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A B S T R A C T

The Web of Data has grown enormously over the last years. Currently,
it comprises a large compendium of linked and distributed datasets
from multiple domains. Due to the decentralised architecture of the
Web of Data, several of these datasets contain complementary data.
Running complex queries on this compendium thus often requires ac-
cessing data from different data sources within one query. The abun-
dance of datasets and the need for running complex query has thus
motivated a considerable body of work on SPARQL query federation
systems, the dedicated means to access data distributed over the Web
of Data.

This thesis addresses two key areas of federated SPARQL query
processing: (1) efficient source selection, and (2) comprehensive SPARQL
benchmarks to test and ranked federated SPARQL engines as well as
triple stores.
Efficient Source Selection: Efficient source selection is one of the
most important optimization steps in federated SPARQL query pro-
cessing. An overestimation of query relevant data sources increases
the network traffic, result in irrelevant intermediate results, and can
significantly affect the overall query processing time. Previous works
have focused on generating optimized query execution plans for fast
result retrieval. However, devising source selection approaches be-
yond triple pattern-wise source selection has not received much at-
tention. Similarly, only little attention has been paid to the effect of
duplicated data on federated querying. This thesis presents HiBIS-
CuS and TBSS, novel hypergraph-based source selection approaches,
and DAW, a duplicate-aware source selection approach to federated
querying over the Web of Data. Each of these approaches can be
combined directly with existing SPARQL query federation engines
to achieve the same recall while querying fewer data sources. We
combined the three (HiBISCuS, DAW, and TBSS) source selections
approaches with query rewriting to form a complete SPARQL query
federation engine named Quetsal. Furthermore, we present TopFed,
a Cancer Genome Atlas (TCGA) tailored federated query processing
engine that exploits the data distribution to perform intelligent source
selection while querying over large TCGA SPARQL endpoints. Fi-
nally, we address the issue of rights managements and privacy while
accessing sensitive resources. To this end, we present SAFE: a global
source selection approach that enables decentralised, policy-aware ac-
cess to sensitive clinical information represented as distributed RDF
Data Cubes.
Comprehensive SPARQL Benchmarks: Benchmarking is indispens-
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able when aiming to assess technologies with respect to their suitabil-
ity for given tasks. While several benchmarks and benchmark genera-
tion frameworks have been developed to evaluate federated SPARQL
engines and triple stores, they mostly provide a one-fits-all solution to
the benchmarking problem. This approach to benchmarking is how-
ever unsuitable to evaluate the performance of a triple store for a
given application with particular requirements. The fitness of current
SPARQL query federation approaches for real applications is difficult
to evaluate with current benchmarks as current benchmarks are ei-
ther synthetic or too small in size and complexity. Furthermore, state-
of-the-art federated SPARQL benchmarks mostly focused on a sin-
gle performance criterion, i.e., the overall query runtime. Thus, they
cannot provide a fine-grained evaluation of the systems. We address
these drawbacks by presenting FEASIBLE, an automatic approach for
the generation of benchmarks out of the query history of applications,
i.e., query logs and LargeRDFBench, a billion-triple benchmark for
SPARQL query federation which encompasses real data as well as
real queries pertaining to real bio-medical use cases.

Our evaluation results show that HiBISCuS, TBSS, TopFed, DAW,
and SAFE all can significantly reduce the total number of sources se-
lected and thus improve the overall query performance. In particular,
TBSS is the first source selection approach to remain under 5% over-
all relevant sources overestimation. Quetsal has reduced the number
of sources selected (without losing recall), the source selection time
as well as the overall query runtime as compared to state-of-the-art
federation engines. The LargeRDFBench evaluation results suggests
that the performance of current SPARQL query federation systems
on simple queries does not reflect the systems’ performance on more
complex queries. Moreover, current federation systems seem unable
to deal with many of the challenges that await them in the age of Big
Data. Finally, the FEASIBLE’s evaluation results shows that it gener-
ates better sample queries than the state-of-the-art. In addition, the
better query selection and the larger set of query types used lead to
triple store rankings which partly differ from the rankings generated
by previous works.
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1
I N T R O D U C T I O N

The Web of Data is now a large compendium of interlinked data
sets from multiple domains with large datasets [89] being added fre-
quently [67]. Given the complexity of information needs on the Web,
certain queries can only be answered by retrieving results contained
across different data sources (short: sources). Thus, the optimization
of engines that support this type of queries, called federated query en-
gines, is of central importance to ensure the usability of the Web of
Data in real-world applications.

Current federation engines however suffer of two main drawbacks:
First, the selection of sources remains sub-optimal. In addition, the
evaluation of the performance of federated engines remains a difficult
process as the benchmarks available for this purpose are not compre-
hensive. After a brief explanation of the general steps involved in
federated query processing, we present and discuss the need for effi-
cient source selection and more comprehensive SPARQL benchmarks
in more detail. This thesis’ contributions are presented subsequently.
Finally, a short introduction of each of the chapters is provided.

1.1 federated sparql query processing

Query Results

Source1 Source2 Source3 Source4

RDF RDF RDF RDF

Parsing

Source Selection

Federator Optimizer

Integrator

Federation
Engine

Sub-queries

Figure 1: General Steps Involved in Federated SPARQL Query Processing.

Figure 1 shows the general steps involved in a federated SPARQL
query processing. Given a SPARQL query, the first step is to parse

1
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the query and get the individual triple patterns. The next step is the
source selection; the goal of the source selection is to identify the
set of relevant (also called capable) sources for the query. Using the
source selection information, the federator divides the original query
into multiple sub-queries. An optimized sub-query execution plan is
generated by the optimizer and the sub-queries are forwarded to the
corresponding data sources. The results of the sub-queries are then
integrated by the integrator. The integrated results is finally returned
to the agent that issued the query.

1.2 the need for efficient source selection

One of the important optimization steps in federated SPARQL query
processing is the efficient selection of relevant sources for a query. To
ensure that a recall of 100% is achieved, most SPARQL query feder-
ation approaches [27; 57; 70; 94; 100; 77] perform a triple pattern-wise
source selection (TPWSS). The goal of TPWSS is to identify the set of rel-
evant sources against individual triple patterns of a query [77]. How-
ever, it is possible that a relevant source does not contribute to the fi-
nal result set of the complete query. This is because the results from a
particular data source can be excluded after performing joins with the
results of other triple patterns contained in the same query. An over-
estimation of such sources increases the network traffic by retrieving
irrelevant intermediate results and can significantly affect the overall
query processing time due to sub-optimal query execution plan se-
lection. In the next paragraph, we present an example of such query
from FedBench [91], a well-known benchmark for SPARQL query fed-
eration.

Consider the FedBench query named LS2 shown in Listing 1. Imag-
ine for the sake of simplicity that we only had the four FedBench
sources presented in Figure 2. Note the data in each dataset is real,
the query is taken directly from FedBench and we are thus talking
about a real scenario. A TPWSS (e.g., [27; 70; 94; 100]) that retrieves
all relevant sources for each individual triple pattern would lead to
all sources in the benchmark being queried. This is because the third
triple pattern (?caff ?predicate ?object) can be answered by all of
the datasets. Yet, the complete result set of the query given in Listing
1 can be computed by only querying DrugBank and DBpedia due to
the object-subject join on ?caff used in the query. This is because the
results from the other two data source (i.e., ChEBI and Semantic Web
Dog Food SWDF) will be excluded after performing joins between the
results of the last two triple patterns of the query.

In the following chapters, we will carry on with this example and
show how the approaches we developed, i.e., HiBISCuS partially (by
selecting 3 instead of 4 sources) while TBSS completely (by select-
ing the optimal number of sources, i.e., 2) solved this problem for
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1 PREFIX drugbank-drug: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugs/>
2 PREFIX owl: <http://www.w3.org/2002/07/owl#>
3 SELECT ?predicate ?object
4 WHERE
5 {
6 { drugbank-drug:DB00201 ?predicate ?object . } //DrugBank
7 UNION
8 {
9 drugbank-drug:DB00201 owl:sameAs ?caff . //DrugBank

10 ?caff ?predicate ?object . //DrugBank, DBpedia, ChEBI, SWDF
11 }
12 }

Listing 1: Efficient Source Selection Example. FedBench query LS2: Find
all properties of Caffeine in Drugbank. Find all entities from all
available databases describing Caffeine, return the union of all
properties of any of these entities.

the given query. If we had data duplicates (which is not the case
in FedBench) then we could combine DAW with TBSS to further
prune those sources which contains duplicate data for the given input
query [77].

1.3 the need for more comprehensive sparql benchmarks

Comprehensive SPARQL benchmarks are mandatory to position new
SPARQL query processing systems against existing and help appli-
cation developers when choosing appropriate systems for a given
application. Moreover, benchmark results provide useful insights for
system developers and empower them to improve current as well
as to develop better systems. However, current SPARQL benchmarks
(e.g., [3; 17; 32; 63; 91; 93; 102]) either rely on synthetic data, rely on
synthetic queries or are simple in complexity and mostly focus on a
limited number of performance criteria.

While synthetic benchmarks allow generating datasets of virtually
any size, they often fail to reflect reality [25]. In particular, previous
works [25] point out that artificial benchmarks are typically highly
structured while real Linked Data sources are less structured. More-
over, synthetic queries most commonly fail to reflect the characteris-
tics of the real queries (i.e., they should show typical requests on the
underlying datasets) [8; 68]. Thus, synthetic benchmark results are
rarely sufficient to extrapolate the performance of federation engines
when faced with real data and real queries. A trend towards bench-
marks with real data and real queries (e.g., FedBench [91], DBPSB [63],
BioBenchmark [102]) has thus been pursued over the last years but
has so far not been able to produce federated SPARQL query bench-
marks that reflect the data volumes and query complexity that feder-
ated query engines already have to deal with on the Web of Data.

The current benchmarks for SPARQL query execution mostly fo-
cused on a single performance criterion, i.e., the query execution
time. Thus, they fail to provide results that allow a more fine-grained
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@PREFIX drugbank-drug:

<http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugs/>.

@PREFIX drugbank-ref:

<http://www4.wiwiss.fu-berlin.de/drugbank/resource/references/>.

@PREFIX dbpedia-resource: <http://dbpedia.org/resource/>.

@PREFIX bio2rdf-pubmed: <http://bio2rdf.org/pubmed>.

drugbank-drug:DB00201 owl:sameAs dbpedia-resource:Caffeine.

drugbank-ref:1002129 owl:sameAs bio2rdf-pubmed:1002129.

(a) DrugBank

@PREFIX dbpedia-resource: <http://dbpedia.org/resource/>.

dbpedia-resource:Caffeine foaf:name "Caffeine" .

dbpedia-resource:AC_Omonia foaf:name "AC_Omonia" .

(b) DBpedia

@PREFIX bio2rdf-chebi: <http://bio2rdf.org/chebi:>.

bio2rdf-chebi:21073 chebi:Status bio2rdf-chebi:status-C .

bio2rdf-chebi:21073 rdf:type bio2rdf-chebi:Compound .

(c) ChEBI

@PREFIX swdf-person: <http://data.semanticweb.org/person/>.

@PREFIX foaf: <http://xmlns.com/foaf/0.1/>.

swdf-person:steve-tjoa foaf:name "Steve Tjoa"

(d) Semantic Web Dog Food

Figure 2: Motivating Example. FedBench selected datasets slices. Only rele-
vant prefixes are shown.
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Query Results

Source1 Source2 Source3 Source4
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Figure 3: Contributions of this thesis.

evaluation of SPARQL query processing systems to detect the com-
ponents of systems that need to be improved [62; 87]. For example,
performance metrics such as the completeness and correctness of result
sets and the effectiveness of source selection both in terms of total num-
ber of data sources selected, and the corresponding source selection time
(which both have a direct impact on the overall query performance)
are not addressed in the existing federated SPARQL query bench-
marks [62; 87].

1.3.1 Contributions

Figure 3 highlights the contributions of this thesis, which addresses
problems pertaining to the need for efficient source selection and
more comprehensive SPARQL benchmarks as follows:

1. We present HiBISCuS [87], a novel hypergraph based source
selection approach which relies on the authority1 fragment of
URIs. HiBISCuS overall relevant sources overestimation is 11.8%
(4 times less than FedX [94] and SPLENDID [27]) on FedBench.

2. We present TBSS [88], a novel source selection algorithm based
on labelled hypergraphs. TBSS make use of a novel type of
data summaries for SPARQL endpoints which relies on most
common prefixes for URIs. TBSS is the first source selection ap-
proach to remain under 5% overall relevant sources overestima-
tion.

3. We present DAW [77], a duplicate-aware approach for federated
query processing over the Web of Data. DAW uses a combi-
nation of min-wise independent permutations (MIPs) [20] and

1 URIs Authorities: https://www.ietf.org/rfc/rfc3986.txt
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6 introduction

triple selectivity information to estimate the overlap between
the results of different sources. DAW has successfully improved
the query execution time of the existing federation engines up
to 16%.

4. We propose Quetsal [88], that combines three (HiBISCuS, DAW,
and TBSS) source selections approaches with query rewriting to
form a complete SPARQL query federation engine. We compare
Quetsal with state-of-the-art federate query engines (FedX [94],
SPLENDID [27], ANAPSID [1], and SPLENDID+HiBISCus [87]).
Our results show that we have reduced the number of sources
selected (without losing recall), the source selection time as well
as the overall query runtime by executing many remote joins
(i.e., joins shipped to SPARQL endpoints).

5. We present TopFed [90], a specialized TCGA federated query
processing engine that exploits the data distribution to perform
intelligent source selection while querying over large TCGA
SPARQL endpoints. TopFed overall query execution time is half
to that of FedX on TCGA queries and endpoints.

6. We present SAFE [52], a novel source selection approach that
provides policy-based access to sensitive statistical data repre-
sented as distributed RDF Data Cubes. The results shows that
SAFE has significantly outperformed FedX in all queries in the
context of the presented use-cases.

7. We present LargeRDFBench [79], an open-source benchmark for
SPARQL endpoint query federation. To the best of our knowl-
edge, this is the first federated SPARQL query benchmark with
real data (from multiple interlinked datasets pertaining to dif-
ferent domains) to encompass more than 1 billion triples. The
fine-grained evaluation conducted in LargeRDFBench allows us
to pinpoint the restrictions of current SPARQL endpoint federa-
tion systems when faced with large datasets, large intermediate
results and large result sets. We show that the current ranking
of these systems based on simple queries differs significantly
from their ranking when on more complex queries.

8. Finally, we present FEASIBLE [78], the first structure- and data-
driven feature-based benchmark generation approach from real
queries. We show that the performance of triple stores varies
greatly across the four basic forms of SPARQL query. Moreover,
the features used by FEASIBLE allow for a more fine-grained
analysis of the results of benchmarks.

[ 21. Mai 2016 at 23:41 – classicthesis version 4.1 ]



1.4 chapter overview 7

1.4 chapter overview

Chapter 2 introduces the basic concepts and notation that are neces-
sary to understand the rest of this thesis. The notation presented in
this chapter is used throughout the thesis.

Chapter 3 is based on [84], [78] and discusses the state-of-the-art
research work related to this thesis. In particular, Chapter 3 provides
a fine-grained evaluation of SPARQL endpoint federation systems.
The pros and cons of state-of-the-art SPARQL federation systems are
discussed in detail.

Chapter 4 is based on [87] and introduces HiBISCuS, a labelled-
hypergraph-based source selection approach which relies on a novel
type of data summaries for SPARQL endpoints using the URIs au-
thorities. In the beginning of the chapter, we present the formal frame-
work for modelling SPARQL queries as directed labelled hypergraphs.
Afterwards, it explains the data summaries used by the approach
followed by the source selection and pruning algorithms. Lastly, the
evaluation setup and results are discussed in details.

Chapter 5 is based on [88] and provides the details of TBSS (a trie-
based join-aware source selection approach) and QUETSAL (a com-
plete SPARQL query federation engine based on TBSS, HiBiSCuS and
DAW). Some of HiBISCuS’ limitations are addressed in TBSS by us-
ing common name spaces instead of URIs authorities. The TBSS index
is discussed next, followed by the source pruning algorithm. Finally,
QUETSAL’s SPARQL 1.1 query rewriting is explained and the evalu-
ation results are discussed.

Chapter 6 is based on [77] and explains the details of DAW, a
duplicate-aware source selection approach for SPARQL query feder-
ation over multiple endpoints. Min-wise independent permutations
and the DAW index are explained first, followed by DAW’s triple
pattern-wise source skipping algorithm. Eventually, the results are
discussed in details.

Chapter 7 is based on [52] and introduces SAFE, the first (to the best
of our knowledge) access policy-based source selection approach for
SPARQL endpoint federation. The approach is motivated by provid-
ing concrete use cases. The SAFE index and source selection approach
is discussed in details. Finally, the evaluation setup and the results are
compared with FedX.

Chapter 8 is based on [90] and explains TopFed, a personalized
TCGA federation engine which keeps the data locality information
in its index. The work is motivated by providing important biolog-
ical queries, followed by the details of TCGA data conversion and
distribution. TopFed’s index and the source selection algorithm are
explained next and eventually the results are discussed.

Chapter 9 is based on [79] and provides the details of LargeRDF-
Bench, a benchmark for SPARQL endpoint federation. A detail com-
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parison of the state-of-the-art federated SPARQL benchmarks is pro-
vided. The benchmark datasets and queries are discussed next, fol-
lowed by the evaluation results.

Chapter 10 is based on [78] and introduces FEASIBLE, a feature-
based SPARQL benchmark generation framework. The chapter starts
by providing a detailed compassion of the state-of-the-art benchmarks,
designed for triple stores evaluations. Next, the benchmark genera-
tion framework is explained. Finally, a detailed comparison of the
triple stores evaluation is presented and results are discussed.

Finally, Chapter 11 concludes this work and proposes some future
work in related areas of research.

[ 21. Mai 2016 at 23:41 – classicthesis version 4.1 ]



2
B A S I C C O N C E P T S A N D N O TAT I O N

This chapter comprises two main parts: (1) we give a brief introduc-
tion to the Semantic Web, its core building blocks such as as URIs,
RDF(S) and OWL. Furthermore, we will present SPARQL, a formal
language to query RDF datasets and the RDF triple stores, (2) we
provide formal definitions and notation to the key concepts used
throughout this thesis.

2.1 semantic web

The current Web contains a vast amount of information, which in gen-
eral, could only be understood by humans. Semantic Web is an exten-
sion of the current Web that provides an easier way to find, share,
reuse and combine information. It empowers machines to not only
present but also to process these information.

Tim Berners-Lee outlined this concept in [14] as follows:

“The Semantic Web is not a separate Web but an extension
of the current one, in which information is given well-
defined meaning, better enabling computers and people
to work in cooperation.”

According to the World Wide Web Consortium (W3C):

“The Semantic Web provides a common framework that
allows data to be shared and reused across application, en-
terprise, and community boundaries. It is a collaborative
effort led by W3C with participation from a large number
of researchers and industrial partners.”

In the following, we explain the building blocks of the Semantic
Web.

2.1.1 URIs, RDF

uniform resource identifier Uniform Resource Identifiers
(URIs) build the foundation of the Semantic Web technology. Using
URIs we can unambiguously define and reference abstract as well as
concrete concepts on a global level. RFC 3986

1 defines the generic
syntax for URIs. This generic URI syntax consists of a hierarchical
sequence of components referred to as the scheme, authority, path,
query, and fragment and can be seen in Figure 4.

1 http://tools.ietf.org/html/rfc3986

9
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10 basic concepts and notation

Figure 4: An example URI and its component parts from RFC 3986

The scheme and hierarchy-part parts are mandatory, whereas the
query and fragment parts are optional. In the context of the Seman-
tic Web, URIs are used to define concepts like places, organizations
or persons but also to define relationships between those concepts,
e.g. person-was-born-in-city, globally and unambiguously. Our contri-
butions, i.e., HiBISCuS [87] (ref. Chapter 4), TBSS [88] (ref. Chapter 5),
LargeRDFBench [79] (ref. Chapter 9), and FEASIBLE [78] (ref. Chap-
ter 10) make use of the URIs authorities both for efficient source se-
lection as well as for SPARQL benchmark creation.

resource description framework The Resource Description
Framework (RDF) is a language to express information or assertions
about resources. It is basically a collection of standards [53; 40; 58; 19;
12; 31] released as W3C recommendations. The assertions, which are
typically called triple in the RDF data model, consist of the following
three components:

subject : The resource over which an assertion is made. Only URIs
and blank nodes2 are allowed to be used as subject of a triple.

predicate : An attribute of a resource or a binary relation which
links this resource to another one. Only URIs are valid to be
used as predicate of a triple.

object : Typically, the attribute value or another resource. Valid ob-
jects are URIs and blank nodes, but also strings. These strings,
also called literals, can be typed or untyped.

Table 1 shows more RDF statements about the resource Muham-
mad Saleem. The table shows that the resource Muhammad Saleem
is the subject of other statements, which give more details about that
resource. Also, note that the object of the second and fifth statement
(a number and a date) has a trailing datatype. Since URIs can be large,
there is a short format for writing them, i.e., by using a prefix. For in-
stance, if we use http://aksw.org/ as a prefix and give it a label e.g.
aksw, then resource http://aksw.org/MuhammadSaleem can be written
as aksw:MuhammadSaleem. Similarly, if http://xmlns.com/foaf/0.1/

2 A blank node, also call anonymous node, is only unambiguous in a local context. It is
typically used to group assertions.
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Subject Predicate Object

aksw:MuhammadSaleem rdf:type foaf:Person

aksw:MuhammadSaleem foaf:age "31"^^xsd:int

aksw:MuhammadSaleem foaf:skypeID "saleem.muhammd"

aksw:MuhammadSaleem foaf:birthday "1984-03-03"^^xsd:date

aksw:MuhammadSaleem foaf:name "Muhammad Saleem"@en

Table 1: Sample RDF statements.

is used as a prefix with label foaf, then the property http://xmlns.

com/foaf/0.1/name can be written as foaf:name in short form. This
format is very useful in writing human-readable RDF statements.

