ABSTRACT
The Linked Open Data (LOD) cloud is in danger of becoming a black box. Simple questions such as "What kind of datasets are in the LOD cloud?", "In what way(s) are these datasets connected?" – albeit frequently asked – are at the moment still difficult to answer due to the lack of proper tooling support. The infrequent update of the static LOD cloud diagram adds to the current dilemma, since there is neither reliable nor timely-updated information to perform an interactive search, analysis or in particular visualization in order to gain insight into the current state of Linked Open Data. In this paper, we propose a new hybrid system which combines LOD Visualisation, Analytics and DiscovERy (LODVader) to aid in answering the above questions. LODVader is equipped with (1) a multi-layer LOD cloud visualization component comprising datasets, subsets and vocabularies, (2) dataset analysis components that extend the state of the art with new similarity measures and efficient link extracting techniques and (3) a fast search index that is an entry point for dataset discovery. At its core, LODVader employs a timely-updated index using a complex cluster of Bloom filters as a fast search index with low memory footprint. This BF cluster is able to efficiently perform analysis on link and dataset similarities based on stored predicate and object information, which – once inverted – can be employed to discover invalid links by displaying the Dark LOD Cloud. By combining all these features, we allow for an up-to-date, multi-dimensional LOD cloud analysis, which – to the best of our knowledge – was not possible before.

Keywords
Linked Open Data, Linksets, Bloom filter, RDF diagram

1. INTRODUCTION
The amount of datasets published on the Web – particularly on the Linked Open Data (LOD) cloud – has grown significantly in the last couple of years. This increase in available linked data creates the following interconnected research challenges:

• Exploration - find, download and index data using scalable algorithms and data structures for efficient retrieval.
• Analysis - develop metrics to measure similarity, quality and search rankings of datasets in order to structure the web of data.
• Visualisation - allow end users to discover, access and evaluate datasets.

Furthermore, a crucial problem which encases our research questions is that searching for datasets in terms of used vocabularies, tuples, or available resources requires solutions that most part of the time, imply downloading large amounts of datasets. Due to the growing number of available datasets this use-case will become more common for many linked data applications.

2. LODVADER ARCHITECTURE
In order to address the problems pointed out, we created a framework that is light and extensible. The framework creates a central index for Linked Data datasets, allowing to perform basic queries, link discovery, analytical data retrieval and visualization. The framework is called LODVader, and holds the implementation of the proposed features. Figure 1 describes the framework architecture and consists of the following components: Manager, RDF Streaming Module, Plugin module, Index Engine, MongoDB and the REST API module. The proposed approach was implemented in Java and uses the Apache Jena library to parse and write RDF data. MongoDB is used as a back end storage service for storing non-RDF data such as analytics data and distribution namespaces. Bloom filters (BF) contain the indexes of the datasets and are stored using GridFS. Internally, the API uses Java Spring MVC, which handle with the HTTP requests, and case there are some invalid request (e.g. missing parameters), the Spring MVC will return an customized error message. To communicate with the

http://lod-cloud.net/#history
https://www.mongodb.org/
https://docs.mongodb.org/v3.0/core/gridfs/
https://spring.io/guides/gs/rest-service/
REST API, we created a front end using NodeJS which allows the visualization of the diagrams using the Data Driven Documents JavaScript library. One can try out LODVader following this link http://lodvader.aksw.org. The implementation of the REST API and the front end are open source and are available on GitHub.

The Manager is the central controller of the service and is responsible to serve the API calls and coordinate the processing components. Once a user submits a dataset for processing (using a description file), the Manager will fetch for URL of distributions (usually described by dcat:downloadURL or void:dataDump) and will dispatch the call to the RDF streaming module responsible for stream and parse the distributions. Distributions normally are dump files or SPARQL endpoint. The output of this phase is an array of triples <s, p, o> that is dispatched to the Index engine where the indexes are created. The Manager is also connected to a set of plugins. Plugins are modules with well defined functions that allow our framework to be extended for different use cases. As an example, the Analytics back end Plugin is responsible for determine the top N links between two datasets and the Search Plugin queries Bloom Filters (BF) in order to find subjects, predicates and objects. The plugins are all connected to the REST API, making possible an integration with a front end or even different frameworks.

