. After receiving the parameters, the KBox Client
checks the availability of the desired graph in the machine. If
the graph is not available, KBox invokes the KNS to resolve
the given KG Name.

Through the KNS, the KBox Client checks if the graph
is available and published by some authority. In case the
KG Name can be resolved using the KNS, KBox Client
dereferences and streams the target KG to the Client (i.e., the
Install process). If the graph is already available, the KBox
Client performs the SPARQL query returning the resulting
view to the user or application.

C. Architecture

The architecture of KBox server is very simple and consist
of a KNS table served by a HTTP server (Figure 4). The server
operates in a passive mode, and all intelligence is shifted to the
client. The KNS table contains KNS entries in format (KGN,
URL). When a KGN requested by the user is not locally
available, the KBox client opens a HTTP connection with the
server to check its real URL. As soon as a KGN entry is found
in the KNS table, a HTTP connection is open with its remote
location (URL), and its content is streamed to the client in a
correspondent local URL (Table I).

The architecture of KBox client comprises KBox Core
and Kibe libraries (Figure 5). The Core library contains
the core functions of KBox. It was designed to facilitate
application development and dynamic resolution of resources.
KBox Core is built uppon URI, UNICODE, Operational
System (OS) layers and is useful for dereferencing and
uniquely identifying resource in the Network as well as in the
File System. It allows users to access and share resources
among different applications. Furthermore, the Core library
enables users to have a local mirror for resources located in
the network. By avoiding protocol overheads and resource
duplication, applications can perform a more efficient resource
storage and access.

The Kibe library is an extension of the Core. It is designed
specially to perform operations of KBox Core library into
RDF Knowledge graphs. Thus, the Kibe library contains
both the SPARQL and the Resource Description Framework
(RDF) layers. The RDF layer allows to execute operations
in RDF data such as read, serialize and decentralization as
well as the process. The SPARQL layer comes after the RDF
layer and is encharged of performing SPARQL operations in
knowledge graphs. The RDF and SPARQL layers are accessible

Repository URL

Remote protocol://domain/subdomain/resource
Local file:///drive:/kbox/protocol/domain/subdomain/resource

TABLE I
COMPARISION BETWEEN THE REMOTE AND LOCAL REPRESENTATION OF

THE SAME URI IN KBOX.

through the Apache Jena framework7. On top of Kibe there
is the Application, which can perform all operations of
previous layers. For instance, dynamically dereference, aggre-
gate, uniquely identify and execute SPARQL query operations
against published knowledge graphs.

V. EVALUATION

The evaluation was designed to measure the performance
of KBox in comparison with other approaches. In order to do
that, we divided the evaluation in two parts.

The first part of the evaluation was projected to measure
the setup time. That is, the time necessary to start using
each approach, herein named setup. For this part, we use a
standard Windows 7 machine equipped with an Intel Core M
620 processor, 6GB of RAM and a 1TB SSD.

The second part of the evaluation was designed to measure
the individual performance of each approach when execut-
ing SPARQL queries. Therefore, it evaluates the average
resource consumption—RAM, DiskSpace, CPU, Network
Traffic (NT Traffic)—of each approach. In this part of the
evaluation, we benchmark KBox, SPARQL endpoints, and
LDFragments in both Client and Server side. The set of
SPARQL queries selected for the second part were extracted
from an SPARQL benchmark. All experiments were performed
using the version 2015-10 of the DBpedia knowledge graph.
The client was a standard Windows 7 machine equipped
with an Intel Core M 620 processor, 6GB of RAM and a
1TB SSD. The server was a virtual instance equipped with a
2.8MHz CPU, 8GB of RAM, and 300GB of disk space. The
experiments on SPARQL enpoints were performed using an
open-source Virtuoso Server8 version 7.0.0. We implemented
KBox as open-source and made it publicly available at http:
//github.com/aksw/kbox.

SPARQL benchmarks Although several benchmarks can be
used for assessing the performance of the approaches [3], [1],
[16], some of them rely on synthetic data or on synthetic
queries[3], [1]. In this work, we use the FEASIBLE bench-
mark [16]. It consists of a set of 175 queries generated from
DBpedia query logs (DBpedia-175). FEASIBLE was chosen
because it is based in real SPARQL queries. Moreover, it has
a better query selection as well as a larger set of query types.

