
Holistic and Scalable Ranking of RDF Data
Axel-Cyrille Ngonga Ngomo

Data Science Group
University of Paderborn

Paderborn, Germany
Email: axel.ngonga@upb.de

Michael Hoffmann
AKSW Research Group

University of Leipzig
Leipzig, Germany

hoffmann@informatik.uni-leipzig.de

Ricardo Usbeck
Data Science Group

University of Paderborn
Paderborn, Germany

Email: ricardo.usbeck@upb.de

Kunal Jha
Data Science Group

University of Paderborn
Paderborn, Germany

Email: kunal.jha@upb.de

Abstract—The volume and number of data sources published
using Semantic Web standards such as RDF grows continuously.
The largest of these data sources now contain billions of facts
and are updated periodically. A large number of applications
driven by such data sources requires the ranking of entities
and facts contained in such knowledge graphs. Hence, there
is a need for time-efficient approaches that can compute ranks
for entities and facts simultaneously. In this paper, we present
the first holistic ranking approach for RDF data. Our approach,
dubbed HARE, allows the simultaneous computation of ranks
for RDF triples, resources, properties and literals. To this end,
HARE relies on the representation of RDF graphs as bi-partite
graphs. It then employs a time-efficient extension of the random
walk paradigm to bi-partite graphs. We show that by virtue of
this extension, the worst-case complexity of HARE is O(n5) while
that of PageRank is O(n6). In addition, we evaluate the practical
efficiency of our approach by comparing it with PageRank on
6 real and 6 synthetic datasets with sizes up to 108 triples.
Our results show that HARE is up to 2 orders of magnitude
faster than PageRank. We also present a brief evaluation of
HARE’s ranking accuracy by comparing it with that of PageRank
applied directly to RDF graphs. Our evaluation on 19 classes
of DBpedia demonstrates that there is no statistical difference
between HARE and PageRank. We hence conclude that our
approach goes beyond the state of the art by allowing the ranking
of all RDF entities and of RDF triples without being worse w.r.t.
the ranking quality it achieves on resources. HARE is open-source
and is available at http://github.com/dice-group/hare.

Index Terms—Semantic Web, Ranking, PageRank, Data Vol-
ume, Scalability

I. INTRODUCTION

Improving the access to data is one of the core goals behind
the Semantic Web [27], [28]. Search engines and question
answering systems [6], [29] as well as Semantic Web browsers
[4], [15] and entity summarization techniques [4], [5] are
only a few of the types of frameworks which require the
ranking of RDF1 resources or triples to support this goal.
While some approaches have been devised to rank resources
[2], [8], [10], [14], [16], [21], [26], [27], properties [7], [20] or
triples [9], there is currently no unified and holistic approach
that is able to generate a ranking for triples as well as for
entities.2 The provision of such functionality is however of
central importance for all the types of frameworks mentioned
above [4], [6], [15], [29]. For example, user interfaces for
entity search [6], [29] have to display ranked resources as well

1Resource Description Framework, see https://www.w3.org/RDF/
2We use entity to mean resources (including properties) and literals.

as summaries of these resources, which are commonly based
on ranked triples, resources, properties and/or literals [4], [5].

In addition to being holistic (i.e., being able to rank re-
sources, properties, literals and triples), ranking approaches
for the Semantic Web need to be efficient so as to deal with
the volume of the constant stream of updates which some
knowledge graphs3 are faced with. For example, DBpedia
Live4 contains ≈ 109 facts (i.e., RDF triples) and is updated
as often as Wikipedia, i.e., hundreds of time each day. Other
knowledge graphs such as LinkedTCGA [23] are updated
at even higher velocity. Hence, being able to recompute the
ranking of entities and triples even on large knowledge graphs
within a few minutes is of central importance when computing
ranks on RDF knowledge graphs.

In this paper, we address the research gaps aforementioned
by presenting HARE (Holistic Ranking for RDF Entities and
Triples). To the best of our knowledge, HARE is the first rank-
ing approach able to generate comparable ranks for resources,
properties, literals and triples. HARE is highly efficient and
relies on the representation of RDF graphs using bi-partite
graphs that can capture all triples and entities in the graphs.
Like networks of websites connected through hyperlinks, bi-
partite graphs are not ergodic [3]. Like PageRank [3], HARE
enforces the characteristic of ergodicity upon the bi-partite
representation of RDF graphs to derive means to index this
RDF graph representation efficiently. Formally, our approach
relies on the concept of two-hop graphs: Given a graph G
with adjacency matrix A(G), the two-hop graph of G is the
graph G2 with adjacency matrix A2(G).5 HARE then relies
on the dependencies between the blocks in A2(G) to derive a
time-efficient indexing strategy which outperforms PageRank’s
runtime while retaining PageRank’s ranking accuracy. The
contributions of this paper are hence as follows:

1) We show that given a bi-partite graph whose nodes are
partitioned across the sets V1 and V2, we can derive
the stationary distribution of the nodes in V1 from the
stationary distribution of the nodes in V2.

2) We use this insight to derive an approach for the effi-
cient computation of stationary distributions of bi-partite
graphs and derive the first ranking approach for RDF

3Also called knowledge bases.
4http://live.dbpedia.org
5A2(G) = A(G) · A(G).

graphs that allows the ranking of resources, properties,
literals and triples using comparable scores.

3) We study HARE’s runtime by comparing it with PageR-
ank. Our results suggest that HARE has a better time
complexity as well as a better practical runtime than
PageRank. Our results also suggest that HARE achieves
a ranking accuracy comparable to that of PageRank.

