
An Evaluation of SPARQL Federation Engines Over Multiple
Endpoints

Muhammad Saleem
AKSW, Uni Leipzig, Germany

saleem@informatik.uni-leipzig.de

Yasar Khan
INSIGHT, NUIG, Ireland

yasar.khan@insight-centre.org

Ali Hasnain
INSIGHT, NUIG, Ireland

ali.hasnain@insight-centre.org

Ivan Ermilov
AKSW, Uni Leipzig, Germany

iermilov@informatik.uni-leipzig.de

Axel-Cyrille Ngonga Ngomo
AKSW, Uni Leipzig, Germany
Uni-Paderborn, Germany

ngonga@informatik.uni-leipzig.de
axel.ngonga@upb.de

ABSTRACT
Due to decentralized and linked architecture underlying Linking
Data, running complex queries often require collecting data from
multiple RDF datasets. The optimization of the runtime of such
queries, called federated queries, is of central importance to ensure
the scalability of Semantic-Web and Linked-Data-driven applica-
tions. This has motivated a considerable body of work on SPARQL
query federation. However, previous evaluations of SPARQL query
federation engines do not evaluate the performance of these en-
gines pertaining to the different steps involved in the federated
query processing. Consequently, it is difficult to pinpoint the com-
ponents of the federation engines that need to be improved. This
work presents an extended summary of the fine-grained evaluation
of SPARQL endpoint federation systems performed in [13]. Beside
query runtime as an evaluation criterion, we extend the scope of
our performance evaluation by considering additional measures
which are important but have not been paid much attention to in the
previous studies. Our experimental outcomes lead to novel insights
for improving current and future SPARQL federation systems.

CCS CONCEPTS
• General and reference→ Metrics; Evaluation; Performance;
ACM Reference format:
Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-
Cyrille Ngonga Ngomo. 2018. An Evaluation of SPARQL Federation Engines
Over Multiple Endpoints. In Proceedings of The Web Conference 2018, Lyon,
France, April 2018, 5 pages.
https://doi.org/

1 INTRODUCTION
The ultimate goal of the research performed in SPARQL query
federation to optimize the overall query runtime of the federated
engines. However, the query runtime can be affected by a variety of
factors such as the efficiency of the source selection, the quality of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
The Web Conference 2018, April 2018, Lyon, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN . . . $15.00
https://doi.org/

the query execution plans, and the quality of the implementations.
For example, the over-estimation of the number of query-relevant
data sources often results in unnecessary intermediate results, gen-
erate extra network traffic, and thus can significantly affect the
overall query runtime. Current evaluations [1, 3, 8, 12, 14, 19, 20]
of SPARQL query federation systems regarded the overall query
runtime as their central evaluation criterion. The granularity of
such evaluations fails to provide results that allow understanding
why the query runtimes of systems can differ drastically. Further-
more, as pointed out by [9], the current testbeds [2, 10, 17, 18] for
evaluating, comparing, and eventually improving SPARQL query
federation systems still have some limitations. Especially, the parti-
tioning of data as well as the SPARQL clauses used cannot be tailored
sufficiently, although they are known to have a direct impact on
the behaviour of SPARQL query federation systems.

The aim of this paper is to experimentally evaluate a large num-
ber of SPARQL 1.0 query federation systems within a more fine-
granular setting in which we can measure the time required to
complete different steps of the SPARQL query federation process.
To achieve this goal, we conducted a public survey1 and collected
information regarding 14 existing federated system implementa-
tions, their key features, and supported SPARQL clauses. Eight of
the systems which participated in this survey are publicly available.
However, two out of the eight with public implementation do not
make use of the SPARQL endpoints and were thus not considered
further in this study. In the next step and like in previous evalua-
tions, we compared the remaining six systems [1, 3, 7, 11, 19, 20]
with respect to the traditional performance criterion (i.e., the query
execution time) using the commonly used benchmark FedBench
[17]. In addition, we also compared these six systems with respect
to their answer completeness, source selection approach in terms
of the total number of sources they selected, the total number of
SPARQL ASK requests they used and source selection time. For the
sake of completeness, we also performed a comparative analysis
(based on the survey outcome) of the key functionality of the 14
systems which participated in our survey.

To provide a quantitative analysis of the effect of data parti-
tioning on the systems at hand, we extended both FedBench [17]
and SP2Bench [18] by distributing the data upon which they rely.