2.1.2 SPARQL Query Language

“The SPARQL Protocol and RDF Query Language (SPARQL) is a
query language and protocol for RDF.” [24]. SPARQL is a W3C stan-
dard and it is used to query RDF data. A SPARQL query is a combina-
tion of triple patterns, their conjunctions (logical “and”), disjunctions
(logical “or”) and/or a set of optional patterns [101]. A triple pattern
is a triple containing subject, predicate, and object parts. The subject
can only be a URI, variable, or blank node. The predicate part can
only be an IRI3 (we call it URI for simplicity), or variable, and object
can be URI, Blank node, variable, or literal. Note in RDF, a blank node
(also called bnode) is a node in an RDF graph representing a resource
for which a URI or literal is not given. The resource represented by a
blank node is also called an anonymous resource. Examples of the
optional patterns are: FILTER, REGEX and LANG. The official syntax
of SPARQL 1.04 considers operators OPTIONAL, UNION, FILTER, GRAPH,
SELECT and concatenation via a point symbol (.), to construct graph
pattern expressions (also called Basic Graph Patterns BGPs). Operators
SERVICE and BINDINGS are introduced in the SPARQL 1.15 federation
extension, the former for allowing users to direct a portion of a query
to a particular SPARQL endpoint, and the latter for transferring re-
sults that are used to constrain a query. The syntax of the language
also considers { } to group patterns, and some implicit rules of prece-
dence and association [7]. The results of SPARQL queries can be re-
sult sets or RDF graphs. SPARQL has four query forms, specifically
SELECT, CONSTRUCT, ASK and DESCRIBE [69].

As an example, assume that we want to ask the query “What is
the date of birth and Skype id of Muhammad Saleem” to our small
knowledge base given in Table 1. Figure 2 shows a SPARQL query to

3 http://www.w3.org/TR/rdf-sparql-query/#sparqlSyntax

4 http://www.w3.org/TR/rdf-sparql-query/

5 http://www.w3.org/TR/sparql11-overview/
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1 PREFIX aksw: <http://aksw.org/>
2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
3 SELECT ?birthday ?skypeID
4 WHERE
5 {
6 aksw:MuhammadSaleem foaf:birthday ?birthday . //T.P.1
7 aksw:MuhammadSaleem foaf:skypeID ?skypeID . //T.P.2
8 }

Listing 2: SPARQL query to get the the date of birth and Skype id of
Muhammad Saleem.

get the required information. This query contains two triple patterns
(i.e., T.P.1, T.P.2).

Lines 1 and 2 define prefixes in order to write URIs in their short
forms. Line 3 declares the variables that should be rendered to the out-
put of that query, which are two variables ?birthday and ?skypeID.
SPARQL variables start either with a question mark “?”, or with
a dollar sign “$”. Line 6 states that for the statement with subject
aksw:MuhammadSaleem and property foaf:birthday, we want the value
of its object to be assigned to a variable called ?birthday. Upon execu-
tion, this variable will take the value of "1984-03-03"^^xsd:date. The
same process is repeated for Line 6 and the results of the projection
variables are returned.

2.1.3 Triplestore

Triplestores are used to store RDF data. A triplestore is basically
a software program capable of storing and indexing RDF data effi-
ciently, in order to enable querying this data easily and effectively. A
triplestore for an RDF data is like Relational Database Management
System (DBMS) for relational databases.

Most triplestores support SPARQL query language for querying
RDF data. Virtuoso6, Sesame7, Fuseki 8 and GraphDB9 are well-known
commercial examples of triplestores for desktop and server comput-
ers. Since ubiquitous devices usually have less powerful CPU and
smaller memory size, there are special version of triplestores that are
built to be used on such low-power devices. Androjena10, RDF On
The Go11, µJena12 and OpenSesame13 are examples of such triple-
stores.

Now we provide the list of basic notation and formal definitions
used throughout this thesis.

6 http://virtuoso.openlinksw.com/

7 http://rdf4j.org/sesame/2.8/docs/using+sesame.docbook?view

8 http://jena.apache.org/documentation/serving_data/

9 http://ontotext.com/products/ontotext-graphdb/

10 http://code.google.com/p/androjena/

11 http://code.google.com/p/rdfonthego/

12 http://poseidon.ws.dei.polimi.it/ca/?page_id=59

13 http://bluebill.tidalwave.it/mobile/
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2.2 sparql syntax , semantic and notation

In this section we define the syntax and semantics of SPARQL. Note
we are only focusing on the formalizations and notation, necessary to
understand the thesis related key concepts and that are used through-
out the remaining of this thesis. Note we used some of the definitions
from [7].

Definition 1 (RDF Term, RDF Triple and Data Source) Assume there
are pairwise disjoint infinite sets I, B, and L (IRIs, Blank nodes, and Liter-
als, respectively). Then the RDF term RT = I∪ B∪ L. The triple (s,p,o) ∈
(I∪ B)× I× (I∪ B∪ L) is called an RDF triple, where s is called the sub-
ject, p the predicate and o the object. An RDF data set or data source d
is a set of RDF triples d = {(s1,p1,o1), . . . , (sn,pn,on)}.

Definition 2 (Query Triple Pattern and Basic Graph Pattern) By us-
ing Definition 1 and assume an infinite set V of variables. A tuple t ∈
(I ∪ L ∪ V ∪ B) × (I ∪ V) × (I ∪ L ∪ V ∪ B) is a triple pattern. A Basic
Graph Pattern is a finite set of triple patterns.

Definition 3 (Basic Graph Pattern syntax) The syntax of a SPARQL Ba-
sic Graph Pattern BGP expression is defined recursively as follows:

1. A tuple from (I ∪ L ∪ V ∪ B)× (I ∪ V)× (I ∪ L ∪ V ∪ B) is a graph
pattern (a triple pattern).

2. The expressions (P1 AND P2), (P1 OPTIONAL P2) and (P1 UNION
P2) are graph patterns, if P1 and P2 are graph patterns.

3. The expression (P FILTER R) is a graph pattern, if P is a graph pattern
and R is a SPARQL constraint or filter expression.

Definition 4 (Solution Mapping) A mapping µ from V to RT is a partial
function µ : V → RT where RT = (I ∪ B ∪ L). For a triple pattern t, we
denote by µ(t) the pattern obtained by replacing the variables in t according
to µ. The domain of µ, denoted by dom(µ), is the subset of V where µ is
defined. We sometimes write down concrete mappings in square brackets, for
instance, µ = [?X → a, ?Y → b] is the mapping with dom(µ) = {?X, ?Y}
such that, µ(?X) = a and µ(?Y) = b.

Definition 5 (Triple Pattern Matching) Let d be a data source with set
of RDF terms RT , and t a triple pattern of a SPARQL query. The evaluation
of t over d, denoted by [[t]]d is defined as the set of mappings [[t]]d = {µ :

V → RT |dom(µ) = var(P)andµ(P) ⊆ d}. If µ ∈ [[t]]d, we say that µ is
a solution for t in d. If a data source d has at least one solution for a triple
pattern t, then we say d matches t.

Definition 6 (Relevant Source and Set) A data source d ∈ D is rele-
vant (also called capable) for a triple pattern ti ∈ T if at least one triple
contained in d matches ti. The relevant source set Ri ⊆ D for ti is the set
that contains all sources that are relevant for that particular triple pattern.
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Definition 7 (Triple Pattern-wise Source Selection) The goal of the Triple
Pattern-wise Source Selection (TPWSS) is to identify the set of relevant
sources against individual triple patterns of a query.

Definition 8 (Total Triple Pattern-wise Sources Selected) Let q = {t1, . . . , tm}

be a SPARQL query containing triple patterns t1, . . . , tm, R = {Rt1 , . . . ,Rtm}
be the corresponding relevance set containing relevant data sources sets
Rt1 , . . . ,Rtm for triple patterns t1, . . . , tm, respectively. We define TTP-
WSS = ∀Rti∈R

∑
|Rti | be the total triple pattern-wise sources selected for

query q, i.e., the sum of the magnitudes of relevant data sources sets over all
individual triple patterns q.

The total triple pattern-wise sources selected for the query given in
Listing 1 is six, i.e., a single source for first two triple patterns and
four sources for the last triple pattern, summing up to a total of six
sources.

Definition 9 (Number of Sources Span) The number of sources that po-
tentially contribute to the query result set (sources span for short) are those
that are relevant to at least one triple pattern in the query. However, since
triple patterns with common query predicates such as rdf:type and owl:sameAs

are likely to be found in all data sources (i.e., all sources are relevant), we
only count a source if it is also relevant to at least one more triple pattern
in the same query.

SPARQL Query as Directed Hypergraph

We represent each basic graph pattern (BGP) of a SPARQL query as
a directed hypergraph (DH). Note this is one of the contribution of
HiBISCuS [87] presented in Chapter 4. We chose this representation
because it allows representing property-property joins, which previ-
ous works [3; 30] do not allow to model. The DH representation of a
BGP is formally defined as follows:

Definition 10 Each basic graph patterns BGPi of a SPARQL query can be
represented as a DH HGi = (V ,E, λvt), where

• V = Vs ∪ Vp ∪ Vo is the set of vertices of HGi, Vs is the set of all
subjects in HGi, Vp the set of all predicates in HGi and Vo the set of
all objects in HGi;

• E ={e1,. . . , et}⊆ V3 is a set of directed hyperedges (short: edge). Each
edge e= (vs,vp,vo) emanates from the triple pattern <vs, vp, vo> in
BGPi. We represent these edges by connecting the head vertex vs with
the tail hypervertex (vp, vo). We use Ein(v) ⊆ E and Eout(v) ⊆ E
to denote the set of incoming and outgoing edges of a vertex v;

• λvt is a vertex-type-assignment function. Given a vertex v ∈ V , its
vertex type can be ’star’, ’path’, ’hybrid’, or ’sink’ if this vertex partic-
ipates in at least one join. A ’star’ vertex has more than one outgoing
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1 SELECT DISTINCT * WHERE
2 {
3 ?drug :description ?drugDesc.
4 ?drug :drugType :smallMolecule.
5 ?drug :keggCompoundId ?compound.
6 ?enzyme :xSubstrate ?compound.
7 ?Chemicalreaction :xEnzyme ?enzyme.
8 ?Chemicalreaction :equation ?ChemicalEquation.
9 ?Chemicalreaction :title ?ReactionTitle .

10 }

Listing 3: Example SPARQL query. Prefixes are ignored for simplicity

: drugType
: small
Molecule

Drug
: descri−
ption

drug
Desc

: keggCo−
mpoundId

compound : xSubs−
tract

: xEnzyme enzyme

Chemical
Reaction

: equation
Chemical
Equation

Tail of hyperedge

: title

Reaction
T itle

Simple Star Path Sink

Figure 5: DH representation of the SPARQL query given in Listing

edge and no incoming edge. A ’path’ vertex has exactly one incoming
and one outgoing edge. A ’hybrid’ vertex has either more than one in-
coming and at least one outgoing edge or more than one outgoing and
at least one incoming edge. A ’sink’ vertex has more than one incom-
ing edge and no outgoing edge. A vertex that does not participate in
any join is of type ’simple’.

The representation of a complete SPARQL query as a DH is the
union of the representations of query’s BGPs. As an example, the
DH representation of the query in Listing 3 is shown in Figure 5.
Based on the DH representation of SPARQL queries we can define
the following features of SPARQL queries:

Definition 11 (Number of Triple Patterns) From Definition 10, the to-
tal number of triple patterns in a BGPi is equal to the number of hyperedges
|E| in the DH representation of the BGPi.

Definition 12 (Number of Join Vertices) Let ST ={st1,. . . , stj} be the
set of vertices of type ’star’, PT ={pt1,. . . , ptk} be the set of vertices of type
’path’, HB ={hb1,. . . , hbl} be the set of vertices of type ’hybrid’, and SN
={sn1,. . . , snm} be the set of vertices of type ’sink’ in a DH representation
of a SPARQL query, then the total number of join vertices in the query #JV
= |ST |+ |PT |+ |HB|+ |SN|.
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Definition 13 (Join Vertex Degree) Based on the DH representation of
SPARQL queries, the join vertex degree of a vertex v is JVD(v) = |Ein(v)|+

|Eout(v)|, where Ein(v) resp Eout(v) is the set of incoming resp. outgoing
edges of v.

Definition 14 (Triple Pattern Selectivity) Let tpi be a triple pattern and
d be a relevant source for tpi. Furthermore, let N be the total number of
triples in d and Nm be the total number of triples in d that matches tpi,
then the selectivity of tpi w.r.t. d is Sel(tpi,d) = Nm/N.
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3
S TAT E O F T H E A RT

This chapter is based on [84], [78] and discusses the state-of-the-art re-
search work related to this thesis. In particular, this chapter provides a
fine-grained evaluation of SPARQL endpoint federation systems. Fur-
thermore, the chapter presents the results of a public survey which
provides a crisp overview of categories of SPARQL federation sys-
tems as well as their implementation details, features, and supported
SPARQL clauses. The pros and cons of state-of-the-art SPARQL fed-
eration systems are discussed in details. We address some of the
key shortcomings (in particular those related to source selection and
benchmarking) of the existing approaches in this thesis and present
the corresponding results in the subsequent chapters.

Given the importance of federated query processing over the Web
of Data, it is critical to provide fine-grained evaluations to assess
the quality of state-of-the-art implementations of federated SPARQL
query engines by comparing them against common criteria through
an open benchmark. Such fine-grained evaluation results are valu-
able when positioning new federation systems against existing. In
addition, these results help application developers when choosing
appropriate systems for a given application as they allow them to se-
lect federation systems through a comparison of their performance
against their criteria of interest. Moreover, such fine-grained results
provide useful insights for system developers and empower them to
improve current federation systems as well as to develop better sys-
tems.

Current evaluations [1; 27; 61; 73; 89; 94; 100] of SPARQL query fed-
eration systems compare some of the federation systems based on the
central criterion of overall query runtime. While optimizing the query
runtime of federation systems is the ultimate goal of the research per-
formed on this topic, the granularity of current evaluations fails to
provide results that allow understanding why the query runtimes of
systems can differ drastically and are thus insufficient to detect the
components of systems that need to be improved. For example, key
metrics such as a smart source selection in terms of the total number of
data sources selected, the total number of SPARQL ASK requests used, and
the source selection time have a direct impact on the overall query per-
formance but are not addressed in the existing evaluations. For exam-
ple, the over-estimation of the total number of relevant data sources
will generate extra network traffic, may result in increased query exe-
cution time. The SPARQL ASK queries returns boolean value indicat-
ing whether a query pattern matches or not. The greater the number

17
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of SPARQL ASK requests used for source selection, the higher the
source selection time and therefore overall query execution time. Fur-
thermore, as pointed out by [62], the current testbeds [17; 63; 92; 93]
for evaluating, comparing, and eventually improving SPARQL query
federation systems still have some limitations. Especially, the parti-
tioning of data as well as the SPARQL clauses used cannot be tailored
sufficiently, although they are known to have a direct impact on the
behaviour of SPARQL query federation systems.

The aim of this chapter is to experimentally evaluate a large num-
ber of SPARQL 1.0 query federation systems within a more fine-
granular setting in which we can measure the time required to com-
plete different steps of the SPARQL query federation process. To
achieve this goal, we conducted a public survey1 and collected in-
formation regarding 14 existing federated system implementations,
their key features, and supported SPARQL clauses. Eight of the sys-
tems which participated in this survey are publicly available. How-
ever, two out of the eight with public implementation do not make
use of the SPARQL endpoints and were thus not considered further in
this study. Note this thesis is based on query federation over multiple
SPARQL endpoints or SPARQL endpoint federation for short.

In the next step and like in previous evaluations, we compared the
remaining six systems [1; 27; 57; 70; 94; 100] with respect to the tradi-
tional performance criterion that is the query execution time using the
commonly used benchmark FedBench. In addition, we also compared
these six systems with respect to their answer completeness, source se-
lection approach in terms of the total number of sources they selected,
the total number of SPARQL ASK requests they used and source selection
time. For the sake of completeness, we also performed a comparative
analysis (based on the survey outcome) of the key functionality of
the 14 systems which participated in our survey. Furthermore, we
also discussed the systems that did not participate or published after
the survey. The most important outcomes of this survey are presented
in Section 3.3.2

To provide a quantitative analysis of the effect of data partition-
ing on the systems at hand, we extended both FedBench [92] and
SP2Bench [93] by distributing the data upon which they rely. To this
end, we used the slice generation tool3 described in [77]. This tool al-
lows creating any number of subsets of a given dataset (called slices)
while controlling the number of slices, the amount of overlap be-
tween the slices as well as the size distribution of these slices. The re-
sulting slices were distributed across various data sources (SPARQL
endpoints) to simulate a highly federated environment. In our ex-
periments, we made use of both FedBench [92] and SP2Bench [93]

1 Survey: http://goo.gl/iXvKVT, Results: http://goo.gl/CNW5UC
2 All survey responses can be found at http://goo.gl/CNW5UC.
3 https://code.google.com/p/fed-eval/wiki/SliceGenerator
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queries to ensure that we cover the majority of the SPARQL query types
and clauses.

Our main contributions of this chapter are summarized as follows:

• We present the results of a public survey which allows us to pro-
vide a crisp overview of categories of SPARQL federation sys-
tems as well as provide their implementation details, features,
and supported SPARQL clauses.

• We present (to the best of our knowledge) the most compre-
hensive experimental evaluation of open-source SPARQL fed-
erations systems in terms of their source selection and overall
query runtime using in two different evaluation setups.

• Along with the central evaluation criterion (i.e., the overall query
runtime), we measure three further criteria, i.e., the total num-
ber of sources selected, the total number of SPARQL ASK re-
quests used, and the source selection time. By these means, we
obtain deeper insights into the behaviour of SPARQL federation
systems.

• We extend both FedBench and SP2Bench to mirror highly dis-
tributed data environments and test SPARQL endpoint federa-
tion systems for their parallel processing capabilities.

• We provide a detailed discussion of experimental results and re-
veal novel insights for improving existing and future federation
systems.

• Our survey results points to research opportunities in the area
of federated semantic data processing.

The rest of this chapter is structured as follows: In Section 3.1, we
give an overview of existing federated SPARQL query system eval-
uations. Here, we focus on the description of different surveys/e-
valuations of SPARQL query federation systems and argue for the
need of a new fine-grained evaluation of federated SPARQL query
engines. Section 3.2 gives an overview of benchmarks for SPARQL
query processing engines. In addition, we provide reasons for our
benchmark selection in this evaluation. Section 3.3 provides a detailed
description of the design of and the responses to our public survey
of the SPARQL query federation. Section 3.4 provides an introduc-
tion to selected approaches for experimental evaluation. Section 3.6
describes our evaluation framework and experimental results, includ-
ing key performance metrics, a description of the used benchmarks
(FedBench, SP2Bench, SlicedBench), and the data slice generator. Fi-
nally, Section 3.7 provides our further discussion of the results.
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3.1 federation systems evaluations

Several SPARQL query federation surveys have been developed over
the last years. Rakhmawati et al. [73] present a survey of SPARQL end-
point federation systems in which the details of the query federation
process along with a comparison of the query evaluation strategies
used in these systems. Moreover, systems that support both SPARQL
1.0 and SPARQL 1.1 are explained. However, this survey do not pro-
vide any experimental evaluation of the discussed SPARQL query
federation systems. In addition, the system implementation details
resp. supported features are not discussed in much detail. We ad-
dress these drawbacks in Tables 3 resp. 4. Hartig et al. [36] provide a
general overview of Linked Data federation. In particular, they intro-
duce the specific challenges that need to be addressed and focus on
possible strategies for executing Linked Data queries. However, this
survey do not provide an experimental evaluation of the discussed
SPARQL query federation systems. Umbrich et al. [45] provide a de-
tailed study of the recall and effectiveness of Link Traversal Query-
ing for the Web of Data. Schwarte et al. [96] present an experimen-
tal study of large-scale RDF federations on top of the Bio2RDF data
sources using a particular federation system, i.e., FedX [94]. They fo-
cus on design decisions, technical aspects, and experiences made in
setting up and optimizing the Bio2RDF federation. Betz et al. [15]
identify various drawbacks of federated Linked Data query process-
ing. The authors propose that Linked Data as a service has the poten-
tial to solve some of the identified problems. Görlitz et al. [33] present
limitations in Linked Data federated query processing and implica-
tions of these limitations. Moreover, this chapter presents a query
optimization approach based on semi-joins and dynamic program-
ming. Ladwig et al. [54] identify various strategies while processing
federated queries over Linked Data. Umbrich et al. [99] provide an
experimental evaluation of the different data summaries used in live
query processing over Linked Data. Montoya et al. [62] provide a
detail discussion of the limitations of the existing testbeds used for
the evaluation of SPARQL query federation systems. Some other ex-
perimental evaluations [1; 27; 61; 62; 89; 94; 100] of SPARQL query
federation systems compare some of the federation systems based on
their overall query runtime. For example, Gorlitz et al. [27] compare
their approach with three other approaches ([70; 94], AliBaba4, and
RDF-3X 0.3.4.22

7. An extension of ANAPSID presented in [61] com-
pares ANAPSID with FedX using 10 FedBench-additional complex

4 SesameAliBaba:http://www.openrdf.org/alibaba.jsp) using a subset of the
queries from FedBench. Furthermore, they measure the effect of the information
in VoiD5 descriptions on the accuracy of their source selection. Acosta et al. [1]
compare their approach performance with Virtuoso SPARQL endpoints, ARQ 2.8.8.
BSD-style21

6

7 http://www.mpi-inf.mpg.de/neumann/rdf3x/
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queries. Schwarte et al. [94] compare FedX performance with AliBaba
and DARQ using a subset of the FedBench queries. Wang et al. [100]
evaluate the performance of LHD with FedX and SPLENDID using
the Berlin SPARQL Benchmark (BSBM) [17].

All experimental evaluations above compare only a small number
of SPARQL query federation systems using a subset of the queries
available in current benchmarks with respect to a single performance
criterion (query execution time). Consequently, they fail to provide
deeper insights into the behaviour of these systems in different steps
(e.g., source selection) required during the query federation. In this
work, we evaluate six open-source federated SPARQL query engines
experimentally on two different evaluation frameworks. To the best
of our knowledge, this is currently the most comprehensive evalua-
tion of open-source SPARQL query federation systems. Furthermore,
along with central performance criterion of query runtime, we com-
pare these systems with respect to their source selection. Our results
show (section 3.6) that the different steps of the source selection af-
fect the overall query runtime considerably. Thus, the insights gained
through our evaluation w.r.t. to these criteria provide valuable find-
ings for optimizing SPARQL query federation.