The rest of this paper is structured as follows: In Section II,
we present the notation that we use throughout this paper. We
present the representation of RDF graphs as bi-partite graphs
in Section III. In Section IV, we introduce HARE and how
it computes stationary distributions efficiently. The evaluation
section, i.e., Section V, presents runtime and ranking accu-
racy experiments, which show that our approach outperforms
PageRank significantly w.r.t. its runtime while retaining its
ranking accuracy. The last two sections give an overview of
related works and conclude the paper.

II. PRELIMINARIES

A. Notation

We use upper-case letters to denote sets, e.g., A and B.
The elements of sets are denoted using the lower-case letter
corresponding to the set name. For example, the elements of A
are denoted a1, a2, a3, etc. Matrices and vectors are denoted
using symbols in bold font, e.g., M, P. We denote the cells of
a matrix in a manner akin to the denotation of elements of sets,
ergo using small letters. For example, the entry at the ith row
and jth column of M is denoted mij . To make the dimension of
a matrix M explicit, we write Mn×m to denote a matrix with
n rows and m columns. However, for the sake of legibility, we
partly omit the dimension information from matrices if these
dimensions are known. We write M · P to signify the product
of the matrices M and P. The notation for vectors is handled
analogously. For graphs, we use the calligraphic typeset, e.g.,
G and H. The set of nodes of a graph G is denoted V (G)
while we write E(G) for the set of edges of the same graph.
The adjacency matrix of G is denoted A(G).

B. RDF Knowledge Graphs

An RDF knowledge graph K can be modeled as a set of
triples (s, p, o) ∈ (R ∪B)× P × (R ∪B ∪ L) where
• R is the set of all RDF resources, which stand for

things of relevance in the domain to model. For example,
these could be publications, authors and conferences in
a knowledge graph on publications.

• B the set of all RDF blank nodes, i.e., which describe
existential quantifications of entities that do not need a
unique global identifier.

• P ⊆ R is the set of all RDF predicates and stands for the
sets of binary relations which can exist between resources
or literals. For example, the predicate :authorOf can
be used to link a person with a publication (s)he (co-
)wrote.

• L is the set of all literals, i.e., of all data values used
in a given knowledge graph. For example, the predicate

for the year of publication links a publication to a literal
value for the year in which the publication was accepted.

Each RDF triple stands for a fact described in the knowl-
edge graph. For example, the triple (:NgongaNgomo,
:authorOf, :HARE) is to be understood as stating the fact
that Ngonga Ngomo co-authored the paper HARE. We use
entities to refer to all elements of R ∪ P ∪B ∪ L.

III. REPRESENTATION OF RDF KNOWLEDGE GRAPHS

A. RDF Knowledge as Graphs

The random surfer model has been shown to be one of
the best performing ranking models over recent years [3]
and is well defined for directed graphs with unlabeled edges.
However, the direct translations of facts expressed in RDF into
graphs that are commonly used [24] either (1) fail to represent
RDF facts correctly or (2) cannot be processed by the random
surfer model.

:BarackObama :spouse :MichelleObama .
:BarackObama :party :Democrats .

Listing 1: Example of a graph representation of RDF

The approach foreseen by the RDF specification6 represents
RDF triples as directed graphs with labeled edges. Here,
the set of nodes of the graph is the set of all subjects and
objects. A triple (s, p, o) is represented by two nodes s and o
connected by a directed edge e with the label λ(e) = p. Such
a representation for the example knowledge graph shown in
Listing 1 is depicted in Figure 1a. This representation has a
fatal flaw with respect to the task at hand: Neither properties
nor triples can be ranked, as they do not belong to the nodes
of the graph.

A way to alleviate these limitations is to assign one node
to each resource and to each literal in the knowledge graph.
This approach then models each triple (s, p, o) by adding edges
(s, p) and (p, o) to the graph representing the input knowledge
graph. While this representation has been used in the past,
it is actually flawed (see [24] for details) as the knowledge
graphs in the Listings 2 and 3 become indistinguishable (see
Figure 1b, note that :givenName is assigned one node as
per definition). Moreover, triples cannot be ranked using this
approach. A similar representation assigns one node to each
predicate for each triple in which it occurs. This representation
however leads to an incorrect ranking of predicates as a single
predicate is represented by several nodes, hence leading to
incorrect transition probabilities. Moreover, this approach also
does not cater for the ranking of triples.

:BarackObama :givenName "Barack"@en .
:MichelleObama :givenName "Michelle"@en.

Listing 2: Example of a knowledge graph K1

6https://www.w3.org/TR/rdf11-concepts/

:BarackObama :givenName "Michelle"@en .
:MichelleObama :givenName "Barack"@en .

Listing 3: Example of a knowledge graph K2

Previous works have suggested a representation which
addresses the problems above by using hypergraphs [25].
Each triple (s, p, o) ∈ K is represented as a directed edge
which links three nodes s, p, and o. While this representation
is correct by virtue of allowing the complete and correct
reconstruction of K, it goes beyond the paradigm supported
by the classical random surfer models. We hence first address
the problem of representing RDF in graphs (1) that can be pro-
cessed by random surfer approaches and (2) that are complete
and correct, i.e., that are such that K can be reconstructed
exactly from the graph representation. To this end, we use
the representation of RDF using bi-partite graphs suggested
in [13]. As shown in subsequent sections, it (1) allows for
random walks to be executed and (2) is complete and correct.