1Survey: http://goo.gl/iXvKVT, Results: http://goo.gl/CNW5UC

https://doi.org/
https://doi.org/
http://goo.gl/iXvKVT
http://goo.gl/CNW5UC

The Web Conference 2018, April 2018, Lyon, France Saleem et al.

To this end, we used the slice generation tool2 described in [16].
This tool allows creating any number of subsets of a given dataset
(called slices) while controlling the number of slices, the amount
of overlap between the slices as well as the size distribution of
these slices. The resulting slices were distributed across various
data sources (SPARQL endpoints) to simulate a highly federated en-
vironment. In our experiments, we made use of both FedBench [17]
and SP2Bench [18] queries to ensure that we cover the majority of
the SPARQL query types and clauses.

Ourmain contributions are summarized as follows: (1)We present
the results of a public survey which allows us to provide a crisp
overview of categories of SPARQL federation systems as well as pro-
vide their implementation details, features, and supported SPARQL
clauses. (2) We present (to the best of our knowledge) the most
comprehensive experimental evaluation of open-source SPARQL
federations systems in terms of their source selection and over-
all query runtime using in two different evaluation setups. (3) We
extend both FedBench and SP2Bench to mirror highly distributed
data environments and test SPARQL endpoint federation systems
for their parallel processing capabilities. (4) We provide a detailed
discussion of experimental results and reveal novel insights for
improving existing and future federation systems.

2 EVALUATION RESULTS AND DISCUSSION
2.1 Survey results
Based on our survey results3, existing SPARQL query federation
approaches can be divided into three main categories:

1. Query federation overmultiple SPARQL endpoints: In this
setting, RDF data is made available via SPARQL endpoints. The
federation engine makes use of endpoint URLs to federate sub-
queries and collect results back for integration. Fedex [19], LHD
[20], SPLENDID [3], DAW [16], HiBISCuS [15], ANAPSID [1], DARQ
[11] and others implement this form of federation over multiple
SPARQL endpoints.

2. Query federation over LinkedData: This type of approaches
relies on the Linked Data principles4 for query execution. The set
of data sources which can contribute results into the final query
resultset is determined by using URI lookups during the query exe-
cution itself. Query federation over Linked Data does not require
the data providers to publish their data as SPARQL endpoints. In-
stead, the only requirement is that the RDF data follows the Linked
Data principles. LDQPS [5], and SIHJoin [6] implement federation
over linked data (LDF).

3. Query federation on top of Distributed Hash Tables: This
type of federation approaches stores RDF data on top of Distributed
Hash Tables (DHTs) and use DHT indexing to federate SPARQL
queries over multiple RDF nodes. Atlas [4] implements DHT feder-
ation.

Each of the above main category can be further divided into
three sub-categories:

2https://code.google.com/p/fed-eval/wiki/SliceGenerator
3Available at http://goo.gl/CNW5UC
4http://www.w3.org/DesignIssues/LinkedData.html

(a) Catalog/index-assisted solutions: These approaches uti-
lize dataset summaries that have been collected in a pre-processing
stage. DARQ is an example of such solutions.

(b) Catalog/index-free solutions: In these approaches, the query
federation is performed without using any stored data summaries.
The data source statistics can be collected on-the-fly before the
query federation starts. FedX is an example of such solutions.

(c) Hybrid solutions: In these approaches, some of the data
source statistics are pre-stored while some are collected on-the-fly,
e.g., using SPARQL ASK queries. SPLENDID is an example of such
solutions.

Table 1 summarizes the survey outcome w.r.t. different features
supported by systems.

2.2 SlicedBench
As pointed out in [9] the data partitioning can affect the overall
performance of SPARQL query federation engines. To quantify this
effect, we created 10 slices of each of the FedBench’s datasets and
distributed this data across 10 local virtuoso SPARQL endpoints
(one slice per SPARQL endpoint). Thus, every SPARQL endpoint
contained one slice from each of the 10 datasets. This creates a
highly fragmented data environment.

2.3 Efficiency of Source Selection
We define efficient source selection in terms of: (1) the total number
of triple pattern-wise sources selected (#T), (2) the total number
of SPARQL ASK requests (#AR) used to obtain (1), and (3) the
source selection time (SST). Table 2 shows the results of these three
metrics for the selected approaches. Note that CD represents the
cross domain, LS represents the life sciences, and LD represents the
Linked Data queries of the FedBench.