3.2 benchmarks

Different benchmarks have been proposed to compare triple stores
and federated systems for their query execution capabilities and per-
formance. Table 2 provides a detailed summary of the characteristics
of the most commonly used benchmarks as well as of two real query
logs. All benchmark executions and result set computations were car-
ried out on a machine with 16 GB RAM and a 6-Core i7 3.40 GHz CPU
running Ubuntu 14.04.2. All synthetic benchmarks were configured to
generate 10 million triples. We ran LUBM [32] on OWLIM-Lite as it
requires reasoning. All other benchmarks were ran on virtuoso 7.2
with NumberOfBuffers = 1360000, and MaxDirtyBuffers = 1000000.

In the following, we compare state-of-the-art SPARQL benchmarks
w.r.t. the features shown in Table 2.

LUBM was designed to test the triple stores and reasoners for their
reasoning capabilities. It is based on a customizable and deterministic
generator for synthetic data. The queries included in this benchmark
commonly lead to query results sizes ranges from 2 to 3200, query
triple patterns ranges from 1 to 6, and all the queries consist of a
single BGP. LUBM includes a fixed number of SELECT queries (i.e., 15)
where none of the clauses shown in Table 2 is used.

The Berlin SPARQL Benchmark (BSBM) [17] uses a total of 125 query
templates to generate any number of SPARQL queries for bench-
marking. Multiple use cases such as explore, update, and business
intelligence are included in this benchmark. Furthermore, it also in-
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Table 2: Comparison of SPARQL benchmarks F-DBP = FEASIBLE Bench-
marks from DBpedia query log, F-SWDF = FEASIBLE Benchmark
from Semantic Web Dog Food query log, LRB = LargeRDFBench,
TPs = Triple Patterns, JV = Join Vertices, MJVD = Mean Join Ver-
tices Degree, MTPS = Mean Triple Patterns Selectivity, S.D. = Stan-
dard Deviation, U.D. = Undefined due to queries timeout of 1 hour).
Runtime(ms) and *SPARQL federation benchmarks.

LUBM BSBM SP2Bench WatDiv DBPSB F-DBP F-SWDF FedBench* LRB*

#Queries 15 125 12 125 125 125 125 25 32

Fo
rm

s
(%

) SELECT 100 80 91.67 100 100 95.2 92.8 100 100

ASK 0 0 8.33 0 0 0 2.4 0 0

CONSTRUCT 0 4 0 0 0 4 3.2 0 0

DESCRIBE 0 16 0 0 0 0.8 1.6 0 0

C
la

us
es

(%
)

UNION 0 8 16.67 0 36 40.8 32.8 12 18.75

DISTINCT 0 24 41.6 0 100 52.8 50.4 0 28.21

ORDER BY 0 36 16.6 0 0 28.8 25.6 0 9.37

REGEX 0 0 0 0 4 14.4 16 0 3.12

LIMIT 0 36 8.33 0 0 38.4 45.6 0 12.5

OFFSET 0 4 8.33 0 0 18.4 20.8 0 0

OPTIONAL 0 52 25 0 32 30.4 32 4 25

FILTER 0 52 58.3 0 48 58.4 29.6 4 31.25

GROUP BY 0 0 0 0 0 0.8 19.2 0 0

R
es

ul
ts

Min 3 0 1 0 197 1 1 1 1

Max 1.3E+4 31 4.3E+7 4.1E+9 4.6E+6 1.4E+6 3.0E+5 9054 3.E+5

Mean 4.9E+3 8.3 4.5E+6 3.4E+7 3.2E+5 5.2E+4 9091 529 5.9E+4

S.D. 1.1E+4 9.03 1.3E+7 3.7E+8 9.5E+5 1.9E+5 4.7E+4 1764 1.1E+5

B
G

Ps

Min 1 1 1 1 1 1 0 1 1

Max 1 5 3 1 9 14 14 2 2

Mean 1 2.8 1.5 1 2.69 3.17 2.68 1.16 1.43

S.D. 0 1.70 0.67 0 2.43 3.55 2.81 0.37 0.5

T
Ps

Min 1 1 1 1 1 1 0 2 2

Max 6 15 13 12 12 18 14 7 12

Mean 3 9.32 5.9 5.3 4.5 4.8 3.2 4 6.6

S.D. 1.81 5.17 3.82 2.60 2.79 4.39 2.76 1.25 2.6

JV

Min 0 0 0 0 0 0 0 0 0

Max 4 6 10 5 3 11 3 5 6

Mean 1.6 2.88 4.25 1.77 1.21 1.29 0.52 2.52 3.43

S.D. 1.40 1.80 3.79 0.99 1.12 2.39 0.65 1.26 1.36

M
JV

D

Min 0 0 0 0 0 0 0 0 0

Max 5 4.5 9 7 5 11 4 3 6

Mean 2.02 3.05 2.41 3.62 1.82 1.44 0.96 2.14 2.56

S.D. 1.29 1.63 2.26 1.40 1.43 2.13 1.09 0.56 0.76

M
T

PS

Min 3.2E-4 9.4E-8 6.5E-5 0 1.1E-5 2.8E-9 1.0E-5 0.001 0.001

Max 0.432 0.045 0.53 0.011 1 1 1 1 1

Mean 0.01 0.01 0.22 0.004 0.119 0.140 0.291 0.05 0.10

S.D. 0.074 0.01 0.20 0.002 0.22 0.31 0.32 0.092 0.14

R
un

ti
m

e Min 2 5 7 3 11 2 4 50 159

Max 3200 99 7.1E+5 8.8E+8 5.4E+4 3.2E+4 4.1E+4 1.2E+4 >1hr

Mean 437 9.1 2.8E+5 4.4E+8 1.0E+4 2242 1308 1987 U.D.

S.D. 320 14.5 5.2E+5 2.7E+7 1.7E+4 6961 5335 3950 U.D.
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cludes many of the important SPARQL clauses of Table 2. However,
the queries included in this benchmark are rather simple with an av-
erage query runtime of 9.1 ms and largest query result set size equal
to 31.

SP2Bench mirrors vital characteristics (such as power law distri-
butions or Gaussian curves) of the data in the DBLP bibliographic
database. The queries given in benchmark are mostly complex. For
example, the mean (across all queries) query result size is above one
million and the query runtimes are very large (see Table 2).

The Waterloo SPARQL Diversity Test Suite (WatDiv) [3] addresses the
limitations of previous benchmarks by providing a synthetic data and
query generator to generate large number of queries from a total of
125 queries templates. The queries cover both simple and complex
categories with varying number of features such as result set sizes,
total number of query triple patterns, join vertices and mean join
vertices degree. However, this benchmark is restricted to conjunc-
tive SELECT queries (single BGPs). This means that non-conjunctive
SPARQL queries (e.g., queries which make use of the UNION and
OPTIONAL features) are not considered. Furthermore, WatDiv does not
consider other important SPARQL clauses, e.g., FILTER and REGEX.
However, our analysis of the query logs of DBpedia3.5.1 and SWDF
given in table 2 shows that 20.1% resp. 7.97% of the DBpedia queries
make use of OPTIONAL resp. UNION clauses. Similarly, 29.5% resp. 29.3%
of the SWDF queries contain OPTIONAL resp. UNION clauses.

While the distribution of query features in the benchmarks pre-
sented so far is mostly static, the use of different SPARQL clauses and
triple pattern join types varies greatly from data set to data set, thus
making it very difficult for any synthetic query generator to reflect
real queries. For example, the DBpedia and SWDF query log differ
significantly in their use of DESCRIBE (41.1% for SWDF vs 0.02% for
DBpedia), FILTER (0.72% for SWDF vs 93.3% for DBpedia) and UNION

(29.3% for SWDF vs 7.97% for DBpedia) clauses. Similar variations
have been reported in [8] as well. To address this issue, the DBpe-
dia SPARQL Benchmark (DBPSB) [63] (which generates benchmark
queries from query logs) was proposed. However, is benchmark does
not consider key query features (i.e., number of join vertices, mean
join vertices degree, mean triple pattern selectivities, the query re-
sult size and overall query runtimes) while selecting query templates.
Note that previous works [3; 30] pointed that these query features
greatly affect the triple stores performance and thus should be con-
sidered while designing SPARQL benchmarks.

In this thesis we present FEASIBLE, a benchmark generation frame-
work which is able to generate a customizable benchmark from any
set of queries, esp. from query logs. FEASIBLE addresses the draw-
backs on previous benchmark generation approaches by taking all of
the important SPARQL query features of Table 2 into consideration

[ 21. Mai 2016 at 23:41 – classicthesis version 4.1 ]



24 state of the art

when generating benchmarks. In Chapter 10, we present FEASIBLE
in detail.

The aforementioned benchmarks have focused on the problem of
query evaluation over local, centralised repositories. Hence, these bench-
marks do not consider federated queries over multiple interlinked
datasets hosted by different SPARQL endpoints. FedBench [92] is
designed explicitly to evaluate SPARQL query federation tasks on
real-world datasets with queries resembling typical requests on these
datasets. Furthermore, this benchmark also includes a dataset and
queries from SP2Bench. FedBench were the only (to the best of our
knowledge) federation benchmark that encompasses real-world datasets,
commonly used queries and distributed data environment. Further-
more, it is commonly used in the evaluation of SPARQL query fed-
eration systems [27; 61; 77; 94]. However, the real queries (excluding
synthetic SP2Bench benchmark queries) are low in complexity (Ta-
ble 2). The number of Triple Patterns included in the query ranges
from 2 to 7. Consequently, the standard deviations of the number of
Join Vertices (JV) and the Mean Join Vertices Degrees (MJVD) are on
the lower side. The query result set sizes are small (maximum 9054,
with average of 529 results). The query triple patterns are not highly
selective in general. The important SPARQL clauses such DISTINCT,
ORDER BY and REGEX are not used (ref. Table 2). Moreover, the SPARQL
OPTIONAL and FILTER clauses are only used in a single query (i.e., LS7

of FedBench). Most importantly, the average query execution is small
(about 2 seconds on average ref. Section 3.6.3.5). Finally, FedBench
rely only on the number of endpoints requests and the query execu-
tion time as performance criteria. These limitations make it difficult
to extrapolate how SPARQL query federation engines will perform
when faced with the growing amount of data available on the Data
Web based on FedBench results. Furthermore, a more fine-grained
evaluation of the federation engines, to detect the components that
need to be improved is not possible [62].

SPLODGE [30] is a heuristic for automatic generation of feder-
ated SPARQL queries which is limited to conjunctive BGPs. Non-
conjunctive queries that make use of the SPARQL UNION, OPTIONAL
clauses are not considered. Thus, the generated set of synthetic queries
fails to reflect the characteristics of the real queries. For example, the
DBpedia query log [68] shows that 20.87%, 30.02% of the real queries
contains SPARQL UNION and FILTER clauses, respectively. However,
both of these clauses are not considered in SPLODGE queries gen-
eration. Moreover, the use of different SPARQL clauses and triple
pattern join types greatly varies from one dataset to another dataset,
thus making it almost impossible for automatic query generator to
reflect the reality. For example, the DBpedia and Semantic Web Dog
Food (SWDF) query log [8] shows that the use of the SPARQL LIMIT

(27.99% for SWDF vs 1.04% for DBpedia) and OPTIONAL (0.41% for
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SWDF vs 16.61% for DBpedia) clauses greatly varies for these two
datasets.

To address the limitations of federated SPARQL benchmarks, we
propose LargeRDFBench, a billion-triple benchmark which encom-
passes a total of 13 real, interconnected datasets and real queries of
varying complexities (see Table 2). Our benchmark includes all of
the 14 SPARQL endpoint federation queries (which we named simple
queries) from FedBench, as they are useful but not sufficient all alone.
In addition, we provide 10 complex and 8 Big Data queries, which
lead to larger result sets and intermediary results. Beside the central
performance criterion, i.e., the query execution time, our benchmark
includes result set completeness and correctness, effective source se-
lection in terms of the total number of data sources selected, the total
number of SPARQL ASK requests used and the corresponding source
selection time. Our evaluation results (ref. Chapter 9) suggest that the
performance of current SPARQL query federation systems on simple
queries (i.e., FedBench queries) does not reflect the systems’ perfor-
mance on more complex queries. In addition, none of the state-of-the-
art SPARQL query federation is able to fully answer the real use-case
Big Data queries. In Chapter 9, we will discuss LargeRDFBench in
details.

3.3 federated engines public survey

In order to provide a comprehensive overview of existing SPARQL
federation engines, we designed and conducted a survey of SPARQL
query federation engines. In this section, we present the principles
and ideas behind the design of the survey as well as its results and
their analysis.

3.3.1 Survey Design

The aim of the survey was to compare the existing SPARQL query fed-
eration engines, regardless of their implementation or code availabil-
ity. To reach this aim, we interviewed domain experts and designed
a survey with three sections: system information, requirements, and
supported SPARQL clauses.8

The system information section of the survey includes implementation
details of the SPARQL federation engine such as:

• URL of the paper, engine implementation: Provides the URL
of the related scientific publication or URL to the engine imple-
mentation binaries/code.

• Code availability: Indicates the disclosure of the code to the
public.

8 The survey can be found at http://goo.gl/iXvKVT.
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• Implementation and licensing: Defines the programming lan-
guage and distribution license of the framework.

• Type of source selection: Defines the source selection strategy
used by the underlying federation system.

• Type of join(s) used for data integration: Shows the type of
joins used to integrate sub-queries results coming from different
data sources.

• Use of cache: Shows the usage of cache for performance im-
provement.

• Support for catalog/index update: Indicates the support for au-
tomatic index/catalog update.

The questions from the requirements section assess SPARQL query
federation engines for the key features/requirements that a developer
would require from such engines. These include:

• Result completeness: Assuming that the SPARQL endpoints re-
turn complete results for any given SPARQL1.0 sub-query that
they have to process. Does your implementation then guaran-
tee that your engine will return complete results for the input
query (100% recall) or is it possible that it misses some of the
solutions (for example due to the source selection, join imple-
mentation, or using an out-of-date index)?. Please note that a
100% recall cannot be assured with an index that is out of date.

• Policy-based query planning: Most federation approaches tar-
get open data and do not provide restrictions (according to dif-
ferent user access rights) on data access during query planning.
As a result, a federation engine may select a data source for
which the requester is not authorized, thus overestimating the
data sources and increasing the overall query runtime. Does
your system have the capability of taking into account the pri-
vacy information (e.g., different graph-level access rights for dif-
ferent users, etc.) during query planning?

• Support for partial results retrieval: In some cases the query re-
sults can be too large and result completeness (i.e., 100% recall)
may not be desired, rather partial but fast and/or quality query
results are acceptable. Does the federation engine provide such
functionality where a user can specify a desired recall (less than
100%) as a threshold for fast result retrieval? It is worth notic-
ing that this is different from limiting the results using SPARQL
LIMIT clause as it restricts the number of results to some fixed
value while in partial result retrieval the number of retrieved
results are relative to the actual total number of results.
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• Support for no-blocking operator/adaptive query processing:
SPARQL endpoints are sometimes blocked or down or exhibit
high latency. Does the federation engine support non-blocking
joins (where results are returned based on the order in which
the data arrives, not in the order in which data being requested)
and able to change its behavior at runtime by learning behavior
of the data providers?

• Support for provenance information: Usually, SPARQL query
federation systems integrate results from multiple SPARQL end-
points without any provenance information, such as how many
results were contributed by a given SPARQL endpoint or which
of the results are contributed by each of the endpoint. Does the
federation engine provide such provenance information?

• Query runtime estimation: In some cases a query may have a
longer runtime (e.g., in the order of minutes). Does the federa-
tion engine provide means to approximate and display (to the
user) the overall runtime of the query execution in advance?

• Duplicate detection: Due to the decentralized architecture of
Linked Data Cloud, a sub-query might retrieve results that were
already retrieved by another sub-query. For some applications,
the former sub-query can be skipped from submission (federa-
tion) as it will only produce overlapping triples. Does the fed-
eration engine provide such a duplicate-aware SPARQL query
federation? Note that this is the duplicate detection before sub-
query submission to the SPARQL endpoints and the aim is to
minimize the number of sub-queries submitted by the federa-
tion engine.

• Top-K query processing: Is the federation engine able to rank
results based on the user’s preferences (e.g., his/her profile,
his/her location, etc.)?

The supported SPARQL clauses section assess existing SPARQL query
federation engines w.r.t. the list of supported SPARQL clauses. The
list of the SPARQL clauses is mostly based on the characteristics of
the BSBM benchmark queries [17]. The summary of the used SPARQL
clauses can be found in Table 5.

The survey was open and free for all to participate in. To contact
potential participants, we used Google Scholar to retrieve papers that
contained the keywords "SPARQL" and "query federation". After a
manual filtering of the results, we contacted the main authors of the
papers and informed them of the existence of the survey while asking
them to participate. Moreover, we sent messages to the W3C Linked
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Open Data mailing list9 and Semantic Web mailing list10 with a re-
quest to participate. The survey was opened for two weeks.

3.3.2 Discussion of the survey results

Based on our survey results11, existing SPARQL query federation ap-
proaches can be divided into three main categories (see Table 3).

1 . query federation over multiple sparql endpoints: In
this type of approaches, RDF data is made available via SPARQL end-
points. The federation engine makes use of endpoint URLs to federate
sub-queries and collect results back for integration. The advantage of
this category of approaches is that queries are answered based on
original, up-to-date data with no synchronization of the copied data
required [36]. Moreover, the execution of queries can be carried out
efficiently because the approach relies on SPARQL endpoints. How-
ever, such approaches are unable to deal with the data provided by
the whole of LOD Cloud because sometimes Linked Data is not ex-
posed through SPARQL endpoints.

2 . query federation over linked data: This type of approaches
relies on the Linked Data principles12 for query execution. The set of
data sources which can contribute results into the final query result-
set is determined by using URI lookups during the query execution
itself.

9 public-lod@w3.org

10 semantic-web@w3.org

11 Available at http://goo.gl/CNW5UC
12 http://www.w3.org/DesignIssues/LinkedData.html
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Query federation over Linked Data does not require the data providers
to publish their data as SPARQL endpoints. Instead, the only require-
ment is that the RDF data follows the Linked Data principles. A
downside of these approaches is that they are less time-efficient than
the previous approaches due to the URI lookups they perform.

3 . query federation on top of distributed hash tables: This
type of federation approaches stores RDF data on top of Distributed
Hash Tables (DHTs) and use DHT indexing to federate SPARQL queries
over multiple RDF nodes. This is a space-efficient solution and can re-
duce the network cost as well. However, many of the LOD datasets
are not stored on top of DHTs.

Each of the above main category can be further divided into three
sub-categories (see Table 3):

(a) catalog/index-assisted solutions: These approaches uti-
lize dataset summaries that have been collected in a pre-processing
stage. These approaches may lead to more efficient query federation.
However, the index needs to be constantly updated to ensure com-
plete results retrieval. The index size should also be kept to a mini-
mum to ensure that it does not significantly increase the overall query
processing costs.

(b) catalog/index-free solutions: In these approaches, the query
federation is performed without using any stored data summaries.
The data source statistics can be collected on-the-fly before the query
federation starts. This approach promises that the results retrieved by
the engine are complete and up-to-date. However, it may increase the
query execution time, depending on the extra processing required for
collecting and processing on-the-fly statistics.

(c) hybrid solutions: In these approaches, some of the data
source statistics are pre-stored while some are collected on-the-fly,
e.g., using SPARQL ASK queries.

Table 3 provides a classification along with the implementation de-
tails of the 14 systems which participated in the survey. In addition,
we also included QUETSAL and SAFE proposed in this thesis. Note
DAW is one of the contribution of this thesis. Overall, we received
responses mainly for systems which implemented the SPARQL end-
point federation and hybrid query processing paradigms in Java. Only
Atlas [50] implements DHT federation whereas WoDQA [2], LDQPS [54],
and SIHJoin [55] implement federation over linked data (LDF). Most
of the surveyed systems provides "General Public Licences" with the
exception of [54] and [55] which provides "Scala" licence whereas
the authors of [11] and [38] have not yet decided which licence type
will hold for their tools. Five of the surveyed systems implement
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Table 4: Survey outcome: System’s features (R.C. = Results Completeness,
P.R.R. = Partial Results Retrieval, N.B.O. = No Blocking Operator,
A.Q.P. = Adaptive Query Processing, D.D. = Duplicate Detection,
P.B.Q.P = Policy-based Query Planning, Q.R.E. = Query Runtime
Estimation, Top-K.Q.P = Top-K query processing, BOUS = Based
on Underlying System)

Systems R.C. P.R.R. N.B.O / A.Q.P. D. D. P.B.Q.P Provenance Q.R.E Top-K.Q.P

FedX 3 7 7 7 7 7 7 7

LHD 7 7 7 7 7 7 7 7

SPLENDID 7 7 7 7 7 7 7 7

FedSearch 3 7 7 7 7 7 7 7

GRANATUM 7 7 7 7 partial partial 7 7

Avalanche 7 3 3 partial 7 7 7 7

DAW 7 3 BOUS 3 7 7 7 7

ANAPSID 7 7 3 7 7 7 7 7

ADERIS 7 7 3 7 7 7 7 7

DARQ 7 7 7 7 7 7 7 7

LDQPS 7 7 3 7 7 7 7 7

SIHJoin 7 7 3 7 7 7 7 7

WoDQA 3 7 7 7 7 7 7 7

Atlas 7 7 7 partial 7 7 7 7

SAFE 7 7 7 7 3 7 7 7

QUETSAL 7 3 7 3 7 7 7 7

caching mechanisms including [2], [5], [11], [77] and [94]. In addition,
both SAFE and QUETSAL also implement caching. Only [1] and [2]
provide support for catalog/index update whereas two systems do
not require this mechanism by virtue of being index/catalog-free ap-
proaches. Our approaches QUETSAL and SAFE also provide support
for index update.