B. Knowledge Graphs as Bi-Partite Graphs

Let K be an RDF knowledge graph. The bi-partite represen-
tation B(K) of K is an undirected unlabeled graph constructed
as follows:
• V (B(K)) = {x : x = (s, p, o) ∈ K ∨ (x ∈ {s, p, o} ∧

(s, p, o) ∈ K)},
• E(B(K)) = {{u, v} : (u = (s, p, o) ∧ v ∈ {s, p, o})}.

For our running example (shown in Listing 1), we get the
representation shown in Figure 1c. K can be reconstructed
completely and correctly from B(K) by selecting only the
nodes that stand for triples. Given this representation, one
could simply apply classical random walk algorithms such as
PageRank to derive stationary distribution and would be able
to rank all nodes, i.e., triples, resources (including properties)
and even literals, thus achieving the goal of this paper. How-
ever, using the classical random surfer approach would discard
an important piece of information about the scalability of the
algorithm, i.e., that B(K) is bi-partite. By making use of this
piece of information, we can implement a significantly more
time- and space-efficient random walk on B(K).

IV. HARE: RANDOM WALKS ON BI-PARTITE GRAPHS

A. Insights

HARE makes use of the two following intuitions:
1) Insight 1: Stationary distributions for ergodic transition

matrices are idempotent.: Our first insight is that the stationary
distribution vector S of a transition matrix P (which is given
by S = PT · S) is also the stationary distribution of P2 if P is
ergodic.

Proof. S = PT · S ⇒ PT · S = PT · PT · S. Per definition,
S = PT · S. Given that (PT)2 = (P2)T , we can derive that
S = (P2)T ·S. Per definition of a stationary distribution, the last
equation means that S is also a stationary distribution vector
of P2. P and P2 being ergodic means that their stationary
distributions are unique [19]. Hence, S is not only a stationary

distribution of P and P2, it is the unique stationary distribution
of P and P2.

This means that by finding the stationary distribution for
P2, we also find the distribution for P. We make use of this
intuition by running our random walk on two-hop graphs.

2) Insight 2: All two-hop graphs of bi-partite graphs have
at least 2 components.: Given a bi-partite undirected graph
G, one can generate an undirected weighted graph G2 with
A(G2) = A(G) · A(G) whose nodes u and v are connected
by an edge {u, v} with a weight that is the number of paths
of length 2 between the two nodes u and v (see example
in Figure 2). We call this graph the two-hop graph of G.
If G is bi-partite, then G2 will only contain edges between
nodes of the same color (i.e., nodes which belong to the same
partition, see Figure 2). Hence, G2 will consist of at least
two components, of which each will only contain nodes of
different colors. A random walk can be applied to these two
components independently as they do not share any nodes or
edges.

We make use of these two insights to (1) devise efficient
ways to compute ranks on large RDF graphs using the random
surfer paradigm that (2) generate comparable ranks for triples
and entities.

B. Transition Probabilities

Let G be a graph with |V (G)| = n. The goal of a random
walk approach is to determine the stationary distribution of
the probabilistic transition matrix Pn×n(G) with

P(G) = D(G)−1 · A(G), (1)

where D(G) stands for the diagonal matrix where dii is the
degree of the ith node of G and i 6= j ⇒ dij = 0. Applying
the classical random walk model to a bi-partite representation
of knowledge graph B(K) would result in having to store
and manipulate a transition matrix P(B(K))α+β,α+β where
α = |R∪B∪L| and β = |K| ∈ O(α3). At least 2αβ of these
cells would be 0 due to the graph being bi-partite. We extend
the surfer model to bi-partite graphs as follows: Instead of
computing one transition matrix P(B(K)), we compute two
transition matrices: one for the triples and one for all other
entities in B(K).

Let T (K) be the graph derived from second-order hops in
B(K) which only contains edges between triples. Formally,
T (K) is defined as follows:

• V (T (K)) = {x : (s, p, o) ∈ K},
• E(T (K)) = {(u, v) : u = (s, p, o) ∧ v = (s′, p′, o′) ∧
{s, p, o} ∩ {s′, p′, o′} 6= ∅}.

Conversely, let N (K) be the subgraph of the second-order
hops in B(K) that only contains entities. N (K) is defined in
a manner akin to T (K). In the following, we will write T
and N to mean T (K) and N (K) for reasons of succinctness.

The idea behind HARE is that the probability of a random
surfer going from a triple t = (s, p, o) to triple t′ = (s′, p′, o′)

:BarackObama :MichelleObama

:Democrats

:spouse

:party

(a) Representation of our example using the RDF specifi-
cation

:BarackObama

:givenName

"Barack"@en

:MichelleObama "Michelle"@en

(b) Graph representation of K1 and K2.

:BarackObama
:spouse
:MichelleObama

:BarackObama

:spouse

:MichelleObama

:BarackObama
:party
:Democrats

:Democrats

:party

(c) Bi-partite graph representation of our example

Fig. 1: Representations of our example knowledge graph. Triples are rectangles with rounded borders and all other entities are
rectangles.

:MichelleObama

:spouse

:BarackObama

:party

:Democrats

:BarackObama
:spouse
:MichelleObama

:BarackObama
:party
:Democrats

1 1 2 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
0 0 0 0 0 3 1
0 0 0 0 0 1 3

Fig. 2: G2 to the example graph and corresponding adjacency matrix. Dashed lines have a weight of 1, thin lines stand for a
weight of 2 while thick lines have a weight of 3.