A. Results

Setup To compare the amount of resources necessary to
setup each of the approaches, we took into consideration the

7http://jena.apache.org/
8http://virtuoso.openlinksw.com/

http://github.com/aksw/kbox
http://github.com/aksw/kbox
http://virtuoso.openlinksw.com/
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time for dereferencing and indexing the knowledge graph as
well as the amount of memory.

Table III shows the Dereferencing, Indexing and
Total time as well as RAM required to setup LDFragments,
SPARQL endpoints and KBox using DBpedia 2015-10, where:

• Dereferencing is the time in seconds required to
dereference the knowledge graph;

• Indexing is the time in seconds required to index the
knowledge graph;

• Total Time is the sum of Dereferencing and
Indexing, and;

• RAM is the total amount of RAM required for Indexing
and/or Dereferencing.

The values of Indexing and RAM displayed for
LDFragments in Table III are an estimation, based
on the growth of Table II.

We tried to setup an HDT version of LDFragments using the
same standard user machine first dedicating 4GB of RAM to
the loading process, and secondly dedicating 40GB of RAM to
the loading process. In both environments, the loading process
failed and returned an unexpected OUT OF MEMORY error.
In order to explore this clear limitation of LDFragment, we
conducted an empirical study depicted in Table II. When it
comes to large datasets, the loading stage of LDFragments did
not perform well due to the linear growth of the memory con-
sumption. If the amount of resources needed grows linearly,
we estimated that the loading process of the whole DBpedia
dump file would take ∼2 hours consuming ∼60GB of RAM.
We have omitted the results for the triple store version of
LDFragments because they resemble the SPARQL endpoint
results.

a) Resource consumption: Table IV shows the results
obtained by each approach when evaluating the FEASIBLE
benchmark on either Client (C) or Server (S) sides, where:

• CPU is the average percentage of consumed CPU per
query;

• DiskSpace is the total amount of storage in Gigabytes
(GB) required for storage;



Approach Time(s) RAM(MB) Input Size(MB)

LDFragmentsHDT 8 487 61
LDFragmentsHDT 15 1,187 456
LDFragmentsHDT 91 2,160 2,212
LDFragmentsHDT ∼6,441 ∼60,000 ∼122,000

TABLE II
COMPARING THE RUNTIME FOR INDEXING DIFFERENT SLICES OF RDF

DATA WITH LDFRAGMENTS. THE VALUES OF THE LAST LINE ARE BASED
ON THE GROWTH OF THE VALUES IN THE PREVIOUS LINES.

• RAM is the average consumed amount of RAM per query;
• NT Traffic is the average network traffic in Kilobytes

(KB) per query, measured during the benchmark execu-
tion, and;

• Runtime is the average runtime per query in seconds.

The graphs displayed in Figure 6 show the normalized
values of Table IV. The normalization was done using the
highest value in the respective field. For instance, if the
consumption of CPU by SPARQL endpoint in the server
was 0.98 while for KBox 0.00, the values for CPU were
normalized using 0.98. We setup a working Node.js version
of LDFragments on top of an HDT index.

b) Scalability: Figure 7 displays the average time in
seconds per query for executing the FEASIBLE benchmark
with different number of concurrent clients.

B. Discussion

a) Setup: The results in Table III shows that KBox
requires less time and resource to setup than other approaches.
LDFragments HDT is less time-demanding than traditional
SPARQL endpoints. However, when comparing the amount
of RAM necessary for indexing, LDFragments HDT became
an unreasonable method for ordinary users.

Other than LDFragments HDT, both SPARQL endpoints
and KBox requires much less RAM. Precisely, KBox con-
sumed only 50MB which is 80 and 1,200 times respectively
less than SPARQL endpoints and LDFragments HDT. Further-
more, the time required to dereference the Knowledge Graph
using KBox is slightly higher than other approaches, but when
adding the time required for indexing, the KBox setup required
almost three times less time than the second best approach
(LDFragments).

The difference in the dereferencing time between KBox
and other approaches is due to its architecture that requires
to resolve the graph name before starting to dereference it.
Thereafter, as the graph is also stored in the server in a
compressed format, KBox needs extra time to download and
decompress the data at the client. Moreover, as the graph
is distributed in a ready-to-go format, the indexing time is
dismissed.
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Approach Dereferencing(s) Indexing(s) Total Time(D+I) RAM(MB)

LDFragmentsHDT 2,350 ∼6,441 ∼8,791 ∼60,000
SPARQL endpoints 2,350 52,536 54,886 4,000
KBox 3,000 — 3,000 50

TABLE III
COMPARING THE TOTAL TIME(S) AND RAM (MB) FOR SETUP DIFFERENT APPROACHES USING DBPEDIA 2015-10.