Table 4 summarizes the survey outcome w.r.t. different features
supported by systems. Only three of the surveyed systems ([5], [94]
and QWIDVD) claim that they achieve result completeness and only
Avalanche [11] and DAW [77] support partial results retrieval for
their implementations. Note that FedX claims result completeness
when the cache that it relies on is up-to-date. Since QUETSAL in-
tegrates DAW, therefore QUETSAL also support partial results re-
trieval. Five (i.e., Avalanche, ANAPSID, ADERIS, LDQPS, SIHJoin)
of the considered systems support adaptive query processing. Only
DAW [77], QUETSAL [88] support duplicate detection whereas DHT
and Avalanche [11] claim to support partial duplicate detection. Grana-
tum [38; 39; 49] is the only system that implements privacy and prove-
nance. None of the considered systems implement top-k query pro-
cessing or query runtime estimation.

Table 5 lists SPARQL clauses supported by the each of 14 systems.
GRANATUM and QWIDVD are only two systems that support all
of the query constructs used in our survey. It is important to note
that most of these query constructs are based on query characteristics
defined in BSBM.
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Now we discuss other notable federation engines that did not par-
ticipate in the survey or published after the public survey was con-
ducted. Semantic Web Integrator and Query Engine (SemWIQ) [56],
a SPARQL endpoint federation engine using a mediator approach.
The SPARQL endpoints need to register first with the mediator using
HTTP POST requests with an RDF document attached. The mediator
continuously monitors the SPAQL endpoints for any dataset changes
and updates the service descriptions automatically. Unlike DARQ,
the service descriptions remain up-to-date all time. Hartig et al. [37]
present a Linked Data federation that discovers data that might be
relevant for answering a query during the query execution itself. The
discovery of relevant data is accomplished by traversing RDF links.
They use an iterator-based pipeline and a URI prefetching approach
for efficient query execution. Same like DAW, Fedra [60] is SPARQL
endpoint federation engine for duplicate-aware SPARQL query feder-
ation. The main motivation of Fedra is that the index update can be
expensive if the underlying endpoints data changes frequently. Thus,
they propose an index that can be used to detect duplicate fragments
as well as easy to update.
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3.4 details of selected systems

After having given a general overview of SPARQL query federation
systems, we present six SPARQL endpoints federation engines [1; 27;
57; 70; 94; 100] with public implementation that were used within our
experiments. Note we compared our proposed approaches with state-
of-the-art federation engines in the subsequent chapter. Here, we aim
to We begin by presenting an overview of key concepts that underpin
federated query processing and are used in the performance evalua-
tion. We then use these key concepts to present the aforementioned
six systems used in our evaluation in more detail.

3.4.1 Overview of the selected approaches

DARQ [70] makes use of an index known as service description to per-
form source selection. Each service description provides a declarative
description of the data available in a data source, including the cor-
responding SPARQL endpoint along with statistical information. The
source selection is performed by using distinct predicates (for each data
source) recorded in the index as capabilities. The source selection algo-
rithm used in DARQ for a query simply matches all triple patterns
against the capabilities of the data sources. The matching compares
the predicate in a triple pattern with the predicate defined for a ca-
pability in the index. This means that DARQ is only able to answer
queries with bound predicates. DARQ combines service descriptions,
query rewriting mechanisms and a cost-based optimization approach
to reduce the query processing time and the bandwidth usage.

SPLENDID [27] makes use of VoiD descriptions as index along
with SPARQL ASK queries to perform the source selection step. A
SPARQL ASK query is used when any of the subject or object of the
triple pattern is bound. This query is forwarded to all of the data
sources and those sources which pass the SPARQL ASK test are se-
lected. A dynamic programming strategy [97] is used to optimize the
join order of SPARQL basic graph patterns.

FedX [94] is an index-free SPARQL query federation system. The
source selection relies completely on SPARQL ASK queries and a
cache. The cache is used to store recent SPARQL ASK operations for
relevant data source selection. As shown by our evaluation, the use
of this cache greatly reduces the source selection and query execution
time.

The publicly available implementation of LHD [100] only makes
use of the VoiD descriptions to perform source selection. The source
selection algorithm is similar to DARQ. However, it also supports
query triple patterns with unbound predicates. In such cases, LHD
simply selects all of the available data sources as relevant. This strat-
egy often overestimates the number of capable sources and can thus
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lead to high overall runtimes. LHD performs a pipeline hash join to
integrate sub-queries in parallel.

ANAPSID [1] is an adaptive query engine that adapts its query
execution schedulers to the data availability and runtime conditions
of SPARQL endpoints. This framework provides physical SPARQL
operators that detect when a source becomes blocked or data traffic is
bursty. The operators produce results as quickly as data arrives from
the sources. ANAPSID makes use of both a catalog and ASK queries
along with heuristics defined in [61] to perform the source selection
step. This heuristic-based source selection can greatly reduce the total
number of triple pattern-wise selected sources.

Finally, ADERIS [57] is an index-only approach for adaptive inte-
gration of data from multiple SPARQL endpoints. The source selec-
tion algorithm is similar to DARQ’s. However, this framework also
selects all of the available data sources for triple patterns with un-
bound predicates. ADERIS does not support several SPARQL 1.0
clauses such as UNION and OPTIONAL. For the data integration,
the framework implements the pipelined index nested loop join oper-
ator.

In the next section, we describe known variables that may impact
the performance of the federated SPARQL query engines.

3.5 performance variables

Table 6 shows known variables that may impact the behaviour of fed-
erated SPARQL query engines. According to [61], these variables can
be grouped into two categories (i.e., independent and dependent vari-
ables) that affect the overall performance of federated query SPARQL
engines. Dependent (also called observed) variables are usually the
performance metrics and are normally influenced by independent
variables. Dependent variables include: (1) total number of SPARQL
ASK requests used during source selection #ASK, (2) total number
of triple pattern-wise sources selected during source selection #TP

Sources, (3) source selection time, (4) overall query runtime, and (5)
answer set completeness.

Independent variables can be grouped into four dimensions: query,
data, platform, and endpoint [61]. The query dimension includes:

• the type of query (star, path, hybrid [77]),

• the number of basic graph patterns,

• the instantiations (bound/unbound) of tuples (subject, predi-
cate, object) of the query triple pattern,

• the selectivity of the joins between triple patterns,

• the query result set size, and use of different SPARQL clauses
along with general predicates such as rdf:type, owl:sameAs.
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Table 6: Known variables that impact the behaviour of SPARQL federated.
(#ASK = Total number of SPARQL ASK requests used during source
selection, #TP= total triple pattern-wise sources selected, SST =
Source Selection Time, QR = Query Runtime, AC = Answer Com-
pleteness, )

Independent Variables Dependent/Observed Variables

#ASK #TP Sources SST QR AC

Q
ue

ry

query plan shape 3 3 3 3 3

#basic triple patterns 3 3 3 3 3

#instantiations and their position 3 3 3 3 x

join selectivity x x x 3 x

#intermediate results x x x 3 x

answer size x x x 3 x

usage of query language expressivity 3 3 3 3 x

#general predicates 3 3 3 3 3

D
at

a

dataset size x x x 3 x

data frequency distribution x x x 3 x

type of partitioning 3 3 3 3 3

data endpoint distribution 3 3 3 3 3

Pl
at

fo
rm cache on/off 3 3 3 3 x

RAM available x x 3 3 x

#processors x x 3 3 x

En
dp

oi
nt

s

#endpoints 3 3 3 3 3

endpoint type x x 3 3 x

relation graph/endpoint/instance x x x 3 3

network latency x x 3 3 3

initial delay x x 3 3 x

message size x x x 3 x

transfer distribution x x 3 3 3

answer size limit x x x 3 3

timeout x x x 3 3
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The data dimension comprises of:

• the dataset size, its type of partition (horizontal, vertical, hy-
brid), and

• the data frequency distribution (e.g., number of subject, predi-
cates and objects) etc.

The platform dimension consists of:

• use of cache,

• number of processor, and

• amount of RAM available.

The following parameters belong to the endpoints dimension:

• the number of endpoints used in the federation and their types
(e.g., Fuseki, Sesame, Virtuoso etc., and single vs. clustered server),

• the relationship between the number of instances, graphs and
endpoints of the systems used during the evaluation, and

• network latency (in case of live SPARQL endpoints) and dif-
ferent endpoint configuration parameters such as answer size
limit, maximum resultset size etc.

In our evaluation, we measured all of the five dependent variables
reported in Table 6. Most of the query (an independent variable) pa-
rameters are covered by using the complete query set of both FedX
and SP2Bench. However, as pointed in [61], the join selectivity cannot
be fully covered due to the limitations of both FedX and SP2Bench.
In data parameters, the data set size cannot be fully explored in
the selected SPARQL query federation benchmarks. This is because
both FedBench and SP2Bench do not contain very large datasets (the
largest dataset in these benchmarks contains solely 108M triples, see
Table 8) such as Linked TCGA (20.4 billion triples13), UniProt (8.4
billion triples14) etc. We used horizontal partitioning and mirrored
a highly distributed environment to test the selected federation sys-
tems for their parallel processing capabilities. W.r.t. platform param-
eters, the effect of using a cache is measured. As shown in the ex-
periments section, the use of a cache (especially in FedX) has the
potential of greatly improving the query runtime of federation sys-
tems. The amount of available RAM is more important when dealing
with queries with large intermediate results, which are not given in
the benchmarks at hand. The number of processors used is an impor-
tant dimension to be considered in future SPARQL query federation
engines. The endpoint parameters did not play a major role in our

13 Linked TCGA: http://tcga.deri.ie/
14 UniProt: http://datahub.io/dataset/uniprotkb
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study because we used a dedicated local area network to avoid net-
work delays. An evaluation on live SPARQL endpoints with network
delay will be considered in future work. We used Virtuoso (version
20120802) SPARQL endpoints with maximum rows set to 100,000 (i.e.,
we chose this value because it is greater than the answer size of all of
the queries in the selected benchmarks) and a transaction timeout of
60 seconds (which allows for all all sub-queries in the selected bench-
marks to be executed). The overall query execution timeout was set
to 30 min on the system running the federation engine. The higher
threshold is due to SPARQL endpoints requiring less time to run the
sub-queries generated by the federation engine than the federation
engine to integrate the results.

While the dependent variables source selection time, query runtime,
and answer completeness are already highlighted in [61], we also mea-
sured the total number of data sources selected and total number of SPARQL
ASK requests used during the source selection. Section 3.6 shows that
both of these additional variables have a significant impact on the
performance of federated SPARQL query engines. For example, an
overestimation of the capable sources can lead through an increase
of the overall runtime due to (1) increased network traffic and (2) un-
necessary intermediate results which are excluded after performing
all the joins between the query triple patterns. On the other hand, the
smaller the number of SPARQL ASK requests used during the source
selection, the smaller the source selection time and vice versa. Further
details of the depended and independent variables can be found at
[61].

3.6 evaluation

In this section we present the data and hardware used in our eval-
uation. Moreover, we explain the key metrics underlying our experi-
ments as well as the corresponding results.

3.6.1 Experimental setup

We used two settings to evaluate the selected federation systems.
Within the first evaluation, we used the query execution time as cen-
tral evaluation parameter and made use of the FedBench [92] feder-
ated SPARQL querying benchmark. In the second evaluation, we ex-
tended both FedBench and SP2Bench to simulate a highly federated
environment. Here, we focused especially on analyzing the effect of
data partitioning on the performance of federation systems. We call
this extension SlicedBench as we created slices of each original datasets
and distributed them among data sources. All of the selected perfor-
mance metrics (explained in Section 3.6.2) remained the same for both
evaluation frameworks. We used the most recent versions (at the time
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at which the evaluation was carried out), i.e., FedX2.0 and ANAPSID
(December 2013 version). The remaining systems has no versions. All
experiments were carried out on a system (machine running federa-
tion engines) with a 2.60 GHz i5 processor, 4GB RAM and 500GB hard
disk. For systems with Java implementation, we used Eclipse with de-
fault settings, i.e., Java Virtual Machine (JVM) initial memory alloca-
tion pool (Xms) size of 40MB and the maximum memory allocation
pool (Xmx) size of 512MB. The permanents generation (MaxPerm-
Size) which defines the memory allocated to keep compiled class files
was also set to default size of 256MB. To minimise the network latency
we used a dedicated local network. We conducted our experiments on
local copies of Virtuoso (version 20120802) SPARQL endpoints with
number of buffers 1360000, maximum dirty buffers 1000000, number
of server threads 20, result set maximum rows 100000, and maximum
SPARQL endpoint query execution time of 60 seconds. A separate
physical virtuoso server was created for each dataset. The specifica-
tion of the machines hosting the virtuoso SPARQL endpoints used in
both evaluations is given in Table 7. We executed each query 10 times
and present the average values in the results. The source selection
time (ref. Section 3.6.3.4) and query runtime (ref. Section 3.6.3.5) was
calculated using the function System.currentTimeMillis() (for Java
system implementations) and function time() (for Python implemen-
tations). The results of the time() was converted from seconds as float
to milliseconds. The accuracy of both functions is in the order of 1ms,
which does not influence the conclusions reached by our evaluation.
The query runtime was calculated once all the results are retrieved
and the time out was set to 30 minutes. Furthermore, the query run-
time results were analyzed statistically using Wilcoxon signed rank
test. We chose this test because it is parameter-free and does not as-
sume a particular error distribution in the data like a t-test does. For
all the significance tests, we set the p-value to 0.05.

All of the data used in both evaluations along with the portable vir-
tuoso SPARQL endpoints can be downloaded from the project web-
site15.

3.6.1.1 First setting: FedBench

FedBench is commonly used to evaluate performance of the SPARQL
query federation systems [27; 61; 77; 94]. The benchmark is explic-
itly designed to represent SPARQL query federation on a real-world
datasets. The datasets can be varied according to several dimensions
such as size, diversity and number of interlinks. The benchmark queries
resemble typical requests on these datasets and their structure ranges
from simple star [77] and chain queries to complex graph patterns.
The details about the FedBench datasets used in our evaluation along
with some statistical information are given in Table 8.

15 https://code.google.com/p/fed-eval/
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Table 7: System’s specifications hosting SPARQL endpoints.

Endpoint CPU(GHz) RAM Hard Disk

SW Dog Food 2.2, i3 4GB 300 GB

GeoNames 2.9, i7 16 GB 256 GB SSD

KEGG 2.6, i5 4 GB 150 GB

Jamendo 2.53, i5 4 GB 300 GB

New York Times 2.3, i5 4 GB 500 GB

Drugbank 2.53, i5 4 GB 300 GB

ChEBI 2.9, i7 8 GB 450 GB

LinkedMDB 2.6, i5 8 GB 400 GB

SP2Bench 2.6, i5 8 GB 400 GB

DBpedia subset 3.5.1 2.9, i7 16 GB 500 GB

The queries included in FedBench are divided into three categories:
Cross-domain (CD), Life Sciences (LS), Linked Data (LD). In addition,
it includes SP2Bench queries. The distribution of the queries along
with the result set sizes are given in Table 9. Details on the datasets
and various advanced statistics are provided at the FedBench project
page16.

16 http://code.google.com/p/fbench/
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In this evaluation setting, we selected all queries from CD, LS, and
LD, thus performing (to the best of our knowledge) the first evalua-
tion of SPARQL query federation systems on the complete benchmark
data of FedBench. It is important to note that SP2Bench was designed
with the main goal of evaluating query engines that access data kept
in a single repository. Thus, the complete query is answered by a sin-
gle data set. However, a federated query is one which collects results
from multiple data sets. Due to this reason we did not include the
SP2Bench queries in our first evaluation. We have included all these
queries into our SlicedBench because the data is distributed in 10 dif-
ferent data sets and each SP2Bench query span over more than one
data set, thus full-filling the criteria of federated query.
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3.6.1.2 Second setting: Sliced Bench

As pointed out in [62] the data partitioning can affect the overall per-
formance of SPARQL query federation engines. To quantify this ef-
fect, we created 10 slices of each of the 10 datasets given in Table 8

and distributed this data across 10 local virtuoso SPARQL endpoints
(one slice per SPARQL endpoint). Thus, every SPARQL endpoint con-
tained one slice from each of the 10 datasets. This creates a highly
fragmented data environment where a federated query possibly had
to collect data from all of the 10 SPARQL endpoints. This characteris-
tic of the benchmark stands in contrast to FedBench where the data
is not highly fragmented. Moreover, each of the SPARQL endpoint
contained a comparable amount of triples (load balancing). To facil-
itate the distribution of the data, we used the Slice Generator tool
employed in [77]. This tool allows setting a discrepancy across the
slices, where the discrepancy is defined as the difference (in terms of
number of triples) between the largest and smallest slice:

discrepancy = max
16i6M

|Si|− min
16j6M

|Sj|, (1)

where Si stands for the ith slice. The dataset D is partitioned ran-
domly among the slices in a way that

∑
i

|Si| = |D| and ∀i∀j i 6= j →
||Si|− |Sj|| 6 discrepancy.

This tool generate slices based on horizental partioning of the data.
Table 10 shows the discrepancy values used for slice generation for
each of the 10 datasets. Our discrepancy value varies with the size
of the dataset. For the query runtime evaluation, we selected all of
the queries both from FedBench and SP2Bench given in Table 9: the
reason for this selection was to cover majority of the SPARQL query
clauses and types along with variable results size (from 1 to 40 mil-
lion). For each of the CD, LS, and LD queries used in SlicedBench,
the number of results remained the same as given in Table 9. Analo-
gously to FedBench, each of the SlicedBench data source is a virtuoso
SPARQL endpoint.

3.6.2 Evaluation criteria

We selected five metrics for our evaluation: (1) total triple pattern-wise
sources selected, (2) total number of SPARQL ASK requests used dur-
ing source selection, (3) answer completeness (4) source selection time (i.e.
the time taken by the process in the first metric), and (5) query execu-
tion time.

As an example, consider we have a query containing two triple
patterns. Let there are three sources capable of answering the first
triple pattern and four sources capable of answering summing up to
a total triple pattern-wise selected sources equal to seven.
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Table 10: Dataset slices used in SlicedBench

Collection #Slices Discrepancy

DBpedia subset 3.5.1 10 280000

GeoNames 10 600000

LinkedMDB 10 100000

Jamendo 10 30000

New York Times 10 700

SW Dog Food 10 200

KEGG 10 35000

ChEBI 10 50000

Drugbank 10 25000

SP2Bench 10 150000

An overestimation of triple pattern-wise selected sources increases
the source selection time and thus the the query execution time. Fur-
thermore, such an overestimation increases the number of irrelevant
results which are excluded after joining the results of the different
sources, therewith increasing both the network traffic and query exe-
cution time. In the next section we explain how such overestimations
occur in the selected approaches.

3.6.3 Experimental results

3.6.3.1 Triple pattern-wise selected sources

Table 11 shows the total number of triple pattern-wise sources (TP
sources for short) selected by each approach both for the FedBench
and SlicedBench queries. ANAPSID is the most accurate system in
terms of TP sources followed by both FedX and SPLENDID whereas
similar results are achieved by the other three systems, i.e., LHD,
DARQ, and ADERIS. Both FedX and SPLENDID select the optimal
number of TP sources for individual query triple patterns. This is be-
cause both make use of ASK queries when any of the subject or object
is bound in a triple pattern. However, they do not consider whether a
source can actually contribute results after performing a join between
results with other query triple patterns. Therefore, both can overes-
timate the set of capable sources that can actually contribute results.
ANAPSID uses a catalog and ASK queries along with heuristics [61]
about triple pattern joins to reduce the overestimation of sources.
LHD (the publicly available version), DARQ, and ADERIS are index-
only approaches and do not use SPARQL ASK queries when any of
the subject or object is bound. Consequently, these three approaches
tend to overestimate the TP sources per individual triple pattern. It
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Table 11: Comparison of triple pattern-wise total number of sources selected
for FedBench and SlicedBench. NS stands for “not supported”, RE
for “runtime error”, SPL for SPLENDID, ANA for ANAPSID and
ADE for ADERIS. Key results are in bold.

FedBench SlicedBench

Query FedX SPL LHD DARQ ANA ADE Query FedX SPL LHD DARQ ANA ADE

CD1 11 11 28 NS 3 NS CD1 17 17 30 NS 8 NS

CD2 3 3 10 10 3 10 CD2 12 12 24 24 12 24

CD3 12 12 20 20 5 20 CD3 31 31 38 38 31 38

CD4 19 19 20 20 5 20 CD4 32 32 34 34 32 34

CD5 11 11 11 11 4 11 CD5 19 19 19 19 9 19

CD6 9 9 10 10 10 10 CD6 31 31 40 40 31 40

CD7 13 13 13 13 6 13 CD7 40 40 40 40 40 40

Total 78 78 112 84 36 84 Total 182 182 225 195 163 195

LS1 1 1 1 1 1 NS LS1 3 3 3 3 3 NS

LS2 11 11 28 NS 12 NS LS2 16 16 30 NS 16 NS

LS3 12 12 20 20 5 20 LS3 19 19 26 26 19 26

LS4 7 7 15 15 7 15 LS4 25 25 27 27 14 27

LS5 10 10 18 18 7 18 LS5 30 30 37 37 20 37

LS6 9 9 17 17 5 17 LS6 19 19 27 27 17 27

LS7 6 6 6 6 7 NS LS7 13 13 13 13 13 NS

Total 56 56 105 77 44 70 Total 125 125 163 133 102 117

LD1 8 8 11 11 3 11 LD1 10 10 29 29 3 29

LD2 3 3 3 3 3 3 LD2 20 20 28 28 20 28

LD3 16 16 16 16 4 16 LD3 30 30 39 39 13 39

LD4 5 5 5 5 5 5 LD4 30 30 47 47 5 47

LD5 5 5 13 13 3 13 LD5 15 15 24 24 15 24

LD6 14 14 14 14 14 14 LD6 38 38 38 38 38 38

LD7 3 3 4 4 2 4 LD7 12 12 20 20 12 20

LD8 15 15 15 15 9 15 LD8 27 27 27 27 16 27

LD9 3 3 6 6 3 6 LD9 7 7 17 17 7 17

LD10 10 10 11 11 3 11 LD10 23 23 23 23 23 23

LD11 15 15 15 15 5 15 LD11 31 31 32 32 31 32

Total 108 108 119 122 54 119 Total 243 243 324 324 183 324

SP2B-1 10 10 28 28 NS 28

SP2B-2 90 90 92 92 RE NS

SP2B-3a 13 13 19 NS 13 19

SP2B-4 52 52 66 66 52 66

SP2B-5b 40 40 50 50 40 50

SP2B-6 68 68 72 72 18 NS

SP2B-7 100 100 104 NS 64 NS

SP2B-8 91 91 102 102 NS NS

SP2B-9 40 40 40 NS 40 NS

SP2B-10 7 7 10 NS 7 10

SP2B-11 10 10 10 10 10 NS

Total 521 521 593 420 244 173

Net Total 242 242 336 283 134 273 Net Total 1071 1071 1305 1072 692 809
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is important to note that DARQ does not support queries where any
of the predicates in a triple pattern is unbound (e.g., CD1, LS2) and
ADERIS does not support queries which feature FILTER or UNION
clauses (e.g., CD1, LS1, LS2, LS7). In case of triple patterns with un-
bound predicates (such as CD1, LS2) both LHD and ADERIS simply
select all of the available sources as relevant. This overestimation can
significantly increase the overall query execution time.