(denoted π(t→ t′)) can be regarded as the following sum of
probabilities:

π(t→ s)π(s→ t′)+π(t→ p)π(p→ t′)+π(t→ o)π(o→ t′).
(2)

An equivalent proposition can be made for nodes of B(K)
that are not triples. Formally, this means that we can compute
P(T)(β,β) independently from P(N)(α,α) and vice-versa as
follows: Let W(β,α) be the transition matrix from triples to
entities. Given that the probability of transitioning from a triple
to one of its elements is exactly 1

3 , we can write wij = 1
3 iff

the triple ti contains the node j of B(K). Else wij = 0.

Now let F(α,β) be the matrix of which the entries are the
transition probabilities from entities to triples. The entries fij
of F are given by

fij =
1

|{t = (s, p, o) : ei ∈ {s, p, o}}|
iff ei ∈ tj . Else fij = 0.

(3)

By virtue of B(K) being bi-partite, we now have

P(T)(β,β) = W(β,α) ·F(α,β) and P(N)(α,α) = F(α,β) ·W(β,α).
(4)

For our example (see Figure 1c), W =

[
1
3

1
3 0 0 1

3
1
3 0 1

3
1
3 0

]
,

F =

1
2

1
2

1 0
0 1
0 1
1 0

 and P(T) =

[
5
6

1
6

1
6

5
6

]
. While a classical

approach would necessitate (α+β)3 computations (i.e., multi-
plications and additions) to compute A(G2) using A(G), HARE
only needs αβ2 + βα2 computations to compute P(T) and
P(N) (which fully describe A(G2) by virtue of G being bi-
partite). Hence, HARE can save up to α3+2α2β+2αβ2+β3

computations during the computation of transition matrices.

C. Stationary Probability Distributions

Given the transition matrices computed in the precedent
step, the goal of HARE is to compute the probability dis-

tribution row vector Sα+β , which contains the probability
that a random surfer lands on the nodes of B(K). Based
on our second insight, we can split S into two vectors:
S(T)β for triples and S(N)α for all other entities. A naı̈ve
implementation of HARE would now simply compute S(T)
and S(N) independently by setting

S(T) = P(T)> · S(T) and S(N) = P(N)> · S(N). (5)

While this naı̈ve implementation would already be clearly
superior to a naı̈ve ranking implementation of the random
surfer model, it would still need to compute matrices of size
β2 (e.g., P(T)) and α2 (e.g., P(N)). However, we can avoid a
significant portion of this computation based on the following
insight:

1) Insight 3: Dependency between Stationary Distributions
in Bi-Partite Graphs.: In general, β is significantly larger than
α (in the worst case, β = α3). Hence, limiting the number of
computations in the order of β is bound to improve the runtime
of HARE significantly. We do so by proving that S(T) can be
derived from S(N) as follows:

S(T) = FT · S(N). (6)

Proof. Recall that P(N) = F ·W and P(T) = W · F. Now
by definition S(N) = P(N)T · S(N). Hence, FT · S(N) =
FT · P(N)T · S(N). Given that P(N)T = WT · FT , we have
FT ·S(N) = FT ·WT ·FT ·S(N). Given that P(T)T = FT ·WT ,
we get (FT · S(N)) = P(T)T · (FT · S(N)). By virtue of the
definition of S(T), we obtain S(T) = FT · S(N).

We hence only need to compute S(N) (and thus only P(N))
explicitly and can derive S(T) from Equation 6, hence saving
O(β2) in space and time in the best case (see Table I).

D. Ergodicity and Iterative Computation of Stationary Distri-
butions

Recall that S(N) is the vector that satisfies

S(N) = P(N)> · S(N). (7)

Like in previous works [3], [1], we apply an iterative approach
that seeks to ensure the ergodicity of the random walk. The
stationary probability distribution S(G) is commonly initial-
ized by setting all entries to 1/|V (G)|. However, doing so for
S(N) (i.e., with 1/α) would lead to the total probability in S
being larger than one. To ensure that S(T) and S(N) build
a probability distribution, we set all the entries of the initial
S(N) to

β

α(β + α)
. (8)

This value scales the vector down to the proportion it would
have had if we had run the computation using a naı̈ve version
of the computation of stationary distributions.

We can now compute S(N) and derive S(T) by using
Equation 6. To ensure the ergodicity of the matrices on which
we operate, we iterate the PageRank equation [3]

S(N) = γP(N)T · S(N) +
(1− γ)I
|S(N)|

, (9)

where γ ∈ [0, 1] is the damping factor, |S(N)| is the number
of rows in S(N) and I is the 1-vector, i.e., the vector with
entries of 1. The iteration is carried out until the euclidean
distance of the vectors obtained in two successive iterations is
under a given threshold ε or a maximal number of iterations
has been reached. The entries of the resulting vector are the
probability that a random surfer lands on a particular entity
while surfing. Hence, the higher the value achieved by a node,
the better the rank it should be assigned.

Once S(N) has been computed, we compute S(T) by using
Equation 6. We can finally compute S by simply concatenating
the two vectors.

V. EVALUATION

A. Experimental Setup

The goal of our evaluation was to elucidate the following
three questions:
Q1 Complexity: What is the exact upper bound of the num-

ber of computations carried out by HARE? How does
it compare with the upper bound of the computations
that PageRank would have to carry out to address the
same task? We addressed the complexity question by
computing the number of additions and multiplications
that the two approaches carry out.