Overall, ANAPSID is the most efficient approach in terms of
total number of triple pattern-wise sources selected. LHD, DARQ,
ADERIS do not make use of the SPARQL ASK requests during
source selection. FedX (100% cached) is the fastest in terms of source
selection time. It is important to note that FedX(100% cached) means
that the complete source selection is performed by using only cache,
i.e., no SPARQL ASK request is used. This the best-case scenario
for FedX and very rare in practical cases.

2.4 Answer Completeness
Two or more engines are only comparable to each other if they
provide the same result set for a given query. Table 3 shows the
queries and federated engines for which we did not receive the
complete results. As an overall answer completeness evaluation,
only FedX is always able to retrieve complete results. It is important
to note that these results are directly connected to the answer
completeness results presented in survey Table 1; which shows
only FedX is able to provide complete results among the selected
systems.

2.5 Query Runtime
The comparison of the overall performance of each approach is sum-
marised in Figure 1, where we show the average query execution
time for the queries in CD, LS, LD, and SP2Bench sub-groups. As an

https://code.google.com/p/fed-eval/wiki/SliceGenerator
http://goo.gl/CNW5UC
http://www.w3.org/DesignIssues/LinkedData.html

An Evaluation of SPARQL Federation Engines Over Multiple Endpoints The Web Conference 2018, April 2018, Lyon, France

Table 1: Survey outcome: System’s features (R.C. = Results Completeness, P.R.R. = Partial Results Retrieval, N.B.O. = No Block-
ing Operator, A.Q.P. = Adaptive Query Processing, D.D. = Duplicate Detection, P.B.Q.P = Policy-based Query Planning, Q.R.E.
= Query Runtime Estimation, Top-K.Q.P = Top-K query processing)

Systems R.C. P.R.R. N.B.O / A.Q.P. D. D. P.B.Q.P Provenance Q.R.E Top-K.Q.P
FedX ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

LHD ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SPLENDID ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

FedSearch ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

GRANATUM ✗ ✗ ✗ ✗ partial partial ✗ ✗

Avalanche ✗ ✓ ✓ partial ✗ ✗ ✗ ✗

DAW ✗ ✓ based on underlying system ✓ ✗ ✗ ✗ ✗

ANAPSID ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

ADERIS ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

DARQ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

LDQPS ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

SIHJoin ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

WoDQA ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Atlas ✗ ✗ ✗ partial ✗ ✗ ✗ ✗

Table 2: Comparison of the efficiency of source selection in terms of total triple pattern-wise sources selected #T, total number
of SPARQL ASK requests #AR, and source selection time SST in msec. SST* represents the source selection time for FedX(100%
cached i.e. #A =0 for all queries). For ANAPSID, SST represents the query decomposition time. (T/A = Total/Avg., where Total
is for #T, #AR, and Avg. is SST, SST*)

FedX SPLENDID LHD DARQ ANAPSID ADERIS
Query #T #AR SST SST* #T #AR SST #T #AR SST #T #AR SST #T #AR SST #T #AR SST

FedBench
CD 78 252 151 7 78 44 256 112 0 6 84 0 7 36 43 186 84 0 6
LS 56 297 147 8 56 33 236 105 0 6 77 0 12 44 63 477 70 0 5
LD 108 369 139 8 108 19 221 119 0 6 122 0 7 54 37 804 119 0 5
T/A 242 918 146 8 242 96 237 336 0 6 283 0 9 134 143 489 273 0 5

SlicedBench
CD 182 280 284 9 182 110 470 225 0 7 195 0 8 163 228 3183 195 0 7
LS 125 330 207 7 125 100 308 163 0 7 133 0 8 102 143 2897 117 0 7
LD 243 410 323 9 243 140 557 324 0 8 324 0 7 183 270 2908 324 0 8
SP2B 521 660 212 9 521 180 738 593 0 8 420 0 9 244 265 RE 173 0 6
T/A 1071 1680 256 8 1071 530 518 1305 0 7 1072 0 8 692 906 2996 809 0 7

Table 3: The queries for which some system’s did not retrieve complete results. The values inside bracket shows the actual
results size. "-" means the results completeness cannot be determined due to query execution timed out. Incomplete results
are highlighted in bold