The effect overestimation can be clearly seen by taking a fine-granular
look at how the different systems process FedBench query CD3 given
in Listing 4. The optimal number of TP sources for this query is 5.
This query has a total of five triple patterns. To process this query,
FedX sends a SPARQL ASK query to all of the 10 benchmark SPARQL
endpoints for each of the triple pattern summing up to a total of 50

(5*10) SPARQL ASK operations. As a result of these operations, only
one source is selected for each of the first four triple pattern while
eight sources are selected for last one, summing up to a total of 12

TP sources. SPLENDID utilizes its index and ASK queries for the
first three and index-only for last two triple pattern to select exactly
the same number of sources selected by FedX. LHD, ADERIS, and
DARQ only makes use of predicate lookups in their catalogs to se-
lect nine sources for the first, one source each for the second, third,
fourth, and eighth for the last triple pattern summing up to a total
of 20 TP sources. The later three approaches overestimate the num-
ber of sources for first triple pattern by 8 sources. This is due to the
predicate rdf:type being likely to be used in all of RDF datasets.
However, triples with rdf:type as predicate and the bound object
dbp:President are only contained in the DBpedia subset of FedBench.
Thus, the only relevant data source for the first triple pattern is DBpe-
dia subset. Interestingly, even FedX and SPLENDID overestimate the
number of data sources that can contribute for the last triple pattern.
There are eight FedBench datasets which contain owl:sameAs predi-
cate. However, only one (i.e., New York Times) can actually contribute
results after a join of the last two triple patterns is carried out. ANAP-
SID makes use of a catalog and SPARQL-ASK-assisted Star Shaped
Group Multiple (SSGM) endpoint selection heuristic [61] to select the
optimal (i.e., five) TP sources for this query. However, ANAPSID also
overestimates the TP sources in some cases. For query CD6 of Fed-
Bench, ANAPSID selected a total of 10 TP sources while only 4 is the
optimal sources that actually contributes to the final result set. This
behaviour leads us to our first insight: Optimal TP source selection
is not sufficient to detect the optimal set of sources that should be
queried.

In the SlicedBench results, we can clearly see the TP values are in-
creased for each of the FedBench queries which mean a query spans
more data sources, thus simulating a highly fragmented environment
suitable to test the federation system for effective parallel query pro-
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1 SELECT ? pres ident ? party ? page
2 WHERE {
3 ? pres ident rdf : type dbp : Pres ident .
4 ? pres ident dbp : n a t i o n a l i t y dbp : US .
5 ? pres ident dbp : party ? party .
6 ?x nyt : topicPage ? page .
7 ?x owl#sameAs ? pres ident .
8 }

Listing 4: FedBench CD3. Prefixes are ignored for simplicity

cessing. The highest number of TP sources are reported for the sec-
ond SP2Bench query where up to a total of 92 TP sources are selected.
This query contains 10 triple patterns and index-free approaches (e.g.,
FedX) need 100 (10*10) SPARQL ASK queries to perform the source
selection operation. Using SPARQL ASK queries with no caching for
such a highly federated environment can be very expensive. From
the results shown in Table 11, it is noticeable that hybrid (catalog +
SPARQL ASK) source selection approaches (ANAPSID, SPLENDID)
perform an more accurate source selection than index/catalog-only
approaches (i.e., DARQ, LHD, and ADERIS).

3.6.3.2 Number of SPARQL ASK requests

Table 12 shows the total number of SPARQL ASK requests used to
perform source selection for each of the queries of FedBench and
SlicedBench. Index-only approaches (DARQ, ADERIS, LHD) only make
use of their index to perform source selection. Therefore, they do not
necessitate any ASK requests to process queries. As mention before,
FedX only makes use of ASK requests (along with a cache) to perform
source selection. The results presented in Table 12 are for FedX(cold
or first run), where the FedX cache is empty. This is basically the
lower bound of the performance of FedX. For FedX(100% cached),
the complete source selection is performed by using cache entries
only. Hence, in that case, the number of SPARQL ASK requests is zero
for each query. This is the upper bound of the performance of FedX
on the data at hand. The results clearly shows that index-free (e.g.,
FedX) approaches can be very expensive in terms of SPARQL ASK
requests used. This can greatly affect the source selection time and
overall query execution time if no cache is used. Both for FedBench
and SlicedBench, SPLENDID is the most efficient hybrid approach in
terms of SPARQL ASK requests consumed during source selection.

For SlicedBench, all data sources are likely contains the same set of
distinct predicates (because each data source contains at least one
slice from each data dump). Therefore, the index-free and hybrid
source selection approaches are bound to consume more SPARQL
ASK requests. It is important to note that ANAPSID combines more
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Table 12: Comparison of number of SPARQL ASK requests used for source
selection both in FedBench and SlicedBench. NS stands for “not
supported”, RE for “runtime error”, SPL for SPLENDID, ANA for
ANAPSID and ADE for ADERIS. Key results are in bold.

FedBench SlicedBench

Query FedX SPL LHD DARQ ANA ADE Query FedX SPL LHD DARQ ANA ADE

CD1 27 26 0 NS 20 NS CD1 30 30 0 NS 25 NS

CD2 27 9 0 0 1 0 CD2 30 20 0 0 29 0

CD3 45 2 0 0 2 0 CD3 50 20 0 0 46 0

CD4 45 2 0 0 3 0 CD4 50 10 0 0 34 0

CD5 36 1 0 0 1 0 CD5 40 10 0 0 14 0

CD6 36 2 0 0 11 0 CD6 40 10 0 0 40 0

CD7 36 2 0 0 5 0 CD7 40 10 0 0 40 0

Total 252 44 0 0 43 0 Total 280 110 0 0 228 0

LS1 18 0 0 0 0 NS LS1 20 0 0 0 3 NS

LS2 27 26 0 NS 30 NS LS2 30 30 0 NS 30 NS

LS3 45 1 0 0 13 0 LS3 50 10 0 0 30 0

LS4 63 2 0 0 1 0 LS4 70 20 0 0 15 0

LS5 54 1 0 0 4 0 LS5 60 10 0 0 27 0

LS6 45 2 0 0 13 0 LS6 50 20 0 0 26 0

LS7 45 1 0 0 2 NS LS7 50 10 0 0 12 NS

Total 297 33 0 0 63 0 Total 330 100 0 0 143 0

LD1 27 1 0 0 1 0 LD1 30 10 0 0 12 0

LD2 27 1 0 0 0 0 LD2 30 10 0 0 29 0

LD3 36 1 0 0 2 0 LD3 40 10 0 0 23 0

LD4 45 2 0 0 0 0 LD4 50 20 0 0 25 0

LD5 27 2 0 0 2 0 LD5 30 20 0 0 32 0

LD6 45 1 0 0 12 0 LD6 50 10 0 0 38 0

LD7 18 2 0 0 4 0 LD7 20 10 0 0 20 0

LD8 45 1 0 0 7 0 LD8 50 10 0 0 19 0

LD9 27 5 0 0 3 0 LD9 30 20 0 0 17 0

LD10 27 2 0 0 4 0 LD10 30 10 0 0 23 0

LD11 45 1 0 0 2 0 LD11 50 10 0 0 32 0

Total 369 19 0 0 37 0 Total 410 140 0 0 270 0

SP2B-1 30 20 0 0 NS 0

SP2B-2 100 10 0 0 RE NS

SP2B-3a 20 10 0 NS 10 0

SP2B-4 80 20 0 0 66 0

SP2B-5b 50 20 0 0 50 0

SP2B-6 90 20 0 0 37 NS

SP2B-7 130 30 0 NS 62 NS

SP2B-8 100 20 0 0 NS NS

SP2B-9 40 20 0 NS 20 NS

SP2B-10 10 10 0 NS 10 0

SP2B-11 10 0 0 0 10 NS

Total 660 180 0 0 265 0

Net Total 918 96 0 0 143 0 Net Total 1680 530 0 0 906 0
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than one triple pattern into a single SPARQL ASK query. The time
required to execute these more complex SPARQL ASK operations are
generally higher than SPARQL ASK queries having a single triple
pattern as used in FedX and SPLENDID. Consequently, even though
ANAPSID require less SPARQL ASK requests for many of the Fed-
Bench queries, its source selection time is greater than all other se-
lected approaches. This behaviour will be further elaborated upon
in the subsequent section. Tables 11 and 12 clearly show that using
SPARQL ASK queries for source selection leads to an efficient source
selection in terms of TP sources selected. However, in the next sec-
tion we will see that they increase both source selection and overall
query runtime. A smart source selection approach should select fewer
number of TP sources while using minimal number of SPARQL ASK
requests.

3.6.3.3 Answer compeleteness

As pointed in [61], an important criterion in performance evaluation
of the federated SPARQL query engines is the result set completeness.
Two or more engines are only comparable to each other if they pro-
vide the same result set for a given query. A federated engine may
miss results due to various reasons including the type of source selec-
tion used, the use of an outdated cache or index, the type of network,
the endpoint result size limit or even the join implementation. In our
case, the sole possible reason for missing results across all six engines
is the join implementation as all of the selected engines overestimate
the set of capable sources (i.e., they never generate false negatives
w.r.t. the capable sources), the cache, index are always up-to-date, the
endpoint result size limit is greater than the query results and we
used a local dedicated network with negligible network delay. Table
13 shows the queries and federated engines for which we did not
receive the complete results. As an overall answer completeness eval-
uation, only FedX is always able to retrieve complete results. It is im-
portant to note that these results are directly connected to the answer
completeness results presented in survey Table 4; which shows only
FedX is able to provide complete results among the selected systems.
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3.6.3.4 Source selection time

Figure 6 to Figure 12 show the source selection time for each of the
selected approaches and for both FedBench and SlicedBench. Com-
pared to the TP results, the index-only approaches require less time
than the hybrid approaches even though they overestimated the TP
sources in comparison with the hybrid approaches. This is due to
index-only approaches not having to send any SPARQL ASK queries
during the source selection process. The index being usually pre-
loaded into the memory before the query execution means that the
runtime the predicate look-up in index-only approaches is minimal.
Consequently, we observe a trade-off between the intelligent source
selection and the time required to perform this process. To reduce
the costs associated with ASK operations, FedX implements a cache
to store the results of the recent SPARQL ASK operations. Our source
selection evaluation results show that source selection time of FedX
with cached entries is significantly smaller than FedX’s first run with
no cached entries.

As expected the source selection time for FedBench queries is smaller
than that for SlicedBench, particularly in hybrid approaches. This is
because the number of TP sources for SlicedBench queries are in-
creased due to data partitioning. Consequently, the number of SPARQL
ASK requests grows and increases the overall source selection time.
As mentioned before, an overestimation of TP sources in highly fed-
erated environments can greatly increase the source selection time.
For example, consider query LD4. SPLENDID selects the optimal
(i.e., five) number of sources for FedBench and the source selection
time is 218 ms. However, it overestimates the number of TP sources
for SlicedBench by selecting 30 instead of 5 sources. As a result, the
source selection time is significantly increased to 1035 ms which di-
rectly affects the overall query runtime. The effect of such overestima-
tion is even worse in SP2B-2 and SP2B-4 queries for the SlicedBench.

Lessons learned from the evaluation of the first three metrics is that
using ASK queries for source selection leads to smart source selection
in term of total TP sources selected. On the other hand, they signifi-
cantly increase the overall query runtime where no caching is used.
FedX makes use of an intelligent combination of parallel ASK query
processing and caching to perform the source selection process. This
parallel execution of SPARQL ASK queries is more time-efficient than
the ASK query processing approaches implemented in both ANAP-
SID and SPLENDID. Nevertheless, the source selection of FedX could
be improved further by using heuristics such as ANAPSID’s to reduce
the overestimation of TP sources.
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Figure 6: Comparison of source selection time: FedBench CD queries
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Figure 7: Comparison of source selection time: SlicedBench CD queries
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Figure 8: Comparison of source selection time: FedBench LS queries
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Figure 9: Comparison of source selection time: SlicedBench LS queries
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Figure 10: Comparison of source selection time: FedBench LD queries
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Figure 11: Comparison of source selection time: SlicedBench LD queries
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Figure 12: Comparison of source selection time: SlicedBench SP2Bench
queries.
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3.6.3.5 Query execution time

Figure 13 to Figure 19 show the query execution time for both exper-
imental setups. The negligibly small standard deviation error bars
(shown on top of each bar) indicate that the data points tend to
be very close to the mean, thus suggest a high consistency of the
query runtimes in most frameworks. As an overall query execution
time evaluation, FedX(cached) outperforms all of the remaining ap-
proaches in majority of the queries. FedX(cached) is followed by FedX(first
run) which is further followed by LHD, SPLENDID, ANAPSID, ADERIS,
and DARQ. Deciding between DARQ and ADERIS is not trivial be-
cause the latter does not produce results for most of the queries. The
exact number of queries by which one system is better than other is
given in the next section (ref. Section 3.7.1). Furthermore, the number
of queries by which one system significantly outperform other (using
Wilcoxon signed rank test) is also given in the next section.

Interestingly, while ANAPSID ranks first (among the selected sys-
tems) in terms of triple pattern-wise sources selected results, it ranks
fourth in terms of query execution performance. There are a couple
of reason for this: (1) ANAPSID does not make use of cache. As a
result, it spends more time (8ms for FedX and 1265 ms for ANAP-
SID on average over both setups) performing source selection, which
worsens its query execution time and (2) Bushy tress (used in ANAP-
SID) only perform better than left deep trees (used in FedX) when the
queries are more complex and triple patterns joins are more selective
[43; 4]. However, the FedBench queries (excluding SP2Bench) are not
very selective and are rather simple, e.g., triple patterns in a query
ranges from 2 to 7. In addition, the query result set sizes are small (10

queries whose resultset size smaller than 16) and the average query
execution is small (about 3 seconds on average for FedX over both se-
tups). The SP2Bench queries are more complex and the resultset sizes
are large. However, the selected systems were not able to execute ma-
jority of the SP2Bench queries. It would be interesting to compare
these systems on more complex and Big Data benchmark. The use of
a cache improves FedX’s performance by 10.5% in the average query
execution for FedBech and 4.14% in SlicedBench.

The effect of the overestimation of the TP sources on query exe-
cution can be observed on the majority of the queries for different
systems. For instance, for FedBench’s LD4 query SPLENDID selects
the optimal number of TP sources (i.e., five) and the query execution
time is 318 ms of which 218 ms are used for selecting sources. For
SlicedBench, SPLENDID overestimates the TP sources by 25 (i.e., se-
lects 30 instead of 5 sources), resulting in a query execution of 10693

ms, of which 1035 ms are spent in the source selection process. Con-
sequently, the pure query execution time of this query is only 100

ms for FedBench (318-218) and 9659 ms (10693-1035) for SlicedBench.
This means that an overestimation of TP sources does not only in-
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Figure 13: Comparison of query execution time: FedBench CD queries

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

CD1 CD2 CD3 CD4 CD5 CD6 CD7

Ex
e

cu
ti

o
n

 t
im

e
 (

m
se

c)
 lo

g 
sc

al
e

FedX(first run) FedX (cached) SPLENDID LHD DARQ ANAPSID ADERIS

N
o

t
su

p
p

o
rt

ed

R
u

n
ti

m
e

er
ro

r

Ti
m

e 
o

u
t

R
u

n
ti

m
e

er
ro

r

Ti
m

e 
o

u
t

Ti
m

e 
o

u
t Ze

ro
re

su
lt

s

N
o

t
su

p
p

o
rt

ed

R
u

n
ti

m
e

er
ro

r

Figure 14: Comparison of query execution time: SlicedBench CD queries
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Figure 15: Comparison of query execution time: FedBench LS queries
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Figure 16: Comparison of query execution time: SlicedBench LS queries
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Figure 17: Comparison of query execution time: FedBench LD queries
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Figure 18: Comparison of query execution time: SlicedBench LD queries

Figure 19: Comparison of query execution time: SlicedBench SP2Bench
queries
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crease the source selection time but also produces results which are
excluded after performing join operation between query triple pat-
terns. These retrieval of irrelevant results increases the network traffic
and thwarts the query execution plan. For example, both FedX and
SPLENDID considered 285412 irrelevant triples due to the overesti-
mation of 8 TP sources only for owl : sameAs predicate in CD3 of
FedBench. Another example of TP source overestimation can seen in
CD1, LS2. LHD’s overestimation of TP sources on SlicedBench (e.g.,
22 for CD1, 14 for LS2) leads to its query execution time jumping
from 3670.9 ms to 41586.3 ms for CD1 and 427 ms to 34418.3 ms for
LS2.

In queries such as CD4, CD6, LS3, LD11 and SP2B-11 we observe
that the query execution time for DARQ is more than 2 minutes. In
some cases, it even reaches the 30 minute timeout used in our exper-
iments. The reason for this behaviour is that the simple nested loop
join it implements overfloods SPARQL endpoints by submitting too
many endpoint requests. FedX overcomes this problem by using a
block nested loop join where the number of endpoints requests are
dependent upon the block size. Furthermore, we can see that many
systems do not produce results for SP2Bench queries. A possible rea-
son for this is the fact that SP2Bench queries contain up to 10 triple
patterns with different SPARQL clauses such as DISTINCT, ORDER
BY, and complex FILTERS.

3.6.3.6 Overall performance evaluation

The comparison of the overall performance of each approach is sum-
marised in Figure 20, where we show the average query execution
time for the queries in CD, LS, LD, and SP2Bench sub-groups. As
an overall performance evaluation based on FedBench, FedX(cached)
outperformed FedX(first run) on all of the 25 queries. FedX(first run)
in turn outperformed LHD on 17 out of 22 commonly supported
queries (LHD retrieve zero results for three queries). LHD is better
than SPLENDID in 13 out of 22 comparable queries. SPLENDID out-
performed ANAPSID in 15 out of 24 queries while ANAPSID out-
performs DARQ in 16 out of 22 commonly supported queries. For
SlicedBench, FedX(cached) outperformed FedX(first run) in 29 out of
36 comparable queries. In turn FedX(first run) outperformed LHD in
17 out of 24 queries. LHD is better than SPLENDID in 17 out of 24

comparable queries. SPLENDID outperformed ANAPSID in 17 out of
26 which in turn outperformed DARQ in 12 out of 20 commonly sup-
ported queries. No results were retrieved for majority of the queries
in case of ADERIS, hence not included to this section. All of the above
improvements are significant based on Wilcoxon signed ranked test
with significance level set to 0.05.
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Figure 20: Overall performance evaluation (ms)

3.7 discussion

The subsequent discussion of our findings can be divided into two
main categories.

3.7.1 Effect of the source selection time

To the best of our knowledge, the effect of the source selection run-
time has not been considered in SPARQL query federation system
evaluations [1; 27; 61; 73; 94] so far. However, after analysing all of
the results presented above, we noticed that this metric greatly affects
the overall query execution time. To show this effect, we compared
the pure query execution time (excluding source selection time). To
calculate the pure query execution time, we simply subtracted the
source selection time from the overall query execution and plot the
execution time.

We can see that the overall query execution time (including source
selection ) of SPLENDID is better than FedX(cached) in only one out
of the 25 FedBench queries. However, our pure query execution re-
sults suggests that SPLENDID is better in 8 out of the 25 queries in
terms of the pure query execution time. This means that SPLENDID
is slower than FedX (cached) in 33% of the queries only due to the
source selection process. Furthermore, our results also suggest that
the use of SPARQL ASK queries for source selection is expensive with-
out caching. On average, SPLENDID’s source selection time is 235 ms
for FedBench and 591 ms in case of SlicedBench. On the other hand,
FedX (cached)’s source selection time is 8ms for both FedBench and
SlicedBench. ANAPSID average source selection time for FedBench
is 507 ms and 2014 ms for SlicedBench which is one of the reason of
ANAPSID poor performance as compare to FedX (cached).
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Figure 21: Comparison of pure (without source selection time) query execu-
tion time: FedBench CD queries
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Figure 22: Comparison of pure (without source selection time) query execu-
tion time: SlicedBench CD queries
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Figure 23: Comparison of pure (without source selection time) query execu-
tion time: FedBench LS queries
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Figure 24: Comparison of pure (without source selection time) query execu-
tion time: SlicedBench LS queries
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Figure 25: Comparison of pure (without source selection time) query execu-
tion time: FedBench LD queries
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Figure 26: Comparison of pure (without source selection time) query execu-
tion time: SlicedBench LD queries
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3.7.2 Effect of the data partitioning

In our SlicedBench experiments, we extended FedBench to test the
federation systems behaviour in highly federated data environment.
This extension can also be utilized to test the capability of parallel ex-
ecution of queries in SPARQL endpoint federation system. To show
the effect of data partioning, we calculated the average for the query
execution time of LD, CD, and LS for both the benchmarks and com-
pared the effect on each of the selected approach. The performance of
FedX(cached) and DARQ is improved with partitioning while the per-
formance of FedX(first run), SPLENDID, ANAPSID, and LHD is re-
duced. As an overall evaluation result, FedX(first run)’s performance
is reduced by 214%, FedX(cached)’s is reduced 199%, SPLENDID’s
is reduced by 227%, LHD’s is reduced by 293%, ANAPSID’s is re-
duced by 382%, and interestingly DARQ’s is improved by 36%. This
results suggest that FedX is the best system in terms of parallel exe-
cution of queries, followed by SPLENDID, LHD, and ANAPSID. The
performance improvement for DARQ occurs due to the fact that the
overflooding of endpoints with too many nested loop requests to a
particular endpoint is now reduced. This reduction is due to the dif-
ferent distribution of the relevant results among many SPARQL end-
points. One of the reasons for the performance reduction in LHD is
its significant overestimation of TP sources in SlicedBench. The reduc-
tion of both SPLENDID’s and ANAPSID’s performance is due to an
increase in ASK operations in SlicedBench and due to the increase in
triple pattern-wise selected sources which greatly affects the overall
performance of the systems when no cache used.
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Figure 27: Effect of the data partitioning
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4
H Y P E R G R A P H - B A S E D S O U R C E S E L E C T I O N

To ensure that a recall of 100% is achieved, most SPARQL query fed-
eration approaches [27; 57; 70; 94; 100; 77] perform triple pattern-wise
source selection (TPWSS). In the previous chapter, it was shown that
state-of-the-art SPARQL endpoint federation system greatly overesti-
mate the set of relevant data sources. This is because most of these
engine only perform TPWSS and do not consider the join between
the triple patterns. Thus, it is possible that a relevant source can only
answer a particular triple pattern of the query and does not contribute
to the final result set of the complete query. This is because the results
from a particular data source can be excluded after performing joins
with the results of other triple patterns contained in the same query.
We have seen that an overestimation of such sources increases the
network traffic and significantly affect the overall query processing
time.