Q2 Runtime: How does the difference in complexity influ-
ence the runtime of the two approaches? To address this
question, we implemented both HARE and PageRank
using the same libraries and compared their runtime on
different datasets of up to 133.6 million triples.

Q3 Ranking: How well does HARE perform w.r.t. ranking
quality? We performed a comparative manual evaluation
of the ranking of resources computed by HARE and
PageRank on DBpedia.

All runtime experiments were carried out using a single core of
an Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHZ Processor
on a machine equipped with 503 GB of RAM. We measured
the time to compute the transition matrix until convergence
with ε = 10−3 and used a damping factor γ = 0.85 as chosen
in [1]. We repeated each experiment 5 times and report average
values.

B. Complexity

The runtime complexity of HARE and PageRank when
applied to bi-partite graphs depends mostly on the complexity
of the matrix multiplication implementation chosen. The exact
numbers of computations shown in Table I are an upper
bound of the runtime complexity for HARE and Pagerank.
These numbers were derived for a naı̈ve implementation of
matrix multiplication, which has a cubic complexity. For this
upper bound, the number of additions computed by the two
approaches to determine the transition probability matrices is
in O(α3+β3). If β ∈ O(α3), then this difference is in O(α9).
Note that the table does not contain the last step carried out by
HARE, which consists of computing S(T) using Equation 6.
This step runs in O(α2β), which is negligible when compared
with O(α3 + β3).

The lowest bound for the runtime complexity of any matrix
multiplication is in O(n2) for any n × n-matrix. This is
due to all entries of the matrix needing to be read at least
once during the computation. The worst-case complexity of
PageRank would then be in O((α+β)2). Given that β = α3 in
the worst case, the complexity of PageRank would be O(α6).
This complexity is still higher than the complexity of HARE,
which is O(α5).

The answer to Q1 is clear: HARE has a lower theoretical
complexity than PageRank on bi-partite graphs.

This answer is an important result as it shows that HARE
is guaranteed to be more scalable than PageRank.

C. Runtime Evaluation

We evaluated how the lower runtime complexity of HARE
translates into real-world runtimes by measuring the runtime of
HARE and PageRank on six real7 and six synthetic knowledge
graphs. The real datasets were as follows:

• Airports, which contains locations, names and codes for
several airports, retrieved from openflights.org.8

• UPTSO, a knowledge graph about US Patent and Trade-
mark Office data.9

• SIDER, which describes the side-effects of several mar-
keted drugs.10

• Semantic Dogfood (also known as the Semantic Web
Conference Corpus), a dataset on published papers, work-
shops and attendance of people or organizations.11

• USSECCCO, the U.S. Securities and Exchange Commis-
sion Corporate Ownership RDF dataset, which describes
the ownership of corporations inside and outside the
United States.12

• DBpedia, a large Linked Data set derived from
Wikipedia.13 We provide links to the underlying files and
datasets in our project repository.

We used the Lehigh University Benchmark (LUBM) genera-
tor [11] for the generation of synthetic data. The number after
the dataset in Table II indicates the number of universities
created.

Table II gives an overview of our runtime results. HARE
consistently outperforms PageRank on the same hardware by
a factor between 6 (Airports) and 190 (LUBM1000) when
executed on a single core. Our runtimes on large knowledge
graphs such as LUBM1000 and DBpedia already show that
our approach can be used in practical applications and that it
only needs around 8 resp. 15 seconds to generate ranks for
datasets of sizes in the order of 108 triples.

7We chose the knowledge graphs as representatives for sizes between ≈
104 triples and ≈ 108 triples.

8http://hobbitdata.informatik.uni-leipzig.de/hare/airports.nt
9http://hobbitdata.informatik.uni-leipzig.de/hare/uspto.zip
10http://hobbitdata.informatik.uni-leipzig.de/hare/sider.nt
11http://hobbitdata.informatik.uni-leipzig.de/hare/dogfood.nt
12http://hobbitdata.informatik.uni-leipzig.de/hare/sec.nt
13http://wiki.dbpedia.org/downloads-2016-04

The almost linear scaling of the runtimes in the LUBM
experiment can be explained by the structure of the data.
Since several universities are generated separately, they are
very sparsely connected by links and form partly independent
blocks in the adjacency matrix.

Our experiments suggest that the answer to Q2 is that we
outperform PageRank on both real and synthetic data and are
up to two orders of magnitude faster.

D. Ranking Evaluation

We aimed to determine how HARE performs w.r.t. its
ranking quality when γ = 0.85. We hence chose a typical
evaluation scenario to compare PageRank and HARE: We
assumed an information retrieval setup within which a user
provides the name of a class as input. The expected result is
an ordered list of instances of the input class. We selected
19 classes from DBpedia (see Table III) as input classes.
The classes were chosen to be such that most reviewers were
guaranteed to be familiar with the instances of the classes.

We computed the top-10 resources of these classes accord-
ing to PageRank and according to HARE. We then recorded the
differences between the rankings as follows: Each ranking of
resources r1, . . . , rk was represented as a set of pairs (ri, rj)
with i < j. The difference in ranking was computed by
computing the symmetric set difference between the sets of
pairs generated by PageRank and HARE. Given that each
ranking generates exactly k(k−1)

2 of such pairs, the highest
possible number of differences between two rankings of size
k is k(k − 1).

