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Abstract. The desideratum to bridge the unstructured and structured data on the
web has lead to the advancement of a considerable number of annotation tools and
the evaluation of these Named Entity Recognition and Entity Linking systems is
incontrovertibly one of the primary tasks. However, these evaluations are mostly
based on manually created gold standards. As much these gold standards have an
upper hand of being created by a human, it also has room for major proportion of
over-sightedness. We will demonstrate EAGLET3, a tool that supports the semi-
automatic checking of a gold standard based on a set of uniform annotation rules.
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1 Introduction

The number of information extraction systems has grown significantly over the past few
years. In particular, NER (Named Entity Recognition) frameworks aim to locate named
entities in natural language documents while Entity Linking (EL) applications link the
recognised entities to a given knowledge base (KB). NER and EL tools are commonly
evaluated using manually created gold standards (e.g., [4]), which are partly embed-
ded in benchmarking frameworks (e.g., [7, 1]). While these gold standards have clearly
spurred the development of ever better NER and EL systems, they have certain draw-
backs [2]. The creation of a NER/EL gold standard is a difficult task because human
annotators commonly have different interpretations of this task as shown by Ratinov
et al. [6]. EAGLET provides a very generic, adaptable set of rules derived from exist-
ing benchmarks by Jha et al. [2] which allows us to check these gold standards in a
semi-automatic way. EAGLET has been evaluated on 13 English gold standards and de-
tected 38,453 errors. An evaluation of 10 tools on a subset of these datasets shows a
performance difference of up to 10% micro F-measure on average [2].

3 Available at https://github.com/AKSW/Eaglet



2

2 Architecture Overview

Fig. 1. EAGLET’s Architecture. The modules marked in purple depict the pipeline structure of
EAGLET.

EAGLET works based on the architecture presented in Figure 1. Following this ar-
chitecture, we will attempt to explain the implementation. EAGLET provides a system-
atic classification of errors, which are in violation of the rules, with the ability to detect
and correct a significant portion of these errors with minimum human interference. EA-
GLET categorises the violation of the rule set which are hard-coded into the system.
The rest of this section discusses the implementation of each component shown in the
architecture.

2.1 Input Dataset

The input of EAGLET is an annotated gold standard dataset which is primarily a set of
documents where each document is an ordered set of words d = {w1, ..., wn} along
with the meta information of each annotation.

2.2 Preprocessing Component

The text of each document is passed through the Stanford NLP core library [3] to to-
kenise the text and lemmatise the tokens. After that, original text is coupled with the
meta-info added by the NLP module. The annotation list is extended to the Corrected
Annotation List (CAL) which contains some extra relevant EAGLET introduced meta-
information as it is passed through the pipeline.
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2.3 Error Detection Pipe

The processed dataset is passed into the pipe. Every module of the pipe represents a sin-
gle error type4 and is implemented independently from the other modules. This enables
the possibility to adapt the pipe by deactivating or introducing modules. An adapta-
tion is easy since (1) the tool is available as open source project and can be adapted
by the user, (2) the modules share the same API and (3) the modules act indepen-
dently.Annotations, identified as faulty by each module, are marked with an error type
and a suggested solution. The flow of the pipeline is as follows.

1. Long Description Detection Component: The module checks for the sequences of
words which may describe the entity they are linked to but do only contain an
indirect description of the entity instead of directly naming it. The module identifies
such a description by searching for a relative clause inside an annotation.

2. Wrong Positioning Detection Component: This module searches for faulty anno-
tations that do not fit to the positions of the words, e.g., an annotation that does
not start with the first character. The last character of an annotation is checked in a
similar way, i.e., it should be the last character of a word.

3. Overlapping Entity Detection Component: The module checks for annotations in-
volving the presence of two or more annotations that share a common sub-string.

4. Combined Tagging Detection Component: This module searches for consecutive
annotations that are separated by a white space character. Such entities are marked
and a larger, combined annotation is generated and added to the CAL. This module
helps in tackling a non-trivial tier of errors wherein consecutive word sequences
are marked as separate entities while the word sequences, if combined, can be an-
notated to a more specific entity. The tool later suggests the user to review the
suggested marking of this new entity and assign the new entity a URI.

5. URI Error Detection Component: The module verifies the URIs of all entities re-
garding their format. If a URI points to a set of predefined KB the module tries to
dereference the URI to check whether a) the entity exists and b) the URI does not
point to a disambiguation page. For example, if the given KB is the Wikipedia5 or
entities can be directly mapped to Wikipedia entities the module uses the Wikipedia
API to determine whether the URI is outdated and derives the new URI.

6. Inconsistent Marking Component: This module collects all annotations in the cor-
pus that have not been marked as faulty by one of the other modules. The lemma-
tized surface form of every annotation is used to search for all non-marked occur-
rences of the entity throughout the dataset. Since these newly added annotations
might be incorrect, e.g., because a URI that is linked to a word in one document
does not need to fit to the same word in a different document, they are marked
separately by the pipeline and should be checked by the user in the review module.

2.4 Completion Component

This component has been introduced as an optional module in EAGLET as the definition
and requirement of the dataset completion may vary depending on the use case of the

4 The detailed description of each error type can be found in EAGLET research paper [2].
5 http://wikipedia.org
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dataset. The component uses publicly available annotation services to derive a list of
entity annotations on the dataset and compares it to the CAL list under consideration
in the pipe, thereby generating a list of additional entities. These additional annotations
support the work of a user that wants to make sure that the dataset is complete. However,
since state-of-the-art annotation systems are not perfect [7], this module is based on a
majority vote, i.e., the majority of the annotation systems have to contain an annotation
inside their result list before it is added to the document. For this module, we relied on
the open-source project GERBIL that enables the usage of up to 13 different annotation
systems [5].

The components described above generated and stored a set of documents, different
from the original input dataset, incorporating all the changes suggested in the pipe. This
facilitates the reviewing which can be done by the user in different time duration and
need not necessarily be completed in one run of EAGLET.

2.5 Review Component

This component involves at least one user reviewing all the corrections made by the
pipe before they can be written to generate a final set of documents. We implemented
a user interface which allows a user to check the results in an efficient, interactive way.
The user interface (see Figures 2 and 3) of our tool allows every user to check each
of the documents in the gold standards manually. Users can accept, modify or reject
the suggestions of the tool as well as add new entities that have been missed by the
auto-completion module. The user also has the liberty to change the URI of an entity.
The review component has an auto completion module running in parallel which allows
the addition made by a user in one of the documents to be automatically reflected in the
other documents that have not been reviewed by the user so far reducing the redundancy
in the reviewing process. The module is loaded with a login feature allowing multiple
users to work on the same pipe results in order to generate a final, more accurate dataset.
Each of these users can review and maintain their own versions of dataset at their own
pace.

3 Conclusion

In this paper, we presented EAGLET—a tool to evaluate the gold standards used for NER
and EL tasks. We described the different features of the tool which aim at correcting the
existing the gold standard in order to achieve a more precise evaluation. We attempt to
make this process user friendly and regard this work as a first stepping stone in a larger
agenda pertaining to improving the assessment of the performance of natural language
processing approaches.
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Fig. 2. Review Module: Document Text Fig. 3. Marking List
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