We thus propose a novel join-aware approach to TPWSS dubbed Hi-
BISCuS [87] and is discussed in this chapter. HiBISCuS is a labelled-
hypergraph-based source selection approach which relies on a novel
type of data summaries for SPARQL endpoints using the URIs au-
thorities. Our approach goes beyond the state of the art by aiming to
compute the sources that actually contribute to the final result set of
an input query and that for each triple pattern. In contrast to the state
of the art, HiBISCuS uses hypergraphs to detect sources that will not
generate any relevant results both at triple-pattern level and at query
level. By these means, HiBISCuS can generate better approximations
of the sources that should be queried to return complete results for a
given query. We will carry on with the motivating example given in
Chapter 1 and show that HiBISCuS is able to prune one more source,
i.e., it selects a total of three distinct sources (instead of four) for the
query given in Listing 1.

To the best of our knowledge, this join-aware approach to TPWSS
has only been tackled by an extension of the ANAPSID framework
presented in [61]. Yet, this extension is based on evaluating names-
paces and sending ASK queries to data sources at runtime. In contrast,
HiBISCuS relies on an index that stores the authorities of the resource
URIs1 contained in the data sources at hand. Our approach proves to
be more time-efficient than the ANAPSID extension as shown by our
evaluation in Section 4.3.

HiBISCuS addresses the problem of source selection by several in-
novations. Our first innovation consists of modelling SPARQL queries

1 http://tools.ietf.org/html/rfc3986
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66 hypergraph-based source selection

as a sets of directed labelled hypergraphs (DLH). Moreover, we rely on
a novel type of summaries which exploits the fact that the resources
in SPARQL endpoints are Uniform Resource Identifiers (URIs). Our
source selection algorithm is also novel and consists of two steps. In a first
step, our approach labels the hyperedges of the DLH representation of
an input SPARQL query q with relevant data sources. In the second
step, the summaries and the type of joins in q are used to prune the
edge labels. By these means, HiBISCuS can discard sources (without
losing recall) that are not pertinent to the computation of the final
result set of the query. Overall, our contributions are thus as follows:

1. We present a formal framework for modelling SPARQL queries
as directed labelled hypergraphs.

2. We present a novel type of data summaries for SPARQL end-
points which relies on the authority fragment of URIs.

3. We devise a pruning algorithm for edge labels that enables us
to discard irrelevant sources based on the types of joins used in
a query.

4. We evaluate our approach by extending three state-of-the-art
federate query engines (FedX, SPLENDID and DARQ) with Hi-
BISCuS and comparing these extensions to the original systems.
In addition, we compare our most time-efficient extension with
the extension of ANAPSID presented in [61]. Our results show
that we can reduce the number of source selected, the source
selection time as well as the overall query runtime of each of
these systems.

The structure of the rest of this chapter is as follows: we first formal-
ize the problem statement. We present our formalization of SPARQL
queries as directed labelled hypergraphs (DLH). Subsequently, we
present the algorithms underlying HiBISCuS. Finally, we evaluate Hi-
BISCuS against the state-of-the-art and show that we achieve both
better source selection and runtimes on the FedBench [91] SPARQL
query federation benchmark.

4.1 problem statement

In the following, we present some of the concepts and notation that
are used throughout this chapter. Note some of the concepts (e.g.,
relevant source set etc.) are already explained in Chapter 2.

The standard for querying RDF is SPARQL.2 The result of a SPARQL
query is called its result set. Each element of the result set of a query
is a set of variable bindings. Federated SPARQL queries are defined as
queries that are carried out over a set of sources D = {d1, . . . ,dn}.

2 http://www.w3.org/TR/rdf-sparql-query/
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Given a SPARQL query q, a source d ∈ D is said to contribute to q if
at least one of the variable bindings belonging to an element of q’s
result set can be found in d.

Definition 15 (Optimal source Set) Let Ri be the relevant source set (for-
mally defined in Definition 6 Chapter 2) for triple pattern ti. The optimal
source set Oi ⊆ Ri for a triple pattern ti ∈ TP contains the relevant sources
d ∈ Ri that actually contribute to computing the complete result set of the
query.

Formally, the problem of TPWSS can then be defined as follows:

Definition 16 (Problem Statement) Given a setD of sources and a query
q, find the optimal set of sources Oi ⊆ D for each triple pattern tpi of q.

Most of the source selection approaches [27; 57; 70; 94; 100] used
in SPARQL endpoint federation systems only perform TPWSS, i.e.,
they find the set of relevant sources Ri for individual triple patterns
of a query and do not consider computing the optimal source sets
Oi. In this chapter, we present an index-assisted approach for (1)
the time-efficient computation of relevant source set Ri for individ-
ual triple patterns of the query and (2) the approximation of Oi out
of Ri. HiBISCuS approximates Oi by determining and removing irrel-
evant sources from each of the Ri. We denote our approximation of
Oi by RSi. HiBISCuS relies on DLH to achieve this goal. In the follow-
ing, we present our formalization of SPARQL queries as DLH. Note
we already defined the representation of SPARQL queries as directed
hypergraph. We extend that definition to label the hyperedges with
relevant source sets. Subsequently, we show how we make use of this
formalization to approximate Oi for each tpi.

4.2 hibiscus

In this section we present our approach to the source selection prob-
lem in details. We begin by presenting our approach to representing
BGPs3 of a SPARQL query as DLHs. Then, we present our approach
to computing lightweight data summaries. Finally, we explain our ap-
proach to source selection.

4.2.1 Queries as Directed Labelled Hypergraphs

An important intuition behind our approach is that each of the BGP
in a query can be executed separately. Thus, in the following, we will
mainly focus on how the execution of a single BGP can be optimized.
The representation of a query as DLH is the union of the represen-
tations of its BGPs. Note that the representations of BGPs are kept

3 http://www.w3.org/TR/sparql11-query/#BasicGraphPatterns
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disjoint even if they contain the same nodes to ensure that the BGPs
are processed independently. The DLH representation of a BGP is
formally defined as follows:

Definition 17 Each basic graph patterns BGPi of a SPARQL query can be
represented as a DLH HGi = (V ,E, λe, λvt), where

1. V = Vs ∪ Vp ∪ Vo is the set of vertices of HGi, Vs is the set of all
subjects in HGi, Vp the set of all predicates in HGi and Vo the set of
all objects in HGi;

2. E ={e1,. . . , et}⊆ V3 is a set of directed hyperedges (short: edge). Each
edge e= (vs,vp,vo) emanates from the triple pattern <vs, vp, vo> in
BGPi. We represent these edges by connecting the head vertex vs with
the tail hypervertex (vp, vo). In addition, we use Ein(v) ⊆ E and
Eout(v) ⊆ E to denote the set of incoming and outgoing edges of a
vertex v;

3. λe : E 7→ 2D is a hyperedge-labelling function. Given a hyperedge
e ∈ E, its edge label is a set of sources Ri ⊆ D. We use this label to the
sources that should be queried to retrieve the answer set for the triple
pattern represented by the hyperedge e;

4. λvt is a vertex-type-assignment function. Given an vertex v ∈ V ,
its vertex type can be ’star’, ’path’, ’hybrid’, or ’sink’ if this vertex
participates in at least one join. A ’star’ vertex has more than one
outgoing edge and no incoming edge. ’path’ vertex has exactly one
incoming and one outgoing edge. A ’hybrid’ vertex has either more
than one incoming and at least one outgoing edge or more than one
outgoing and at least one incoming edge. A ’sink’ vertex has more
than one incoming edge and no outgoing edge. A vertex that does not
participate in any join is of type ’simple’.

Figure 28 shows the DLH representation of the second BGP of the
motivating example query given in Listing 1.

We can now reformulate our problem statement as follows:

Definition 18 (Problem Reformulation) Given a query q represented as
a set of hypergraphs {HG1, . . . ,HGx}, find the labelling of the hyperedges of
each hypergraph HGi that leads to an optimal source selection.

4.2.2 Data Summaries

HiBISCuS relies on capabilities to compute data summaries. Given
a source d, we define a capability as a triple (p,SA(d,p),OA(d,p))
which contains (1) a predicate p in d, (2) the set SA(d,p) of all dis-
tinct subject authorities of p in d and (3) the set OA(d,p) of all distinct
object authorities of p in d. In HiBISCuS, a data summary for a source
d ∈ D is the set CA(d) of all capabilities of that source. Consequently,
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caff
owl:

sameAs
dbDug:DB

00201

{Drugbank,
DBpedia,
ChEBI, SWDF}

pred-
icate

ob-
jectpath simple

Tail of hyperedge

{Drugbank}

Vs = {dbdDug :DB00201, caff} ,  Vp = {owl:sameAs, predicate} , 
Vo = {caff, object}
V = Vs U Vp U Vo 

= {dbdDug :DB00201, caff, owl:sameAs, predicate, object}
E = {e1, e2}
e1 = (dbdDug :DB00201, owl:sameAs, caff), 
e2 = (caff, predicate, object) 
λe(e1) = {Drugbank}, 
λe(e2) = {Drugbank, Dbpedia, ChEBI, SWDF}

Figure 28: Labelled hypergraph of the second BGP of the motivating exam-
ple query given in Listing 1.

the total number of capabilities of a source is equal to the number of
distinct predicates in it.

The predicate rdf:type is given a special treatment: Instead of stor-
ing the set of all distinct object authorities for a capability having this
predicate, we store the set of all distinct class URIs in d, i.e., the set of
all resources that match ?x in the query ?y rdf:type ?x. The reason
behind this choice is that the set of distinct classes used in a source
d is usually a small fraction of the set of all resources in d. More-
over, triple patterns with predicate rdf:type are commonly used in
SPARQL queries. Thus, by storing the complete class URI instead
of the object authorities, we might perform more accurate source se-
lection. Listing 5 shows an example of a data summary. In the next
section, we will make use of these data summaries to optimize the
TPWSS.

4.2.3 Source Selection Algorithm

Our source selection comprise two steps: given a query q, we first
label all hyperedges in each of the hypergraphs which results from the
BGPs of q, i.e., we compute λe(ei) for each ei ∈ Ei in all HGi ∈
DHG. We present two variations of this step and compare them in the
evaluation section. In a second step, we prune the labels of the hyperedges
assigned in the first step and compute RSi ⊆ Ri for each ei. The
pseudo-code of our approaches is shown in Algorithms 1, 2 (labelling)
as well as 3 (pruning).
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1 [ ] a ds : S e r v i c e ;
2 ds : endpointUrl <http :// drugbank . data . source . u r l/sparql > ;
3 ds : c a p a b i l i t y
4 [ ds : p r e d i c a t e owl : sameAs ;
5 ds : s b j P r e f i x e s <http ://www4. wiwiss . fu−b e r l i n . de> ;
6 ds : ob jAuthori ty <http :// dbpedia . org > , <http :// bio2 rdf . org> ;
7 ] ;
8 .
9 [ ] a ds : S e r v i c e ;

10 ds : endpointUrl <http :// dbpedia . data . source . u r l/sparql > ;
11 ds : c a p a b i l i t y
12 [ ds : p r e d i c a t e f o a f : name ;
13 ds : s b j P r e f i x e s <http :// dbpedia . org> ;
14 #No o b j P r e f i x e s as the o b j e c t value f o r f o a f : name i s s t r i n g
15 ] ;
16 .
17 [ ] a ds : S e r v i c e ;
18 ds : endpointUrl <http :// chebi . data . source . u r l/sparql > ;
19 ds : c a p a b i l i t y
20 [ ds : p r e d i c a t e chebi : S t a t u s ;
21 ds : s b j P r e f i x e s <http :// bio2 rdf . org> ;
22 ds : o b j P r e f i x e s <http :// bio2 rdf . org> ;
23 ] ;
24 ds : c a p a b i l i t y
25 [ ds : p r e d i c a t e rdf : type ;
26 ds : s b j P r e f i x e s <http :// bio2 rdf . org> ;
27 ds : o b j P r e f i x e s <http :// bio2 rdf . org/chebi : Compound> ;
28 # Store complete c l a s s e s f o r rdf : type
29 ] ;
30 .
31 [ ] a ds : S e r v i c e ;
32 ds : endpointUrl <http :// data . semanticweb . org/sparql > ;
33 ds : c a p a b i l i t y
34 [ ds : p r e d i c a t e f o a f : name ;
35 ds : s b j P r e f i x e s <http :// data . semanticweb . org> ;
36 #No o b j P r e f i x e s as the o b j e c t value f o r f o a f : name i s s t r i n g
37 ] ;
38 .

Listing 5: HiBISCuS data summaries for motivating example datasets (ref.
Chapter 1). Prefixes are ignored for simplicity
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4.2.3.1 Labelling approaches

We devised two versions of our approach to the hyperedge labelling
problem, i.e., an ASK-dominant and an index-dominant version. Both
take the set of all sources D, the set of all disjunctive hypergraphs
DHG of the input query q and the data summaries HiBISCuSD of
all sources in D as input (see Algorithms 1,2). They return a set of
labelled disjunctive hypergraphs as output. For each hypergraph and
each hyperedge, the subject, predicate, object, subject authority, and
object authority are collected (Lines 2-5 of Algorithms 1,2). Edges
with unbound subject, predicate, and object vertices (e.g e = (?s, ?p,
?o)) are labelled with the set of all possible sources D (Lines 6-7 of Al-
gorithms 1,2). A data summary lookup is performed for edges with
the predicate vertex rdf:type that have a bound object vertex. All
sources with matching capabilities are selected as label of the hyper-
edge (Lines 9-10 of Algorithms 1,2).

The ASK-dominant version of our approach (see Algorithm 1, Line
11) makes use of the notion of common predicates. A common predi-
cate is a predicate that is used in a number of sources above a specific
threshold value θ specified by the user. A predicate is then considered
a common predicate if it occurs in at least θ|D| sources. We make use
of the ASK queries for triple patterns with common predicates. Here,
an ASK query is sent to all of the available sources to check whether
they contain the common predicate cp. Those sources which return
true are selected as elements of the set of sources used to label that
triple pattern. The results of the ASK operations are stored in a cache.
Therefore, every time we perform a cache lookup before SPARQL
ASK operations (Lines 14-18). In contrast, in the index-dominant ver-
sion of our algorithm, an index lookup is performed if any of the sub-
ject or predicate is bound in a triple pattern.We will see later that the
index-dominant approach requires less ASK queries than the ASK-
dominant algorithm. However, this can lead to an overestimation of
the set of relevant sources (see section 4.3.2).

4.2.4 Pruning approach

The intuition behind our pruning approach is that knowing which
authorities are relevant to answer a query can be used to discard
triple pattern-wise (TPW) selected sources that will not contribute to
the final result set of the query. Our source pruning algorithm (ref.
Algorithm 3) takes the set of all labelled disjunctive hypergraphs as
input and prune labels of all hyperedges which either incoming or
outgoing edges of a ’star’,’hybrid’, ’path’, or ’sink’ node. Note that
our approach deals with each BGP of the query separately (Line 1 of
Algorithm 3).

For each node v of a DLH that is not of type ‘simple’, we first re-
trieve the sets (1) SAuth of the subject authorities contained in the
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Algorithm 1 ASK-dominant hybrid algorithm for labelling all hyper-
edges of each disjunctive hypergraph of a SPARQL query
Require: D= {d1, . . . ,dn}; DHG = {HG1, . . . ,HGx}; HiBISCuSD //sources, disjunc-

tive hypergraphs of a query, HiBISCuSmaries of sources
1: for each HGi ∈ DHG do
2: E = hyperedges (HGi)
3: for each ei ∈ E do
4: s = subjvertex(ei); p = predvertex(ei); o = objvertex(ei);
5: sa = subjauth(s); oa = objauth(o); //can be null i.e. for unbound s, o
6: if !bound(s) ∧ !bound(p) ∧ !bound(o) then
7: λe(ei) = D
8: else if bound(p) then
9: if p = rdf : type ∧ bound(o) then

10: λe(ei) = HiBISCuSDlookup(p, o)
11: else if !commonpredicate(p) ∨ (!bound(s) ∧ !bound(o)) then
12: λe(ei) = HiBISCuSDlookup(sa, p, oa)
13: else
14: if cachehit(s, p, o) then
15: λe(ei) = cachelookup(s, p, o)
16: else
17: λe(ei) = ASK(s, p, o, D)
18: end if
19: end if
20: else
21: Repeat Lines 14-18

22: end if
23: end for
24: end for
25: return DHG //Set of labelled disjunctive hypergraphs

Algorithm 2 Index-dominant hybrid algorithm for labelling all hyper-
edges of each disjunctive hypergraph of a SPARQL query
Require: D= {d1, . . . ,dn}; DHG = {HG1, . . . ,HGx}; HiBISCuSD //sources, disjunc-

tive hypergraphs of a query, HiBISCuSmaries of sources
1: for each HGi ∈ DHG do
2: E = hyperedges (HGi)
3: for each ei ∈ E do
4: s = subjvertex(ei); p = predvertex(ei); o = objvertex(ei);
5: sa = subjauth(s); oa = objauth(o); //can be null i.e. for unbound s, o
6: if !bound(s) ∧ !bound(p) ∧ !bound(o) then
7: λe(ei) = D
8: else if bound(s) ∨ bound(p) then
9: if bound(p) ∧ p = rdf : type ∧ bound(o) then

10: λe(ei) = HiBISCuSDlookup(p, o)
11: else
12: λe(ei) = HiBISCuSDlookup(sa, p, oa)
13: end if
14: else
15: if cachehit(s, p, o) then
16: λe(ei) = cachelookup(s, p, o)
17: else
18: λe(ei) = ASK(s, p, o, D)
19: end if
20: end if
21: end for
22: end for
23: return DHG //Set of labelled disjunctive hypergraphs
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Algorithm 3 Hyperedge label pruning algorithm for removing irrele-
vant sources
Require: DHG //disjunctive hypergraphs
1: for each HGi ∈ DHG do
2: for each v ∈ vertices(HGi) do
3: if λvt(v) 6= ‘simple’ then
4: SAuth = ∅; OAuth = ∅;
5: for each e ∈ Eout(v) do
6: SAuth = SAuth ∪ {subjectauthories(e)}
7: end for
8: for each e ∈ Ein(v) do
9: OAuth = OAuth ∪ {objectauthories(e)}

10: end for
11: A = SAuth∪OAuth // set of all authorities
12: I = A.get(1) //get first element of authorities
13: for each a ∈ A do
14: I = I∩ a //intersection of all elements of A
15: end for
16: for each e ∈ Ein(v)∪ Eout(v) do
17: label = ∅ //variable for final label of e
18: for di ∈ λe(e) do
19: if authorities(di) ∩ I 6= ∅ then
20: label = label∪ di
21: end if
22: end for
23: λe(e) = label
24: end for
25: end if
26: end for
27: end for

elements of the label of each outgoing edge of v (Lines 5-7 of Algo-
rithm 3) and (2) OAuth of the object authorities contained in the ele-
ments of the label of each ingoing edge of v (Lines 8-10 of Algorithm
3). Note that these are sets of sets of authorities.
DrugBank as single relevant source for the second triple pattern

of the query given in Listing 1. The set of distinct object authorities
(DBpedia.org, bio2rdf.org in our case) for predicate owl:sameAs of
DrugBank would be retrieved from the HiBISCuS index. The set of dis-
tinct subject authorities (DBpedia.org, bio2rdf.org in our case) would
be retrieved for all predicates (as the predicate is variable) and for all
data sources (as all are relevant). Finally, the intersection of the set
of authorities would again result in the same authorities set. Thus,
HiBISCuS would not prune any source

For the node ?caf of query given in Listing 1 and the corresponding
DLH representation given in Figure 28, we get SAuth = {{dbpedia.org},
{bio2rdf.org}, {data.semanticweb.org}, {wiwiss.fu-berlin.de}, } for
the outgoing edge. This is because the predicate is variable and and
all sources are relevant. We getOAuth = {dbpedia.org, bio2rdf.org}

for the incoming edges. Now we merge these two sets to the set A
of all authorities. For node ?caf, A = {{dbpedia.org, bio2rdf.org},
{data.semanticweb.org,dbpedia.org,bio2rdf.org,wiwiss.fu−berlin.de}.

The intersection I =

( ⋂
ai∈A

ai

)
of these elements sets is then com-

puted. In our example, this results in I = {dbpedia.org, bio2rdf.org}.
Finally, we recompute the label of each hyperedge e that is connected
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to v. To this end, we compute the subset of the previous label of e
which is such that the set of authorities of each of its elements is not
disjoint with I (see Lines 16-23 of Algorithm 3). These are the only
sources that will really contribute to the final result set of the query.
In our example, DrugBank will be selected for first triple pattern of the
BGP given in Figure 28. HiBISCuS will prune DrugBank and SWDF for
the second triple pattern; the authority {wiwiss.fu-berlin.de} from
DrugBank and {data.semanticweb.org from SWDF are disjoint with I.
Thus, HiBISCuS selects three distinct sources (i.e., DrugBank for first
two triple pattern and DBpedia, ChEBI for the last triple pattern) of the
query given in Listing 1. Even though HiBISCuS is able to prune one
more source (i.e., selected three distinct sources instead of four), still
it overestimates ChEBI whose results will be excluded after perform-
ing the join between the last two triple patterns of the query given
in Listing 1. We will solve this problem in the next chapter by using
TBSS approach.