Approach CPU(%) DiskSpace(GB) RAM(MB) NT Traffic(KB) Runtime(s)C S C S C S C S

SPARQL endpoints 8 98 0 48 74 738 44.65 0.51 4.9
LDFragmentsHDT 45 30 0 18 400 434 220.18 18.16 12.1
KBox 25 0 62 18 334 0 0 0 2.2

TABLE IV
COMPARING AVARAGE CPU, DISKSPACE (GB) AND RAM (MB) CONSUMPTION EITHER ON (C)LIENT AND (S)ERVER SIDE FOR DIFFERENT
APPROACHES ON QUERYING DBPEDIA 2015-10. IN THIS TABLE, CPU IS THE AVERAGE PERCENTAGE OF CPU CONSUMED BY THE PROCESS

(CLIENT /SERVER) ON EXECUTING EACH QUERY. DISKSPACE SHOWS THE TOTAL DISK SPACE CONSUMPTION IN GIGABYTES (GB); RAM SHOWS THE
AVERAGE CONSUMPTION OF RAM PER QUERY IN MEGABYTES (MB); NT TRAFFIC IS THE AVERAGE NETWORK TRAFFIC IN KILOBYTES (KB). WE
CONSIDERED EITHER INCOMING AND OUTCOMIG NETWORK TRAFFIC (I/O), AND; RUNTIME IS THE AVERAGE RUNTIME PER QUERY IN SECONDS (S).
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b) Resource consumption: The results in Table IV
and Figure 6 show that KBox is more efficient in terms
of DiskSpace, RAM, NT Traffic, and CPU than other
approaches on the Server side (when executing SPARQL
queries). This is mainly due to KBox shifting the query exe-
cution to the user or application, while other approaches cen-
tralize the execution in a single point (cf. Figure 2). Although
the average amount of DiskSpace, RAM and NT Traffic
is fair for SPARQL endpoints, it is interesting to observe
the average CPU load required per query execution (98%).
This outcome demonstrates the high resource requirements
for publishing RDF graphs as SPARQL endpoints, which
contributes a lot to the reliability and scalability problems.

The results obtained on the Client side demonstrate that the
KBox approach presents an intermediate resource-demanding.
Table IV and Figure 6 show that KBox requires more CPU,
DiskSpace and RAM than SPARQL endpoints while dis-

pensing the NT Traffic. In the other side, the Runtime
measurements show that KBox is on average twice as fast
than traditional SPARQL endpoints when executing SPARQL
queries (even when serving the graph to a single client).
This result is because—when executing an SPARQL query
in the Edge—KBox avoids data transfer overheads such as
the (de)serialization process and the HTTP protocol.

c) Scalability: The results in Figure 7 show that the
runtime per query of KBox remains constant while the one
for SPARQL endpoints grows exponentially. Therefore, they
demonstrate that KBox is more scalable than traditional archi-
tectures based on SPARQL endpoints.

d) Outcomes: Although the results obtained by KBox
are encouraging, we highlighted that each approach has their
own strength and weaknesses. For instance, differently from
SPARQL endpoints and LDFragments, KBox is indicated
for scenarios where the knowledge graph is not updated
frequently, since the process of publishing the graph requires
similar resources as the setup time for SPARQL endpoints
(see Table III). However, users and enterprises can use strate-
gies to circumvent this limitation such as splitting their graphs
in static and dynamic parts.

VI. CONCLUSION & FUTURE WORKS

We presented Knowledge Box, an approach that transpar-
ently shifts the query execution on knowledge graphs to the
edge of the network. We show that KBox is a viable alternative
for publishing large knowledge graphs providing different
(and in many aspects superior) performance characteristics
when compared to other data publication design patterns. In
particular, Knowledge Box:

• demands less time and resources to setup than traditional
approaches;

• pushes the CPU consumption from the server to the
client, while being twice as fast as SPARQL endpoints
(even when serving a single client), and;

• relies on a decentralized architecture.



In future work, we plan to improve the Knowledge Graph
Name resolution on the KNS system by designing more
optimized methods. We aim to serve more knowledge graphs
and support more frequently changing knowledge graphs by
incorporating methods for update propagation. We will also
engage the community on distributing their knowledge graphs
in a ready-to-go format over the KNS system. We see this
work as a preliminary step for increasing the distribution and
use of RDF knowledge graphs.
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