For each class, we selected 10 pairs from the differences
recorded between PageRank and HARE randomly and showed
them to 4 independent raters.14 The raters were computer
scientists and post-graduates. For each pair (ri, rj), the raters
were to state whether they found the ranking to be correct
or erroneous. They were also allowed to mark a ranking as
unknown. To remove any bias, we ensured that the raters did
not know which algorithm generated which pair.

We used Fleiss’ kappa to quantify the inter-rater agree-
ment in the experiment and achieved 0.3. According to [18],
this value indicates a fair agreement between the raters. We
considered a ranking to be agreed upon by the raters if at
least 3 raters concurred. 66 of the 190 pairs could not be
assigned a ranking. In 89 cases (49 for PageRank, 40 for
HARE), the raters agreed with the rankings computed by
the algorithms HARE and PageRank. In the remaining 35
(17 for PageRank, 18 for HARE) cases, they disagreed with
the ranking (see Table III). We ran a one-tailed Wilcoxon
Signed Rank test on the combined results of the evaluator
(significance level: p < 0.05). The test showed that there
is no statistically significant difference between the results
achieved by the two approaches. This result is confirmed by
an evaluation of the performance of the approaches at class
level: HARE’s ranking was deemed better than PageRank’s

14The evaluation results can be found at https://goo.gl/ptLwRJ.

TABLE I: Worst-case analysis of HARE and PageRank for a naı̈ve implementation of matrix multiplication. Recall that
β ∈ O(α3) in the worst case.

Transition probability

Additions Multiplications Complexity

PageRank (α+ β)2(α+ β − 1) (α+ β)3 O(α3 + β3) = O(α9)
HARE α2(β − 1) α2β O(α2β) = O(α5)

Gain (HARE) β3 − β2 + αβ(2α+ 3β − 2) + α3 β3 + 3αβ2 + 2α2β + α3 O(α3 + β3) = O(α9)

Stationary distribution (iteration)

Additions Multiplications Complexity

PageRank (α+ β)(α+ β − 1) (α+ β)2 O(α2 + β2) = O(α6)
HARE α(α− 1) α2 O(α2)

Gain (HARE) β2 + β(2α− 1)− 2α β2 + 2αβ O(α2)

TABLE II: Average runtimes of HARE and PageRank over five runs in seconds.

#Triples #Entities HARE Pagerank

LUBM20 2 688 046 663 661 0.13 7.75
LUBM50 6 654 562 1 639 709 0.34 24.08
LUBM100 13 405 381 3 301 732 0.71 50.48
LUBM200 26 696 578 6 574 874 1.52 103.84
LUBM500 66 731 200 16 429 334 4.26 425.12
LUBM1000 133 573 854 32 885 165 8.57 1631.39

Airports 67 267 47 772 0.02 0.12
SIDER 101 542 30 379 0.01 0.13
Dogfood 305 112 95 527 0.02 0.49
USSECCCO 1 813 135 866 611 0.12 4.90
UPSTO 10 438 358 4 114 136 1.01 27.2
DBpedia 96 222 324 31 176 843 15.45 937.15

on 9 classes and vice-versa. The approaches tied in 1 case
(dbo:HistoricPlace).15

Overall, our results suggest there is no qualitative differ-
ence between the ranking results achieved with PageRank
and HARE, hence making clear that HARE can retain the
accuracy of PageRank while being significantly more time-
efficient. Our current results suggest that HARE tends to work
better on classes with a low- or average-size extensions (e.g.,
dbo:Drug, dbo:Automobile), while PageRank seems
slightly better on classes that have large extensions (e.g.,
dbo:Person). These tendencies still have to be confirmed
in larger experiments.

Our results answer Q3 as follows: Our experiments suggest
that there is no statistically significant difference between the
quality of the ranking results achieved by PageRank and HARE
on the task of ranking resources.

In contrast to classical approaches for ranking resources,
HARE can however rank triples and properties while ranking

15dbo stands for http://dbpedia.org/ontology.

resources. Table IV shows the top-10 properties, classes and
resources of DBpedia according to HARE.

VI. RELATED WORK

We present the first holistic approach for ranking all com-
ponents of an RDF graph and RDF triples at once. Rank-
ing approaches for RDF split into three categories, namely
ranking of RDF triples, RDF properties and RDF resources.
Approaches to ranking triples have been developed in the
area of entity summarization. For example, RELIN [5] uses
a graph-based model to detect top-n triples based on the
top-n relations of a given resource. Ranking RDF triples is
also the focus of Franz et al. [9], which presents TripleRank,
a tensor-decomposition-based approach emulating the HITS
algorithm [17]. The resulting authority values were used as
ranks and evaluated using human raters. The original datasets16

exist but the evaluation data is not available. FRanCo is a novel
ground truth corpus for Fact Ranking, i.e., given an entity, it
poses the question: which triples are more important?17 So

16http://west.uni-koblenz.de/de/forschung/datensaetze/triplerank-data-sets
17http://s16a.org/node/13

TABLE III: Comparison of HARE and PageRank

Class HARE PageRank

Agree(%) Disagree(%) Agree(%) Disagree(%)

Drugs 40 0 20 20
SpaceStation 60 0 40 0
Automobile 80 0 40 20
EurovisionSongContestEntry 0 0 0 40
ChessPlayer 60 0 20 20
Album 40 20 40 40
Band 40 40 80 0
City 80 20 60 20
HistoricPlace 20 20 40 40
VideoGame 80 20 40 60
University 20 80 20 0
Mountain 40 0 80 20
Town 20 0 80 0
Comedian 20 20 40 20
MilitaryConflict 40 20 20 0
Country 40 60 60 20
ProgrammingLanguage 20 0 40 0
Person 20 20 80 20
Hotel 0 40 20 0

TABLE IV: Top-10 properties, classes and resources in DBpedia 2016-04 according to
HARE. rdfs stands for http://www.w3.org/2000/01/rdf-schema#. rdf stands for
http://www.w3.org/1999/02/22-rdf-syntax-ns#. foaf stands for http://xmlns.com/foaf/0.1/.
dbo stands for http://dbpedia.org/ontology/ and dbr stands for http://dbpedia.org/resource/.