CD1(90) CD7(1) LS1(1159) LS2(333) LS3(9054) LS5(393) LD1(309) LD3(162) LD9(1) SP2B-3a(27789) SP2B-6(>70k)
SPLENDID 90 1 1159 333 9054 393 308 159 1 - -
LHD 77 1 0 322 0 0 309 162 1 - -
ANAPSID 90 0 1159 333 9054 393 309 162 1 0 0
ADERIS 77 1 1159 333 9054 393 309 162 1 - -
DARQ 90 1 1159 333 9054 393 309 162 0 - -
FedX 90 1 1159 333 9054 393 309 162 1 27789 -

overall performance evaluation based on FedBench, FedX(cached)
outperformed FedX(first run) on all of the 25 queries. FedX(first run)
in turn outperformed LHD on 17 out of 22 commonly supported
queries (LHD retrieve zero results for three queries). LHD is better
than SPLENDID in 13 out of 22 comparable queries. SPLENDID

outperformed ANAPSID in 15 out of 24 queries while ANAPSID
outperforms DARQ in 16 out of 22 commonly supported queries.
For SlicedBench, FedX(cached) outperformed FedX(first run) in 29
out of 36 comparable queries. In turn FedX(first run) outperformed
LHD in 17 out of 24 queries. LHD is better than SPLENDID in 17

The Web Conference 2018, April 2018, Lyon, France Saleem et al.

1

10

100

1000

10000

100000

1000000

CD LS LD Overall CD LS LD SP2Bench Overall

FedBench SlicedBench

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 (

m
se

c)
 lo

g
sc

al
e

FedX(cached) FedX (first run) LHD SPLENDID ANAPSID DARQ

Figure 1: Overall performance evaluation (ms)

0

2000

4000

6000

8000

10000

12000

14000

CD LS LD Average

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 (

m
se

c)

FedX (first run) FedBench

FedX (first run) SlicedBench

(a) FedX(first run)

0

2000

4000

6000

8000

10000

12000

14000

CD LS LD Average

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 (

m
se

c)

FedX (cached) FedBench

FedX (cached) SlicedBench

(b) FedX(cached)

0

10000

20000

30000

40000

50000

60000

CD LS LD Average
A

ve
ra

ge
 e

xe
cu

ti
o

n
 t

im
e

 (
m

se
c)

SPLENDID FedBench

SPLENDID SlicedBench

(c) SPLENDID

0

5000

10000

15000

20000

25000

CD LS LD Average

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 (

m
se

c)

LHD FedBench

LHD SlicedBench

(d) LHD

0

10000

20000

30000

40000

50000

60000

70000

80000

CD LS LD Average

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 (

m
se

c)

ANAPSID FedBench

ANAPSID SlicedBench

(e) ANAPSID

0

50000

100000

150000

200000

250000

300000

350000

CD LS LD Average

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 (

m
se

c)

DARQ FedBench

DARQ SlicedBench

(f) DARQ

Figure 2: Effect of the data partitioning

out of 24 comparable queries. SPLENDID outperformed ANAPSID
in 17 out of 26 which in turn outperformed DARQ in 12 out of 20
commonly supported queries. No results were retrieved for major-
ity of the queries in case of ADERIS, hence not included to this
section. All of the above improvements are significant based on
Wilcoxon signed ranked test with significance level set to 0.05.

2.6 Effect of the data partitioning
The SlicedBench extension of FedBench can also be utilized to test
the capability of parallel execution of queries in SPARQL endpoint

federation system. Figure 2 shows the effect of data partitioning on
the selected federation engines. The performance of FedX(cached)
and DARQ is improved with partitioning while the performance of
FedX(first run), SPLENDID, ANAPSID, and LHD is reduced. As an
overall evaluation result, FedX(first run)’s performance is reduced
by 214%, FedX(cached)’s is reduced 199%, SPLENDID’s is reduced
by 227%, LHD’s is reduced by 293%, ANAPSID’s is reduced by 382%,
and interestingly DARQ’s is improved by 36%. This results suggest
that FedX is the best system in terms of parallel execution of queries,
followed by SPLENDID, LHD, and ANAPSID.

An Evaluation of SPARQL Federation Engines Over Multiple Endpoints The Web Conference 2018, April 2018, Lyon, France

REFERENCES
[1] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna

Ruckhaus. 2011. ANAPSID: An Adaptive Query Processing Engine for SPARQL
Endpoints. In The Semantic Web âĂŞ ISWC 2011, Lora Aroyo, Chris Welty, Harith
Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Noy, and Eva
Blomqvist (Eds.). Lecture Notes in Computer Science, Vol. 7031. Springer Berlin
Heidelberg, 18–34. https://doi.org/10.1007/978-3-642-25073-6_2

[2] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL Benchmark. In
International Journal on Semantic Web and Information Systems (IJSWIS), Vol. 5.
IGI Global, 1–24.