A particular plugin that allows users to visualize the linked datasets is the Visualization plugin. This plugin provides JSON objects which characterize the current condition of the links between the distributions. Hence, using the front end provides a new visualization of the LOD-Cloud diagram which can be seen in Figure 2. Using the state of the art visualization tools, users can explore the LOD cloud and understand the connections between the datasets.

The main difference between LODVader and lod-cloud is that instead of assuming that every distribution is in the same pay-level domain or sub-domain, LODVader precisely compare every object and subject for each source dataset and target dataset. Moreover, we propose the novel concept of the Dark LOD diagram which can be seen in Figure 3. The Dark LOD diagram, visualizes links between objects of a source distribution which are not described as subjects in a target distribution.

Besides to be able to read and write RDF data (RDF is generated on the fly by Apache JENA), LODVader doesn’t use a triplestore. Instead, LODVader uses a MongoDB as a database to store and fetch relevant data. MongoDB has shown fast and scalable enough to be used with BF as a central index for linked datasets.

3. LODVADER USAGE (DEMO PRESENTATION)

The following subsections describe the usage of the four current features of the LODVader Visualisation plugin and Manager. The presentation in the Demo Track will go through all of them showing the framework performance. For the first three examples, we demonstrate how to use the REST API (although all of them can be done using the font end), using the base URL "http://api.lodvader.aksw.org/". and in the fourth example we will demonstrate the usage of the LOD diagram.

3.1 Adding a dataset to the framework

In order to visualise a dataset via LODVader, the user can either create an entry at indexed repositories, such as http://datahub.io or http://lov.okfn.org or she should

https://nodejs.org/en/
http://d3js.org/
https://github.com/AKSW/lodvader

http://lod-cloud.net/
3.3 Retrieving VoID:linkset

Hawaii.

As an example, the URL

\[
\text{http://api.lodvader.aksw.org/distribution/search?searchSubject=http://dbpedia.org/resource/Hawaii}
\]

source

Essentially two parameters are used: searchSubject and searchProperty. Omitting it will search both.

As an example, the URL

\[
\text{http://www.w3.org/TR/vocab-dcat/}
\]

searchVocabulary: Boolean value that defines whether to filter only vocabularies or datasets. Omitting it will search both.

As an example, the URI

\[
\text{http://www.w3.org/TR/vocab-dcat/}
\]

would return an array of JSON objects of all datasets which contains the DBpedia subject void:Linkset allows to retrieve RDF data in the format.

The request parameters to the API are two: descriptionFileURL which should contain the URL of the description file and format which contains the serialization format (available options are: ttl, nt, rdfxml or jsonld) of the description file. The REST API returns an array of JSON objects which contains a list of fetched distributions. Each JSON object describes the status of the streaming process, error messages and amount of triples read.

3.2 Finding data within a dataset

LODVader uses Boom filters to store indexes of subject, predicate and object. Thus, it’s possible to query whether a dataset or a vocabulary contains a particular resource. The parameters used are:

- **searchSubject**: Parameter used to find a particular subject resource in a dataset
- **searchProperty**: Parameter used to find a particular property resource in a dataset
- **searchObject**: Parameter used to find a particular object in a dataset. Note that literals are not allowed here.
- **searchVocabulary**: Boolean value that defines whether to filter only vocabularies or datasets. Omitting it will search both.

3.3 Retrieving VoID:linkset

We will also show in the presentation that LODVader also allows to retrieve RDF data in the void:Linkset format. Essentially two parameters are used: source and target dataset. Both parameters should have a value if the user wants to compare two specific datasets, otherwise only the source is mandatory. The described RDF includes the URI of the source dataset, target dataset, number of triples and the provenance using the the Prov-O ontology. The REST response should be a RDF represented using turtle format as shown in Figure 4.