Rank Property Class Resource

1 rdfs:label dbo:CareerStation dbr:Animal
2 dbo:wikiPageRedirects foaf:Person dbr:United_States
3 foaf:name dbo:Person dbr:Arthropod
4 rdf:type dbo:SportsTeamMember dbr:Insect
5 dbo:wikiPageDisambiguates dbo:Settlement dbr:Lepidoptera
6 dbo:team dbo:PersonFunction dbr:United_Kingdom
7 foaf:surname dbo:Village dbr:Poland
8 foaf:homepage dbo:TimePeriod dbr:India
9 dbo:isPartOf dbo:Insect dbr:Iran
10 foaf:givenName dbo:Album dbr:France

far, FRanCo has not been used in other works to evaluate
triple rankings. FranCo is not used to evaluate HARE since
the underlying data was heavily processed and pruned, hence
making it unfit for an evaluation of HARE over the whole
DBpedia.

Ranking properties has also been regarded as important.
For example, approaches such as RELIN [5] rank properties
for entity summarization. The work of Dessi et al. [7] uses
a machine learning approach to rank RDF properties based
on a number of specifically designed numerical features that
measure different aspects of each property. The authors apply
existing learning-to-rank algorithms to a number of classified
properties, thereby automatically constructing ranking models

that reflect a given classification. DBtrends [20] is another
framework designed for comparing and evaluating different
ranking functions for RDF data. It allows the combination of
these rankings by means of an extension of the Spearmans
footrule estimation.

The largest body of work related to this work pertains
to ranking entities. An extension to the PageRank algorithm
using Linked Data knowledge has been described by Julia
Stoyanovich [26]. This approach extracts semantic knowledge
from a Web document and combines this with an underlying
ontology which shows an improvement for the ranking quality.
Ding et al. [8] present Swoogle, a first Semantic Web search
engine. Although, Swoogle’s creators aim to utilize more than

just resources for ranking, e.g., RDF classes, the underlying
OntoRank is based on the rational surfer model at the docu-
ment level. However, the used dataset, namely DS-April 2005,
is no longer available. In 2007, the Sindice [27] search engine
was introduced which also includes a ranking function based
on a fast metadata-using algorithm. However, Sindice does
not make use of any RDF-based metadata and only covers
information such as host rank etc. Blanco et al. [2] proposes
an adaptation of the BM25F ranking function to the RDF data
model that incorporates both field weights, document priors
and a separate field for the subject URIs. The authors also
go on to propose index structures in order to achieve efficient
retrieval and ranking of results. Mirizzi et al. [21] propose
a novel, hybrid ranking function for DBpedia using external
sources such as search engines and bookmarking sites. The
evaluation was done using a set of users and their rating
towards the ranking. Unfortunately, the provided resources
are not sufficiently available anymore. ReConRank [16] is
another highly efficient algorithm based on PageRank. This
algorithm is based on semantic sub-graphs whose size influ-
ences efficiency and precision of results. Other approaches
such as Gupta et al. [12] or xhRank [14] also generate result
list rankings. Graves et al. [10] present an approach to rank
RDF nodes in result sets according to their centrality. Further
overviews can be found in [22], [30].

VII. CONCLUSION

We presented HARE, the first holistic approach for ranking
triples and entities in RDF knowledge graphs. Our approach
relies on a bi-partite representation for RDF graphs. We com-
bined this representation with the characteristics of ergodicity
to derive a time-efficient approach for ranking triples and
entities in a comparable way. We showed that the worst-
case complexity of our approach is polynomial and lower
than that of PageRank. We also evaluated the runtime of our
approach on graphs of various sizes and showed that it scales
better than the classical PageRank. Our results suggest that our
approach achieves the same ranking quality as PageRank on
DBpedia resources. In future work, we will study distributed
implementations of HARE. Our work also revealed a lack of
open benchmarks for ranking RDF resources. We will hence
work on developing such resources in the future.

ACKNOWLEDGMENTS

This work was supported by the H2020 project HOBBIT
(GA no. 688227), the EuroStars projects DIESEL (E!9367)
and QAMEL (E!9725) as well as the BMVI projects LIMBO
(project no. 19F2029C) and OPAL (project no. 19F20284).

REFERENCES

[1] Abdelghani Bellaachia and Mohammed Al-Dhelaan. Random walks in
hypergraph. In Proceedings of the 2013 international conference on
applied mathematics and computational method, pages 187–194, 2013.

[2] Roi Blanco, Peter Mika, and Sebastiano Vigna. Effective and efficient
entity search in rdf data. In ISWC, pages 83–97. Springer, 2011.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper-
textual web search engine. In Computer Networks and ISDN Systems,
pages 107–117. Elsevier Science Publishers B. V., 1998.

[4] Gong Cheng, Weiyi Ge, and Yuzhong Qu. Falcons: searching and
browsing entities on the semantic web. In Proceedings of the 17th
international conference on World Wide Web, pages 1101–1102. ACM,
2008.