We are sure not to lose any recall by this operation because joins act
in a conjunctive manner. Consequently, if the results of a data source
di used to label a hyperedge cannot be joined to the results of at least
one source of each of the other hyperedges, it is guaranteed that di
will not contribute to the final result set of the query. In our example,
this leads to d1 being discarded from the label of the ingoing edge,
while d3 is discarded from the label of one outgoing hyperedge of
node ?v1 as shown in Figure This step concludes our source selection.

4.3 evaluation

In this section we describe the experimental evaluation of our ap-
proach. We first describe our experimental setup in detail. Then, we
present our evaluation results. All data used in this evaluation is ei-
ther publicly available or can be found at the project web page.4

4.3.1 Experimental Setup

Benchmarking Environment: We used FedBench [91] for our evalu-
ation. It is the only (to the best of our knowledge) benchmark that
encompasses real-world datasets and commonly used queries within
a distributed data environment. Furthermore, it is commonly used in
the evaluation of SPARQL query federation systems [94; 27; 61; 77].
Each of FedBench’s nine datasets was loaded into a separate physical
virtuoso server. The exact specifications of the servers can be found
on the project website. All experiments were ran on a machine with
a 2.70GHz i5 processor, 8 GB RAM and 300 GB hard disk. The exper-
iments were carried out in a local network, so the network costs were
negligible. Each query was executed 10 times and results were aver-

4 https://code.google.com/p/hibiscusfederation/
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Table 14: Comparison of index construction time and compression ratio.
QTree’s compression ratio is taken from [34]. (NA = Not Appli-
cable).

FedX SPLENDID LHD DARQ ANAPSID Qtree HiBISCuS

Index Generation Time (min) NA 75 75 102 6 - 36

Compression Ratio (%) NA 99.998 99.998 99.997 99.999 96 99.997

aged. The query timeout was set to 30min (1800s). The threshold for
the ASK-dominant approach was best selected to 0.33 after analysing
results of different threshold values.
Federated Query Engines: We extended three SPARQL endpoint fed-
eration engines with HiBISCuS: DARQ [70] (index-only), FedX [94]
(index-free), and SPLENDID [27] (hybrid). In each of the extensions,
we only replaced the source selection with HiBISCuS. The query exe-
cution mechanisms remained unchanged. We compared our best ex-
tension (i.e., SPLENDID+HiBISCuS) with ANAPSID as this engine
showed competitive results w.r.t. its index compression and number
of TPW sources selected.
Metrics: We compared the three engines against their HiBISCuS ex-
tension. For each query we measured (1) the total number of TPW
sources selected, (2) the total number of SPARQL ASK requests sub-
mitted during the source selection, (3) the average source selection
time and (4) the average query execution time. We also compare the
source index/data summaries generation time and index compres-
sion ratio of various state-of-the art source selection approaches.

4.3.2 Experimental Results

4.3.2.1 Index Construction Time and Compression Ratio

Table 14 shows a comparison of the index/data summaries construc-
tion time and the compression ratio5 of various state-of-the art ap-
proaches. A high compression ratio is essential for fast index lookup
during source selection. HiBISCuS has an index size of 458KB for
the complete FedBench data dump (19.7 GB), leading to a high com-
pression ratio of 99.99%. The other approaches achieve similar com-
pression ratios. HiBISCuS’s index construction time is second only to
ANAPSID’s. This is due to ANAPSID storing only the distinct pred-
icates in its index. Our results yet suggest that our index containing
more information is beneficial to the query execution time on Fed-
Bench.

4.3.2.2 Efficient Source Selection

We define efficient source selection in terms of three metrics: (1) the
total number of TPW sources selected, (2) total number of SPARQL

5 The compression ratio is given by (1 - index size/total data dump size).
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Table 15: Comparison of the source selection in terms of total TPW sources
selected #T, total number of SPARQL ASK requests #A, and source
selection time ST in msec. ST* represents the source selection time
for FedX(100% cached i.e. #A =0 for all queries) which is very rare
in practical. ST** represents the source selection time for HiBIS-
CuS (AD,warm) with #A =0 for all queries. (AD = ASK-dominant,
ID = index-dominant, ZR = Zero results, NS = Not supported, T/A
= Total/Avg., where Total is for #T, #A, and Avg. is ST, ST*, and
ST**)

FedX SPLENDID DARQ ANAPSID HiBISCuS(AD) HiBISCuS(ID)

Qry #T #A ST ST* #T #A ST #T #A ST #T #A ST #T #A ST ST** #T #A ST

CD1 11 27 285 6 11 26 392 NS NS NS 3 20 667 4 18 215 36 12 0 363

CD2 3 27 200 6 3 9 294 10 0 6 3 1 42 3 9 4 3 3 0 57

CD3 12 45 367 8 12 2 304 20 0 12 5 2 73 5 0 77 41 5 0 91

CD4 19 45 359 8 19 2 310 20 0 12 5 3 128 5 0 54 52 5 0 179

CD5 11 36 374 7 11 1 313 11 0 4 4 1 66 4 0 25 23 4 0 58

CD6 9 36 316 8 9 2 298 10 0 11 10 11 140 8 0 36 23 8 0 54

CD7 13 36 324 9 13 2 335 13 0 6 6 5 ZR 6 0 30 35 6 0 55

LS1 1 18 248 9 1 0 217 1 0 4 1 0 35 1 0 5 6 1 0 9

LS2 11 27 264 8 11 26 390 NS NS NS 12 30 548 7 18 118 60 7 0 118

LS3 12 45 413 8 12 1 310 20 0 9 5 13 808 5 0 31 27 5 0 200

LS4 7 63 445 7 7 2 287 15 0 15 7 1 314 7 0 8 9 7 0 15

LS5 10 54 440 8 10 1 308 18 0 13 7 4 885 8 0 20 21 8 0 44

LS6 9 45 430 8 9 2 347 17 0 7 5 13 559 7 0 23 22 7 0 42

LS7 6 45 389 8 6 1 292 6 0 5 7 2 193 6 0 18 17 6 0 24

LD1 8 27 297 8 8 1 295 11 0 7 3 1 428 3 0 24 19 3 0 21

LD2 3 27 320 7 3 1 268 3 0 9 3 0 34 3 0 3 5 3 0 6

LD3 16 36 330 9 16 1 324 16 0 11 4 2 130 4 0 31 29 4 0 48

LD4 5 45 326 7 5 2 290 5 0 17 5 0 33 5 0 6 7 5 0 10

LD5 5 27 280 8 5 2 236 13 0 4 3 2 210 3 0 9 9 3 0 19

LD6 14 45 385 8 14 1 331 14 0 8 14 12 589 7 0 32 30 7 0 136

LD7 3 18 258 7 3 2 235 4 0 4 2 4 223 4 0 7 7 4 0 11

LD8 15 45 337 8 15 1 333 15 0 7 9 7 1226 5 0 23 25 5 0 41

LD9 3 27 228 12 3 5 188 6 0 3 3 3 1052 3 9 50 3 3 0 17

LD10 10 27 274 8 10 2 309 11 0 6 3 4 2010 3 0 19 18 3 0 27

LD11 15 45 351 7 15 1 260 15 0 9 5 2 2904 7 0 23 24 7 0 42

T/A 231 918 330 8 231 96 299 274 0 8 134 143 554 123 54 36 22 131 0 67

ASK requests used to obtain (1), and (3) the TPW source selection
time. Table 15 shows a comparison of the source selection approaches
of FedX, SPLENDID, ANAPSID and HiBISCuS based on these three
metrics. Note that FedX (100% cached) means that we gave FedX
enough memory to use only its cache to perform the complete source
selection. This is the best-case scenario for FedX. Overall, HiBISCuS
(ASK-dominant) is the most efficient approach in terms of total TPW
sources selected, HiBISCuS (Index-dominant) is the most efficient hy-
brid approach in terms of total number of ASK request used, and
FedX (100% cached) is most efficient in terms of source selection time.
However, FedX (100% cached) clearly overestimates the set of sources
that actually contributes to the final result set of query. In the next
section, we will see that this overestimation of sources greatly leads
to a slightly higher overall query runtime. For ANAPSID, the results
are based on Star-Shaped Group Multiple endpoint selection (SSGM)
heuristics presented in its extension [61]. Further, the source selection
time represents the query decomposition time as both of these steps
are intermingled.
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Figure 29: Query runtime of DARQ and its HiBISCuS extensions on CD and
LS queries of FedBench. CD1, LS2 not supported, CD6 runtime
error, CD7 time out for both. CD3 runtime error for DARQ.

4.3.2.3 Query execution time

The most important criterion when optimizing federated query exe-
cution engines is the query execution time. Figures 29-34 show the
results of our query execution time experiments. Our main results
can be summarized as follows:

(1) Overall, the ASK-dominant (AD) version of our approach performs
best. AD is on average (over all 25 queries and 3 extensions) 27.82%
faster than the index-dominant (ID) version. The reason for this im-
provement is due to ID overestimating sources in some queries. For
example, in CD1, AD selects the optimal number of sources (i.e.,
4) while ID selects 12 sources. In some cases, the overestimation of
sources by ID also slows down the source pruning (e.g. CD2),
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Figure 30: Query runtime of DARQ and its HiBISCuS extensions on LD
queries of FedBench. LD6, LD10 timeout for DARQ.

(2) A comparison of our extensions with AD shows that all extensions
are more time-efficient than the original systems. In particular, FedX’s
(100% cached) runtime is improved in 20/25 queries (net query run-
time improvement of 24.61%), FedX’s (cold) is improved in 25/25

queries (net improvement: 53.05%), SPLENDID ’s is improved in
25/25 queries (net improvement: 82.72%) and DARQ’s is improved
in 21/21 (2 queries are not supported, 1 query time out, and 1 query
runtime error) queries (net improvement: 92.22%). Note that these
values were computed only on those queries that did not time-out.
Thus, the net improvement brought about by AD is actually even
better than the reported values. The reason for our slight (less than
5 msec) greater runtime for 5/25 queries in FedX (100% cached) is
due to FedX (100% cached) already selecting the optimal sources for
these queries. Thus, the overhead due to our pruning of the already
optimal list of sources affects the overall query runtime.
(3) Our extensions allow some queries that timed out to be carried out before
the time-out. This is especially the case for our DARQ extension, where
LD6 and LD10 are carried out in 1123 msec and 377 msec respectively
by DARD+AD, while they did not terminate within the time-out limit
of 30 minutes on the original system.
(4) Our SPLENDID (AD) extension is 98.91% faster than ANAPSID
on 24 of the 25 queries. For CD7, ANAPSID returned zero results.
An interesting observation is that FedX(100%) is better than SPLEN-
DID in 25/25 queries and 58.17% faster on average query runtime.
However, our AD extension of SPLENDID is better than AD exten-
sion of FedX(100%) in 20/25 queries and 45.20% faster on average
query runtime. This means that SPLENDID is better than FedX in
term of pure query execution time (excluding source selection time).
A deeper investigation of the runtimes of both systems shows that
SPLENDID spends on average 56.10% of total query execution on
source selection. Thus, our extension showcase clearly that an effi-
cient source selection is one of key factors in the overall optimization
of federated SPARQL query processing.
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Figure 31: Query runtime of ANAPSID, SPLENDID and its HiBISCuS exten-
sions on CD and LS queries of FedBench. We have zero results for
ANAPSID CD7.
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Figure 32: Query runtime of ANAPSID, SPLENDID and its HiBISCuS ex-
tensions on LD queries of FedBench. We have zero results for
ANAPSID CD7.
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Figure 33: Query runtime of FedX and its HiBISCuS extensions on CD and
LS queries of FedBench.
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Figure 34: Query runtime of FedX and its HiBISCuS extensions on LD
queries of FedBench.
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5
T R I E - B A S E D S O U R C E S E L E C T I O N

This chapter is based on [88] and provides the details of TBSS (a
trie based join-aware source selection approach) and QUETSAL (a
complete SPARQL query federation engine based on TBSS, HiBiSCuS
and DAW). We have addressed some of limitations HiBISCuS in TBSS
by using common name spaces instead of URIs authorities. We will
carry on with the motivating example of Chapter 1 and show that
TBSS is able to select the optimal number of sources (i.e., two) for the
motivating example given in Listing 1. Recall HiBISCuS selects three
distinct sources for the same query.

In previous chapter, we have discussed HIBISCuS which makes use
of the distinct URIs authorities to prune irrelevant sources. We have
seen that HiBISCuS can significantly remove irrelevant sources. How-
ever, it fails to prune those sources which share the same URI author-
ity. For example, all the Bio2RDF1 sources contains the same URI au-
thority bio2rd.org. Similarly, all the Linked TCGA sources2 [90] share
the same URI authority tcga.deri.ie

We thus propose a novel federated SPARQL query engine dubbed
Quetsal which combines join-aware approach to TPWSS based on com-
mon prefixes with query rewriting to outperform the state-of-the-art on
federated query processing. By moving away from authorities, our
approach is flexible enough to distinguish between URIs from differ-
ent datasets that come from the same namespace (e.g., as in Bio2RDF).
Moreover, our query rewriting allows reducing the number of queries
shipped across the network and thus improve the overall runtime of
our federated engine.

Overall, our contributions are thus as follows:

1. We present a novel source selection algorithm based on labelled
hypergraphs. Our algorithm relies on a novel type of data sum-
maries for SPARQL endpoints which relies on most common
prefixes for URIs.

2. We devise a pruning algorithm for edge labels that enables us
to discard irrelevant sources based on common prefixes used in
joins.

3. We compared our approach with state-of-the-art federate query
engines (FedX [94], SPLENDID [27], ANAPSID [1], and SPLEN-
DID+HiBISCus [87]). Our results show that we have reduced
the number of sources selected (without losing recall), the source

1 Bio2RDF: http://download.bio2rdf.org/release/2/release.html
2 Linked TCGA: http://tcga.deri.ie/
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selection time as well as the overall query runtime by executing
many remote joins (i.e., joins shipped to SPARQL endpoints).

The rest of the chapter is structured as follows: we first explain
TBSS source selection in details. We then present the general archi-
tecture of Quetsal and the SPARQL 1.1 query writer. Finally, we
evaluate our approach against the state-of-the-art and show that we
achieve both better source selection and runtimes on the FedBench
[91] SPARQL query federation benchmark.

5.1 tbss

Like HiBISCuS, TBSS relies on directed labelled hypergraphs (DLH)
to achieve this goal. Thus, the problem statement remains the same,
i.e., given a query q represented as a set of hypergraphs {HG1, . . . ,HGx},
find the labelling of the hyperedges of each hypergraph HGi that
leads to an optimal source selection. In this section we present our
approach in details. First, we explain our lightweight data summaries
construction based on common prefixes, followed by the source se-
lection algorithms and then we explain the SPARQL query rewriting
and execution.

5.1.1 TBSS Data Summaries

TBSS relies on capabilities to compute data summaries. Given a source
d, we define a capability as a triple (p,SP(d,p),OP(d,p)) which con-
tains (1) a predicate p in d, (2) the set SP(d,p) of all distinct subject
prefixes of p in d and (3) the set OA(d,p) of all distinct object prefixes of
p in d. In TBSS, a data summary for a source d ∈ D is the set CA(d) of
all capabilities of that source. Consequently, the total number of capa-
bilities of a source is equal to the number of distinct predicates in it. A
sample TBSS data summaries for the motivating example is provided
in supplementary material3.

The innovation behind the TBSS data summaries is to use common
prefixes to characterize resources in data sets. By going beyond mere
authorities, we can ensure that URIs that come from different datasets
published by the same authority can still be differentiated. To achieve
this goal, we rely on prefix trees (short: tries). The idea here is to
record the most common prefixes of URIs used as subject or object of
any given property and store those in the TBSS index.

Let ρ be a set of resources for which we want to find the most com-
mon prefixes (e.g., the set of all subject resources for a given predi-
cate). We begin by adding all the resources containing the same URI
authority in ρ to a trie. While we use a character-by-character inser-
tion in our implementation, we present word-by-word insertion for

3 QUETSAL supplementary material: http://goo.gl/EFNu52
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the sake of clarity and space in the paper. Inserting the resources
drugbank-drug:DB00201 and drugbank-ref:1002129 from DrugBank
leads to the trie shown Figure 35. We consider a node to be the end
of a common prefix if (1) it is not the root of the tree and (2) the
branching factor of the said node is higher than a preset threshold.
For example, if our threshold were 1, the node resource would be
the end of a common prefix. By inserting all nodes from ρ into a
trie and marking all ends of common prefix, we can now compute
all common prefixes for ρ by simply traversing computing all paths
from the root to the marked nodes. In our example, we get exactly
one common prefix for the branching limit equal to 1.

The predicate rdf:type is given a special treatment: Instead of stor-
ing the set of all distinct object prefixes for a capability having this
predicate, we store the set of all distinct class URIs in d, i.e., the set of
all resources that match ?x in the query ?y rdf:type ?x. The reason
behind this choice is that the set of distinct classes used in a source
d is usually a small fraction of the set of all resources in d. More-
over, triple patterns with predicate rdf:type are commonly used in
SPARQL queries. Thus, by storing the complete class URI instead of
the object authorities, we might perform more accurate source selec-
tion. Listing 6 shows TBSS’s data summaries (branching limit = 1) for
the three datasets of our motivating example. In the next section, we
will make use of these data summaries to optimize the TPWSS.

5.1.2 TBSS Source Selection Algorithm

TBSS’s source selection comprises two steps: Given a query q, we first
label all hyperedges in each of the hypergraphs which results from the
BGPs of q, i.e., we compute λe(ei) for each ei ∈ Ei in all HGi ∈ DHG.
In a second step, we prune the labels of the hyperedges assigned in the
first step and compute RSi ⊆ Ri for each ei. The pseudo-code of our
approaches is shown in Algorithm 4 (labelling) as well as Algorithm
5 (pruning).

5.1.2.1 Hyperedge Labelling
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1 [ ] a ds : S e r v i c e ;
2 ds : endpointUrl <http :// drugbank . data . source . u r l/sparql > ;
3 ds : c a p a b i l i t y
4 [ ds : p r e d i c a t e owl : sameAs ;
5 ds : s b j P r e f i x e s <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/

resource/> ;
6 ds : ob jAuthori ty <http :// DBpedia . org/resource/Caffe ine > , <http

:// bio2 rdf . org/pubmed:1002129 > ;
7 ] ;
8 .
9 [ ] a ds : S e r v i c e ;

10 ds : endpointUrl <http :// dbpedia . data . source . u r l/sparql > ;
11 ds : c a p a b i l i t y
12 [ ds : p r e d i c a t e f o a f : name ;
13 ds : s b j P r e f i x e s <http :// dbpedia . org/resource/> ;
14 #No o b j P r e f i x e s as the o b j e c t value f o r f o a f : name i s s t r i n g
15 ] ;
16 .
17 [ ] a ds : S e r v i c e ;
18 ds : endpointUrl <http :// chebi . data . source . u r l/sparql > ;
19 ds : c a p a b i l i t y
20 [ ds : p r e d i c a t e chebi : S t a t u s ;
21 ds : s b j P r e f i x e s <http :// bio2 rdf . org/chebi : > ;
22 ds : o b j P r e f i x e s <http :// bio2 rdf . org/chebi : > ;
23 ] ;
24 ds : c a p a b i l i t y
25 [ ds : p r e d i c a t e rdf : type ;
26 ds : s b j P r e f i x e s <http :// bio2 rdf . org/chebi :21073 > ;
27 ds : o b j P r e f i x e s <http :// bio2 rdf . org/chebi : Compound> ;
28 ] ;
29 .
30 [ ] a ds : S e r v i c e ;
31 ds : endpointUrl <http :// data . semanticweb . org/sparql > ;
32 ds : c a p a b i l i t y
33 [ ds : p r e d i c a t e f o a f : name ;
34 ds : s b j P r e f i x e s <http :// data . semanticweb . org/person/steve−t j o a >;
35 #No o b j P r e f i x e s as the o b j e c t value f o r f o a f : name i s s t r i n g
36 ] ;
37 .

Listing 6: TBSS data summaries for motivating example datasets (ref.
Chapter 1) with branching Limit = 1. Prefixes are ignored for
simplicity
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Algorithm 4 Quetsal’s hyperedge labelling algorithm
Require: D= {d1, . . . ,dn}; DHG = {HG1, . . . ,HGx}; QUETSALD //sources, disjunc-

tive hypergraphs of a query, Quetsal sumaries of sources
1: for each HGi ∈ DHG do
2: E = hyperedges (HGi)
3: for each ei ∈ E do
4: s = subjvertex(ei); p = predvertex(ei); o = objvertex(ei);
5: sa = subjauth(s); oa = objauth(o); //can be null i.e. for unbound s, o
6: if !bound(s) ∧ !bound(p) ∧ !bound(o) then
7: λe(ei) = D
8: else if bound(p) then
9: if p = rdf : type ∧ bound(o) then

10: λe(ei) = QUETSALDlookup(p, o)
11: else if !commonpredicate(p) ∨ (!bound(s) ∧ !bound(o)) then
12: λe(ei) = QUETSALDlookup(sa, p, oa)
13: else
14: if cachehit(s, p, o) then
15: λe(ei) = cachelookup(s, p, o)
16: else
17: λe(ei) = ASK(s, p, o, D)
18: end if
19: end if
20: else
21: Repeat Lines 14-18

22: end if
23: end for
24: end for
25: return DHG //Set of labelled disjunctive hypergraphs

The hyperedge labelling Algorithm 4 takes the set of all sources
D, the set of all disjunctive hypergraphs DHG (one per BGP of the
query) of the input query q and the data summaries QuetsalD of
all sources in D as input and returns a set of labelled disjunctive hy-
pergraphs as output. For each hypergraph and each hyperedge, the
subject, predicate, object, subject authority, and object authority are
collected (Lines 2-5 of Algorithms 4). Edges with unbound subject,
predicate, and object vertices (e.g e = (?s, ?p, ?o)) are labelled with
the set of all possible sources D (Lines 6-7 of Algorithms 4). A data
summary lookup is performed for edges with the predicate vertex
rdf:type that have a bound object vertex. All sources with match-
ing capabilities are selected as label of the hyperedge (Lines 9-10 of
Algorithms 4).