[3] Olaf Görlitz and Steffen Staab. 2011. SPLENDID: SPARQL Endpoint Federation
Exploiting VoID Descriptions. In O. Hartig, A. Harth, and J. F. Sequeda, editors,
2nd International Workshop on Consuming Linked Data (COLD 2011) in CEUR
Workshop Proceedings, Vol. 782.

[4] Zoi Kaoudi, Manolis Koubarakis, Kostis Kyzirakos, Iris Miliaraki, Matoula Ma-
giridou, and Antonios Papadakis-Pesaresi. 2010. Atlas: Storing, Updating and
Querying RDF(S) Data on Top of DHTs. InWeb Semantics: Science, Services and
Agents on the World Wide Web, Vol. 8. Elsevier, 271–277. https://doi.org/10.1016/
j.websem.2010.07.001

[5] GÃĳnter Ladwig and Thanh Tran. 2010. Linked Data Query Processing Strategies.
In The Semantic Web âĂŞ ISWC 2010, PeterF. Patel-Schneider, Yue Pan, Pascal
Hitzler, Peter Mika, Lei Zhang, JeffZ. Pan, Ian Horrocks, and Birte Glimm (Eds.).
Lecture Notes in Computer Science, Vol. 6496. Springer Berlin Heidelberg, 453–
469. https://doi.org/10.1007/978-3-642-17746-0_29

[6] GÃĳnter Ladwig and Thanh Tran. 2011. SIHJoin: Querying Remote and Local
Linked Data. In The Semantic Web: Research and Applications, Grigoris Anto-
niou, Marko Grobelnik, Elena Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter
De Leenheer, and Jeff Pan (Eds.). Lecture Notes in Computer Science, Vol. 6643.
Springer Berlin Heidelberg, 139–153. https://doi.org/10.1007/978-3-642-21034-1_
10

[7] Steven Lynden, Isao Kojima, Akiyoshi Matono, and Yusuke Tanimura. 2011.
ADERIS: An Adaptive Query Processor for Joining Federated SPARQL Endpoints.
In R. Meersman, T. Dillon, P. Herrero, A. Kumar, M. Reichert, L. Qing, B.-C. Ooi, E.
Damiani, D.C. Schmidt, J. White, M. Hauswirth, P. Hitzler, M. Mohania, editors,
On the Move to Meaningful Internet Systems (OTM2011), Part II. LNCS. Vol. 7045.
Springer Heidelberg, 808–817.

[8] Gabriela Montoya, Maria-Esther Vidal, and Maribel Acosta. 2012. A Heuristic-
Based Approach for Planning Federated SPARQL Queries. In J. F. Sequeda, A.
Harth, and O. Hartig, editors, 3rd International Workshop on Consuming Linked
Data (COLD 2012) in CEUR Workshop Proceedings, Vol. 905.

[9] Gabriela Montoya, Maria-Esther Vidal, Oscar Corcho, Edna Ruckhaus, and Car-
los Buil-Aranda. 2012. Benchmarking Federated SPARQL Query Engines: Are
Existing Testbeds Enough? In P. Cudre Mauroux, J. Heflin, E. Sirin, T. Tudo-
rache, J. Euzenat, M. Hauswirth, J.X. Parreira, J. Hendler, G. Schreiber, A. Bernstein,
E. Blomqvist, editors, The Semantic Web – ISWC 2012, Part II. LNCS. Vol. 7650.
Springer Heidelberg, 313–324.

[10] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo.
2011. DBpedia SPARQL Benchmark - Performance Assessment with Real Queries
on Real Data. In Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,

Noy, N., Blomqvist, E. (eds.), International Semantic Web Conference (ISWC2011),
Part I. LNCS, Vol. 7031. Springer Heidelberg, 454–469.

[11] Bastian Quilitz and Ulf Leser. 2008. Querying Distributed RDF Data Sources
with SPARQL. In The Semantic Web: Research and Applications, Sean Bechhofer,
Manfred Hauswirth, JÃűrg Hoffmann, and Manolis Koubarakis (Eds.). Lecture
Notes in Computer Science, Vol. 5021. Springer Berlin Heidelberg, 524–538.
https://doi.org/10.1007/978-3-540-68234-9_39

[12] Nur Aini Rakhmawati, Jürgen Umbrich, Marcel Karnstedt, Ali Hasnain, and
Michael Hausenblas. 2013. Querying over Federated SPARQL Endpoints - A State
of the Art Survey. In CoRR, Vol. abs/1306.1723. http://arxiv.org/abs/1306.1723

[13] Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-Cyrille
Ngonga Ngomo. 2016. A fine-grained evaluation of SPARQL endpoint federation
systems. Semantic Web 7, 5 (2016), 493–518.