[5] Gong Cheng, Thanh Tran, and Yuzhong Qu. Relin: relatedness and
informativeness-based centrality for entity summarization. In Interna-
tional Semantic Web Conference, pages 114–129. Springer, 2011.

[6] Philipp Cimiano, Vanessa Lopez, Christina Unger, Elena Cabrio, Axel-
Cyrille Ngonga Ngomo, and Sebastian Walter. Multilingual question
answering over linked data (qald-3): Lab overview. In International
Conference of the Cross-Language Evaluation Forum for European
Languages, pages 321–332. Springer, 2013.

[7] Andrea Dessi and Maurizio Atzori. A machine-learning approach to
ranking rdf properties. Future Generation Computer Systems, 54:366–
377, 2016.

[8] Li Ding, Rong Pan, Timothy W. Finin, Anupam Joshi, Yun Peng, and
Pranam Kolari. Finding and ranking knowledge on the semantic web.
In ISWC, volume 3729, pages 156–170. Springer, 2005.

[9] Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab. TripleR-
ank: Ranking Semantic Web Data by Tensor Decomposition, pages 213–
228. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[10] Alvaro Graves, Sibel Adali, and Jim Hendler. A method to rank nodes
in an RDF graph. In International Semantic Web Conference (Posters &
Demos), volume 401 of CEUR Workshop Proceedings. CEUR-WS.org,
2008.

[11] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark
for OWL knowledge base systems. J. Web Sem., 3(2-3):158–182, 2005.

[12] Parul Gupta and AK Sharma. Ontology driven pre and post ranking
based information retrieval in web search engines. International Journal
on Computer Science and Engineering, 4(6):1241, 2012.

[13] Jonathan Hayes and Claudio Gutiérrez. Bipartite graphs as intermediate
model for RDF. In The Semantic Web - ISWC 2004: Third International
Semantic Web Conference,Hiroshima, Japan, November 7-11, 2004.
Proceedings, pages 47–61, 2004.

[14] Xin He and Mark Baker. xhrank: Ranking entities on the semantic
web. In ISWC Posters&Demos, CEUR Workshop Proceedings. CEUR-
WS.org, 2010.

[15] Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda Hardman.
/facet: A browser for heterogeneous semantic web repositories. In
International Semantic Web Conference, pages 272–285. Springer, 2006.

[16] Aidan Hogan, Andreas Harth, and Stefan Decker. Reconrank: A scalable
ranking method for semantic web data with context. In In 2nd Workshop
on Scalable Semantic Web Knowledge Base Systems, 2006.

[17] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.
J. ACM, 46(5):604–632, September 1999.

[18] J Richard Landis and Gary G Koch. The measurement of observer
agreement for categorical data. Biometrics, pages 159–174, 1977.

[19] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to information retrieval. Cambridge University Press, 2008.

[20] Edgard Marx, Amrapali Zaveri, Mofeed Mohammed, Sandro Rauten-
berg, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, and Gong Cheng.
In SUMPRE’16 at ESWC 2016.

[21] Roberto Mirizzi, Azzurra Ragone, Tommaso Di Noia, and Eugenio Di
Sciascio. Ranking the linked data: The case of dbpedia. In ICWE,
volume 6189 of Lecture Notes in Computer Science, pages 337–354.
Springer, 2010.

[22] Antonio J. Roa-Valverde and Miguel-Angel Sicilia. A survey of
approaches for ranking on the web of data. Inf. Retr., 17(4):295–325,
August 2014.

[23] Muhammad Saleem, Maulik R Kamdar, Aftab Iqbal, Shanmukha Sam-
path, Helena F Deus, and Axel-Cyrille Ngonga Ngomo. Big linked
cancer data: Integrating linked tcga and pubmed. Web Semantics:
Science, Services and Agents on the World Wide Web, 27:34–41, 2014.

[24] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. Hibiscus:
Hypergraph-based source selection for SPARQL endpoint federation.
In ESWC, volume 8465 of Lecture Notes in Computer Science, pages
176–191. Springer, 2014.

[25] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. Hibiscus:
Hypergraph-based source selection for sparql endpoint federation. In
European Semantic Web Conference, pages 176–191. Springer, 2014.

[26] Julia Stoyanovich, Srikanta J. Bedathur, Klaus Berberich, and Gerhard
Weikum. Entityauthority: Semantically enriched graph-based authority
propagation. In WebDB, 2007.

[27] Giovanni Tummarello, Renaud Delbru, and Eyal Oren. Sindice.com:
Weaving the open linked data. In ISWC/ASWC, volume 4825 of Lecture
Notes in Computer Science, pages 552–565. Springer, 2007.

[28] Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille
Ngonga Ngomo, Daniel Gerber, and Philipp Cimiano. Template-
based question answering over rdf data. In Proceedings of the 21st
international conference on World Wide Web, pages 639–648. ACM,
2012.

[29] Christina Unger, Corina Forascu, Vanessa Lopez, Axel-Cyrille Ngonga
Ngomo, Elena Cabrio, Philipp Cimiano, and Sebastian Walter. Question
answering over linked data (qald-4). In Working Notes for CLEF 2014
Conference, 2014.

[30] Ricardo Usbeck. Combining linked data and statistical information
retrieval - next generation information systems. In ESWC, volume 8465
of Lecture Notes in Computer Science, pages 845–854. Springer, 2014.