3.4 Customized LOD Cloud graph

Next, we are going to show the visualization module (included in the front end GUI) and capability of browsing and creating customized LOD Cloud. The API allows to retrieve a JSON object where links between datasets are represented by edges and datasets are represented by vertices. This structure is useful when a customized diagram should be rendered. The parameters used are:

- **dataset**: The array of datasets that LODVader should crawl. The returned JSON object will contain the representation of the datasets consisting of the array plus the datasets which contains indegree and outdegree links.
- **linkType**: Describes the type of the retrieved links. Should be showLinks, showSimilarities or show-DarkLOD. Case the similarity option is chosen, two parameters (from and to) are optional and represent the similarity range (from 0 to 1).

Along with demonstrating the usage of the parameters, we will show the creation of a graph similar to the Figure 2 and demonstrate the usage of filters (e.g. how to filter vocabularies from the diagram) and the behavior of the graph when a dataset contains multiple subsets or distributions. The last feature to be presented in the visualization module is the Dark LOD Diagram and its features. We will show and explain how we create a cloud which contains only datasets with invalid links to debug the LOD Cloud. Figure 6 shows the above-mentioned options in the LODVader interface. Note that we also index vocabularies and treat a triple with rdf:type as a link between a dataset and its schema in LODVader.

4. EVALUATION

In order to evaluate the performance of the LODVader, we first compared indexing data using BF with HashMap Search (HS) and Binary Search Tree (BST) w.r.t. memory usage for each structure to index distributions. Secondly, we compared LODVader with OpenLink Virtuoso w.r.t. time to load and index triples, time to make searches, amount of data on the storage. We are aware that LODVader is not a triplestore, and do not store sufficient data do make a complete SPARQL query. However, making complexes
queries is out of the scope of our approach. All experiments were made using a Intel(R) Core(TM) i7-5600U @ 2.6GHz, 16GB DDR3 and SSD drive. The results (Figure 7) show main advantages of using BF w.r.t. the memory usage while varying the number of resources for each structure. The difference from HS and BST to BF is notable. Storing 8 million resources HS, and BST use over 0.5 GB of RAM memory. Considering that a regular dataset can easily have more than this number of triples, the usage of HS and BST is unfeasible. It is important to stress that Figure 7 shows the memory usage for loading only one structure. However, usually a dataset is compared with not only one, but multiple datasets, and memory efficiency is fundamental when multiple BF are loaded at the same time. BF fulfills its function using less than 34MB of memory, performing on average 12 times better than HS and 10 times better than BST.

Apart from measuring the precision of BFs, we used OpenLink Virtuoso to compare the performance in other aspects. We are aware that LODVader is not a triplestore, and do not store sufficient data do make a SPARQL query. Parsing complexes queries is out of the scope of our approach. Moreover, considering the huge gain in the matter of performance of making simples searches, and storage space, LODVader is appropriate to index and search large amount of RDF data.

To compare the efficiency of LODVader with OpenLink Virtuoso, we loaded 491 datasets with a total of 1,092,182,333 triples. There is a slightly difference between the number of loaded triples on LODVader and Virtuoso. LODVader loaded 1,092,182,333 triples and Virtuoso 1,034,808,229. This difference is due the fact that LODVader stores triples regardless whether they are repeated or not, dealing with all triples as unique. On the other hand, triplestores will not store the same triple twice, considering that it’s a graph structure. The problem is emphasized since each framework deals differently with erroneous data. For example, a bad RDF structure might be accepted by a particular framework, but completely ignored by others. Hence, when we deal with large amount of triples, it’s difficult to have the exact number of resources in different frameworks.

Table 1: Triple load time and disk usage of LODVader compared to Virtuoso. Virtuoso outperforms LODVader.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Virtuoso</th>
<th>LODVader</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load time</td>
<td>24:02:36h</td>
<td>06:32:01h</td>
<td>3.67x faster</td>
</tr>
<tr>
<td>Disk usage</td>
<td>84,28Gb</td>
<td>4.03Gb</td>
<td>95.2% less pace</td>
</tr>
</tbody>
</table>

5. ACKNOWLEDGEMENTS

This paper’s research activities were funded by grants from the FP7 & H2020 EU projects ALIGNED (GA-644055), LIDER (GA-610782), FREME (GA-644771), Smart Data Web (GA-01MD15010B) and CAPES foundation (Ministry of Education of Brazil) for the given scholarship (13204/13-0).

6. REFERENCES