[14] Muhammad Saleem, R. Kamdar Maulik, Iqbal Aftab, Sampath Shanmukha, Helena
F. Deus, andAxel-Cyrille NgongaNgomo. 2013. Fostering Serendipity through Big
LinkedData. In SemanticWeb Challenge at International SemanticWeb Conference.

[15] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. 2014. HiBISCuS:
Hypergraph-Based Source Selection for SPARQL Endpoint Federation. In The
Semantic Web: Trends and Challenges, Valentina Presutti, Claudia dâĂŹAmato,
Fabien Gandon, Mathieu dâĂŹAquin, Steffen Staab, and Anna Tordai (Eds.). Lec-
ture Notes in Computer Science, Vol. 8465. Springer International Publishing,
176–191. https://doi.org/10.1007/978-3-319-07443-6_13

[16] Muhammad Saleem, Axel-Cyrille Ngonga Ngomo, Josiane Xavier Parreira, He-
lenaF. Deus, and Manfred Hauswirth. 2013. DAW: Duplicate-AWare Federated
Query Processing over the Web of Data. In The Semantic Web âĂŞ ISWC 2013,
Harith Alani, Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann, JosianeX-
avier Parreira, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof Janowicz
(Eds.). Lecture Notes in Computer Science, Vol. 8218. Springer Berlin Heidelberg,
574–590. https://doi.org/10.1007/978-3-642-41335-3_36

[17] Michael Schmidt, Olaf GÃűrlitz, Peter Haase, GÃĳnter Ladwig, Andreas Schwarte,
and Thanh Tran. 2011. FedBench: A Benchmark Suite for Federated Semantic
Data Query Processing. In The Semantic Web âĂŞ ISWC 2011, Lora Aroyo, Chris
Welty, Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Noy,
and Eva Blomqvist (Eds.). Lecture Notes in Computer Science, Vol. 7031. Springer
Berlin Heidelberg, 585–600. https://doi.org/10.1007/978-3-642-25073-6_37

[18] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel. 2009.
SPˆ 2Bench: A SPARQL Performance Benchmark. In Proceedings of the 25th
International Conference on Data Engineering ICDE. IEEE, 222–233.

[19] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
2011. FedX: Optimization Techniques for Federated Query Processing on Linked
Data. In The Semantic Web âĂŞ ISWC 2011, Lora Aroyo, Chris Welty, Harith
Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Noy, and Eva
Blomqvist (Eds.). Lecture Notes in Computer Science, Vol. 7031. Springer Berlin
Heidelberg, 601–616. https://doi.org/10.1007/978-3-642-25073-6_38

[20] Xin Wang, Thanassis Tiropanis, and Hugh C. Davis. 2013. LHD: Optimis-
ing Linked Data Query Processing Using Parallelisation. In C. Bizer, T. Heath,
T. Berners-Lee, M. Hausenblas, S. Auer, editors, Proceedings of the WWW2013
Workshop on Linked Data on the Web in CEUR Workshop Proceedings, Vol. 996.
http://eprints.soton.ac.uk/350719/

https://doi.org/10.1007/978-3-642-25073-6_2
https://doi.org/10.1016/j.websem.2010.07.001
https://doi.org/10.1016/j.websem.2010.07.001
https://doi.org/10.1007/978-3-642-17746-0_29
https://doi.org/10.1007/978-3-642-21034-1_10
https://doi.org/10.1007/978-3-642-21034-1_10
https://doi.org/10.1007/978-3-540-68234-9_39
http://arxiv.org/abs/1306.1723
https://doi.org/10.1007/978-3-319-07443-6_13
https://doi.org/10.1007/978-3-642-41335-3_36
https://doi.org/10.1007/978-3-642-25073-6_37
https://doi.org/10.1007/978-3-642-25073-6_38
http://eprints.soton.ac.uk/350719/

	Abstract
	1 Introduction
	2 Evaluation Results and Discussion
	2.1 Survey results
	2.2 SlicedBench
	2.3 Efficiency of Source Selection
	2.4 Answer Completeness
	2.5 Query Runtime
	2.6 Effect of the data partitioning

	References