Algorithm 4 makes use of the notion of common predicates. A com-
mon predicate is a predicate that is used in a number of sources above
a specific threshold value θ specified by the user. A predicate is then
considered a common predicate if it occurs in at least θ|D| sources. We
make use of the ASK queries for triple patterns with common pred-
icates. Here, an ASK query is sent to all of the available sources to
check whether they contain the common predicate cp. Those sources
which return true are selected as elements of the set of sources used
to label that triple pattern. The results of the ASK operations are
stored in a cache. Therefore, every time we perform a cache lookup
before SPARQL ASK operations (Lines 14-18).
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5.1.3 TBSS Pruning approach

The intuition behind our pruning approach is that knowing which
stored prefixes are relevant to answer a query can be used to discard
triple pattern-wise (TPW) selected sources that will not contribute to
the final result set of the query. Our source pruning algorithm (ref.
Algorithm 5) takes the set of all labelled disjunctive hypergraphs as
input and prune labels of all hyperedges which either incoming or
outgoing edges of a ’star’,’hybrid’, ’path’, or ’sink’ node. Note that
our approach deals with each BGP of the query separately (Line 1 of
Algorithm 5).

For each node v of a DLH that is not of type ‘simple’, we first
retrieve the sets (1) SPrefix of the subject prefixes contained in the el-
ements of the label of each outgoing edge of v (Line 5-7 of Algorithm
5) and (2) OPrefix of the object prefixes contained in the elements of
the label of each ingoing edge of v (Line 8-10 of Algorithm 5). Note
that these are sets of sets of prefixes. For the node ?caff of the query
in our running example given in Listing 1, we get
SPrefix = {{http://www4.wiwiss.fu-berlin.de/drugbank/resource},
{http://dbpedia.org/resource/}, {http://bio2rdf.org/chebi:},
{http://data.semanticweb.org/person/steve-tjoa},
{http://bio2rdf.org/chebi:21073}} for the outgoing edge andOAuth =

{{http://dbpedia.org/resource/Caffeine},
{http://bio2rdf.org/pubmed:1002129}} for the incoming edges. Now
we merge these two sets to the set P of all prefixes (Line 11 of Algo-
rithm 5). Next, we plot all of the prefixes of P in to a trie (no branching
limit) shown in Figure 36. Now we check each prefix in P whether at
ends at a child node of trie T or not. If a prefix does not end at child
node then we get all of the paths from the prefix last node (say n)
to each leaf of n. In our example, http://dbpedia.org/resource/,
http://bio2rdf.org/chebi: does not end at leaf nodes (see Figure
36), so they will be replaced with http://dbpedia.org/resource/Caffeine,
http://bio2rdf.org/chebi:21073, respectively in P (Line 13-21 of Al-

gorithm 5 ). The intersection I =

( ⋂
pi∈P

pi

)
of these elements sets is

then computed. In our example, this results in
I = {http://dbpedia.org/resource/Caffeine}. Finally, we recompute
the label of each hyperedge e that is connected to v. To this end, we
compute the subset of the previous label of e which is such that the
set of prefixes of each of its elements is not disjoint with I (see Lines
27 onwards of Algorithm 5). These are the only sources that will re-
ally contribute to the final result set of the query. In our example,
ChEBI will be removed since the ChEBI subject prefixes does not inter-
sect (i.e., disjoint) with the elements in I and DBpedia will be selected
since its subject prefix http://dbpedia.org/resource/ was replaced
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with
http://dbpedia.org/resource/Caffeine which intersect with I.

Thus, TBSS selects the optimal two distinct sources (i.e., DrugBank
for first two triple pattern and DBpedia for the last triple pattern) of
the query given in Listing 1. Recall, HiBISCuS selected three distinct
sources (i.e., DrugBank for first two triple pattern and DBpedia, ChEBI
for the last triple pattern) for the same query.

We are sure not to lose any recall by this operation because joins act
in a conjunctive manner. Consequently, if the results of a data source
di used to label a hyperedge cannot be joined to the results of at least
one source of each of the other hyperedges, it is guaranteed that di
will not contribute to the final result set of the query.

Algorithm 5 TBSS’s hyperedge label pruning algorithm for removing
irrelevant sources
Require: DHG //disjunctive hypergraphs
1: for each HGi ∈ DHG do
2: for each v ∈ vertices(HGi) do
3: if λvt(v) 6= ‘simple’ then
4: SPrefix = ∅; OPrefix = ∅;
5: for each e ∈ Eout(v) do
6: SPrefix = SPrefix ∪ {subjectPrefixes(e)}
7: end for
8: for each e ∈ Ein(v) do
9: OPrefix = OPrefix ∪ {objectPrefixes(e)}

10: end for
11: P = SPrefix∪OPrefix // set of all prefixes
12: T = getTrie(P) //get Trie of all prefixes, no branching limit
13: for each p ∈ P do
14: if !isLeafPrefix(p,T ) // prefix does not end at leaf node of Trie then
15: C = getAllChildPaths(p) // get all paths from prefix last node n to

each leaf of n
16: A = ∅ //to store all possible prefixes of a given prefix
17: for each c ∈ C do
18: A = A∪ p.Concatenate(c)
19: end for
20: P.replace(p,A) // replace p with its all possible prefixes
21: end if
22: end for
23: I = P.get(1) //get first element of prefixes
24: for each p ∈ P do
25: I = I∩ p //intersection of all elements of A
26: end for
27: for each e ∈ Ein(v)∪ Eout(v) do
28: label = ∅ //variable for final label of e
29: for di ∈ λe(e) do
30: if prefixes(di) ∩ I 6= ∅ then
31: label = label∪ di
32: end if
33: end for
34: λe(e) = label
35: end for
36: end if
37: end for
38: end for
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Figure 37: Quetsal’s architecture.

5.2 quetsal

In this section, we explain general architecture of the Quetsal SPARQL
endpoint federation engine and the corresponding SAPRQL 1.1 query
rewriting.

5.2.1 Quetsal’s Architecture

Figure 37 shows the general architecture of Quetsal that combines
HiBISCuS, TBSS, and DAW with SPARQL 1.1 query rewriting to
form a complete SPARQL endpoint federation engine. Note DAW is
source selection approach for duplicate-aware federated query pro-
cessing. It can be directly combined to any of the existing triple
pattern-wise source selection approaches and is explained in the next
chapter. Given a query, the first step is to parse the query and get the
individual triple patterns. The next step is to perform triple pattern-
wise source selection by using HiBISCuS or TBSS. We can combine
DAW with HiBISCuS or TBSS to perform duplicate-aware source se-
lection. Using the triple pattern-wise source selection information,
Quetsal converts the original SPARQL 1.0 query into the correspond-
ing SPARQL 1.1 query (using the SPARQL SERVICE clause). The SPARQL
1.1 query rewriting is explained in subsequent section. Finally, the
SPARQL 1.1 query is executed on top of Sesame and the results are
integrated.

5.2.2 Quetsal’s SPARQL 1.1 Query Re-writing

Quetsal converts each SPARQL 1.0 query into corresponding SPARQL
1.1 query. Before going into the details of our SPARQL 1.1 query
rewriting, we first introduce the notion of exclusive groups (used in
SPARQL 1.1 query rewrite) in the SPARQL query.
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Exclusive Groups

In normal SPARQL query (i.e., not a federated query) execution, the
user sends a complete query to the SPARQL endpoint and gets the
results back from the endpoint, i.e., the complete query is executed
at SPARQL endpoint. Unlike normal SPARQL query execution, in
general, the federated engine sends sub-queries to the corresponding
SPARQL endpoints and get the sub-queries results back which are lo-
cally integrated by using different join techniques. The local execution
of joins results in high costs, in particular when intermediate results
are large[94]. To minimize these costs, many of the existing SPARQL
federation engines [94; 27; 1] make use of the notion of exclusive
groups which is formally defined as:

Definition 19 Let BGP = {tp1, . . . , tpm} be a basic graph patterns con-
taining a set of triple patterns tp1, . . . , tpm, D = {d1, . . . ,dn} be the set
of distinct data sources, and Rtpi = {d1, . . . ,do} ⊆ D be the set of rele-
vant data sources for triple pattern tpi. We define EGd = {tp1, . . . , tpp} ⊆
BGP be the exclusive groups of triple patterns for a data soruce d ∈ D s.t.
∀tpi∈EGd Rtpi = {d}, i.e., the triple patterns whose single relevant source is
d.

The advantage of exclusive groups (size greater than 1) is that they
can be combined together (as a conjunctive query) and send to the
corresponding data source (i.e., SPARQL endpoints) in a single sub-
query, thus greatly minimizing: (1) the number of remote requests, (2)
the number of local joins, (3) the number of irrelevant intermediate
results and (4) the network traffic [94]. This is because in many cases
the intermediate results of the individual triple patterns are often
excluded after performing join with the intermediate results of an-
other triple pattern in the same query. On the other hand, the triple
pattern joins in the exclusive groups are directly performed by the
data source itself (we call them remote joins), thus all intermediate
irrelevant results are directly filtered without sending via network.
Correctness is guaranteed as no other data source can contribute to
the group of triple patterns with further information.

Consider the query given in Listing 1 of the supplementary ma-
terial. The last three triple patterns form an exclusive group, since
DrugBank is the single relevant source for these triple patterns. Thus
these triple patterns can be directly executed by DrugBank.

Our SPARQL 1.0 to SPARQL 1.1 query rewrite makes use of the ex-
clusive groups, SPARQL SERVICE, and SPARQL UNION clauses as
follows: (1) Identify exclusive groups from the results of the source
selection, (2) group each exclusive group of triple patterns into a sep-
arate SPARQL SERVICE, and (3) write a separate SPARQL SERVICE
clause for each triple patterns (which are not part of any exclusive
group) and for each relevant source of that triple pattern and union
them using SPARQL UNION clause.
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PREFIX drugbank : <http ://www4. wiwiss . fu−berl in . de/drugbank/resource/
drugbank/>

PREFIX rdf : <http ://www. w3 . org/1999/02/22−rdf−syntax−ns#>
PREFIX bio2 rdf : <ht tp :// bio2 rdf . org/ns/bio2 rdf #>
PREFIX purl : <ht tp :// purl . org/dc/elements /1.1/ >
SELECT ?drug ? keggUrl ? chebiImage WHERE {

?keggDrug bio2 rdf : u r l ? keggUrl . //ChEBI , KEGG
?drug rdf : type drugbank : drugs . //Drugbank
?drug drugbank : keggCompoundId ?keggDrug . //Drugbank
?drug drugbank : genericName ?drugBankName . //Drugbank

}
}

Listing 7: Quetsal’s SPARQL 1.0 query

PREFIX drugbank : <http ://www4. wiwiss . fu−berl in . de/drugbank/resource/
drugbank/>

PREFIX rdf : <http ://www. w3 . org/1999/02/22−rdf−syntax−ns#>
PREFIX bio2 rdf : <ht tp :// bio2 rdf . org/ns/bio2 rdf #>
PREFIX purl : <ht tp :// purl . org/dc/elements /1.1/ >
SELECT ?drug ? keggUrl ? chebiImage WHERE {

{ SERVICE <http :// chebi . sparql . endpoint . url > { ? keggDrug bio2 rdf : u r l
? keggUrl . } }

UNION
{ SERVICE <http :// kegg . sparql . endpoint . url > { ? keggDrug bio2 rdf : u r l ?

keggUrl . } }
SERVICE <http :// drugbank . sparql . endpoint . url > {

?drug rdf : type drugbank : drugs .
?drug drugbank : keggCompoundId ?keggDrug .
?drug drugbank : genericName ?drugBankName .

}
}

Listing 8: SPARQL 1.1 re-write of the query given in Listing 7

A SPARQL 1.1 query rewrite of the SPARQL 1.0 query given in
Listing 1 of the supplementary material is shown in Listing 2 of the
supplementary material. The exclusive group of triple patterns (i.e.,
last three triple patterns) are grouped into DrugBank SERVICE. Since
both KEGG and ChEBI are the relevant data sources for the first triple
pattern, a separate SPARQL SERVICE is used for each of the data
source and the results are combined using SPARQL UNION clause.
The final SPARQL 1.1 query is then directly executed using Sesame
API. The number of remote joins for an exclusive group is one less
than the number of triple patterns in that group. For example, the
number of remote joins in our SPARQL 1.1 query is 2. The number of
remote joins for a complete query is the sum of the number of remote
joins of all exclusive groups in that query.

5.3 evaluation

In this section we describe the experimental evaluation of our ap-
proach. We first describe our experimental setup in detail. Then, we
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present our evaluation results. All data used in this evaluation is ei-
ther publicly available or can be found at the project web page.4

5.3.1 Experimental Setup

Benchmarking Environment: We used FedBench [91] for our eval-
uation as it is commonly used in the evaluation of SPARQL query
federation systems [94; 27; 61; 77]. FedBench comprises a total of 25

queries out of which 14 queries are for SPARQL endpoint federation
approaches and 11 queries for Linked Data federation approaches.
We considered all of the 14 SPARQL endpoint federation queries.
Each of FedBench’s nine datasets was loaded into a separate physical
virtuoso server. The exact specification of the servers can be found
on the project website. All experiments were ran on a machine with
a 2.9GHz i7 processor, 8 GB RAM and 500 GB hard disk. The ex-
periments were carried out in a local network, so the network costs
were negligible. Each query was executed 10 times and results were
averaged. The query timeout was set to 10min (1800s). The threshold
for the labelling Algorithm 4 was best set to 0.33 based on a prior
experiments.
Federated Query Engines: We compared Quetsal with the latest
versions of FedX [94], ANAPSID [1], SPLENDID [27], and the best
HiBISCuS extension (i.e., SPLENDID+HiBISCuS). To the best of our
knowledge, these are the most up-to-date SPARQL endpoint federa-
tion engines.
Metrics: We compared the selected engines based on: (1) the total
number of TPW sources selected, (2) the total number of SPARQL
ASK requests submitted during the source selection, (3) the average
source selection time, (4) the number of remote joins produced by
the source selection (ref. Section 5.2.2), and (5) the average query ex-
ecution time. We also compared the source index/data summaries
generation time and index compression ratio of various state-of-the
art source selection approaches.

5.3.2 Experimental Results

5.3.2.1 Index Construction Time and Compression Ratio

Table 16 shows a comparison of the index/data summaries construc-
tion time and the compression ratio5 of various state-of-the art ap-
proaches. A high compression ratio is essential for fast index lookup
during source selection. Quetsal-B1 (i.e., Quetsal with trie branch-
ing limit = 1) has an index size of only 520KB and Quetsal-B5 (branch-
ing limit =5) has an index size of 1MB for the complete FedBench

4 Quetsal home page: https://code.google.com/p/quetsal/
5 The compression ratio is given by (1 - index size/total data dump size).
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Table 16: Comparison of Index Generation Time IGT in minutes, Compres-
sion Ratio CR, Average (over all 14 queries) Source Selection Time
ASST, and over all overestimation of relevant data sources OE .
QTree’s compression ratio is taken from [34] and DARQ, LHD re-
sults are calculated from [83]. (NA = Not Applicable, B1 = Quetsal

branching limit 1, B2 = QUESTSAL branching limit 2 and so on).
FedX SPLENDID LHD DARQ ANAPSID Qtree HiBISCuS Quetsal

B1 B2 B3 B4 B5

IGT NA 110 100 115 5 - 36 40 45 51 54 63

CR NA 99.998 99.998 99.997 99.999 96.000 99.997 99.997 99.997 99.996 99.995 99.993

ASST 5.5 332 14 8 136 - 26 101 108 116 129 160

OE 50% 50% 69% 62% 16.2% - 11.80% 9.40% 9.40% 9.40% 4.20% 4.20%

data dump (19.7 GB), leading to a high compression ratio of 99.99%
in all B1-B5. The other approaches achieve similar compression ra-
tios except Qtree. Our index construction time ranges from 40min to
63min for Quetsal-B1 to Quetsal-B5. This is the first index construc-
tion time, later updates are possible per individual capability (as they
are independent of each others) of the data source by using simple
SPARQL update operations (our index is in RDF). Quetsal-B4 is the
best choice in terms of source selection accuracy and average execu-
tion time (shown in next section).

5.3.2.2 Efficient Source Selection

We define efficient source selection in terms of three metrics: (1) the
total number of TPW sources selected, (2) total number of SPARQL
ASK requests used to obtain (1), (3) the TPW source selection time,
(4) and the number of remote joins (ref. Section 5.2.2) produced by
the source selection. Table 17 shows a comparison of the source se-
lection of the selected engines. Note that FedX (100% cached) means
that the complete source selection is done by only using cache, i.e., no
SPARQL ASK request is used. This is the best-case scenario for FedX
and rare in practical applications. Overall, Quetsal-B4 is the most
efficient approach in terms of total TPW sources selected, the total
number of ASK request used, and the total number of remote joins
(equal with ANAPSID) produced. FedX (100% cached) is most effi-
cient in terms of source selection time. However, FedX (100% cached)
clearly overestimates the set of sources that actually contributes to the
final result set of query.
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5.3.2.3 Query execution time

As mentioned before we considered all of the 14 FedBench’s SPARQL
endpoint federation queries. However, Quetsal gives runtime error
for three queries (reason explained at the end of this section). Thus,
the selected federation engines were compared for the remaining 11

queries shown in Figure 38. Overall, Quetsal-B1 performs best in
terms of the number of queries count for which its runtime is better
than others. Quetsal-B1 is better than FedX in 6/11 queries. FedX is
better than ANAPSID in 7/11 which in turn better than Quetsal-B4

in 7/11 queries. Quetsal-B4 is better than SPLENDID+HiBISCuS in
6/11 queries which in turn better than SPLENDID in 10/11 queries.
However, Quetsal-B4 is better of all in terms of the average (over
all 11 queries) query runtimes. As an overall net performance evalu-
ation (based on overall average query runtime), Quetsal-B4 is 15%
better than FedX which in turn 10% better than ANAPSID. ANAP-
SID is 15% better than Quetsal-B1 which is 11% better than SPLEN-
DID+HiBISCUS.

An interesting observation is that Quetsal-B4 ranked fourth in
terms of the total query count for which one system perform bet-
ter than others. However, it ranks first in terms of the average per-
formance evaluation. The reason is that Quetsal-B4 spend an extra
30ms (on average) for the source selection as compared to Quetsal-
B1 (ref. Table 17). The majority of the FedBench queries are simple
in complexity, thus the query runtimes are very small (9/11 queries
have runtime less than 750msec for Quetsal). Consequently, 30msec
makes a big difference in FedBench, showing the need of another
federation benchmark which contains more complex queries.

The most interesting runtime results was observed for query LS6

of FedBench. Quetsal-B4 only spends 643msec while Quetsal-B1

spends 31sec for the same query (other systems also spend more than
5 seconds). A deeper look in to the query results shown that Quetsal-
B4 produces the maximum number of remote joins (i.e., 3) for this
query. There was only a single join needs to be performed locally by
the Quetsal. This shows that one of the main optimization step in
SPARQL endpoint federation is to generate maximum remote joins
(loads transferring). The number of remote joins are directly related
to the number of exclusive groups generated which in turn directly
related to efficient triple pattern-wise source selection. Thus, Quetsal

was proposed with the main aim to produce maximum remote joins
via efficient triple pattern-wise source selection. Finally, we looked
in to the reason behind the three queries (LD6, LD6, LS5) results in
runtime errors in Quetsal. It was noted that Quetsal SPARQL 1.1
query rewrite produces many single triple pattern SPARQL SERVICE
clauses and their results are union together using SPARQL UNION
clauses. Thus Sesame first retrieve all of the results from each of the
relevant source of that triple pattern and then union them, resulting
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Figure 38: Query runtime evaluation.

in a to large number of intermediate results due to which a runtime
error is thrown by the Sesame API. The runtime errors are provided
at our project home. Finally, we believe that Quetsal will perform
more better in complex queries (containing many triple patterns) by
producing many remote joins as well as on live SPARQL endpoints
with Big Data where source overestimation is more expensive.
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6
D U P L I C AT E - AWA R E S O U R C E S E L E C T I O N

The emergence of the Web of Data has resulted in a large compendium
of interlinked datasets from multiple domains available on the Web.
The central principles underlying the architecture of these datasets
include the decentralized provision of data, the reuse of URIs and
vocabularies, as well as the linking of knowledge bases [9]. Due to
the independence of the data sources, certain pieces of information
(i.e., RDF triples) can be found in multiple data sources. For example,
all triples from the DrugBank1 and Neurocommons2 datasets can also
be found in the DERI health Care and Life Sciences Knowledge Base3. We
call triples that can be found in several knowledge bases duplicates.

While the importance of federated queries over the Web of Data
has been stressed in previous work, the impact of duplicates has not
yet received much attention. Recently, the work in [41] presented a
benefit-based source selection strategy, where the benefit of a source
is inversely proportional to the overlap between the source’s data and
the results already retrieved. The overlap is computed by comparing
data summaries represented as Bloom filters [18]. The approach fol-
lows an “index-free” paradigm, and all the information about the
sources is obtained at query time, for each triple pattern in the query.

In this chapter we present DAW, a duplicate-aware approach for
federated query processing over the Web of Data. Similar to [41] our
approach uses sketches to estimate the overlap among sources. How-
ever, we adopt an “index-assisted” approach, where compact sum-
maries of the sources are pre-computed and stored. DAW uses a
combination of min-wise independent permutations (MIPs) [20] and
triple selectivity information to estimate the overlap between the re-
sults of different sources. This information is used to rank the data
sources, based on how many new query results are expected to be
found. Sources that fall below a predefined threshold are discarded
and not queried.

We extend three well-known federated query engines – DARQ [71],
SPLENDID [28], and FedX [95] – with DAW, and compare these exten-
sions with the original frameworks. The comparison shows that DAW
requires fewer sources for each of the query’s triple pattern, therefore
improving query execution times. The impact on the query recall due
to the overlap estimation was minimal, and in most cases the recall
was not affected. Moreover, DAW provides a source selection mech-

1 http://datahub.io/dataset/fu-berlin-drugbank

2 http://neurocommons.org/page/RDF_distribution

3 http://hcls.deri.org:8080/openrdf-sesame/repositories/hclskb
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anism that maximises the query recall when the query processing is
limited to a subset of the sources.

The rest of this chapter is organized as follows: Section 6.1 de-
scribes our novel duplicate-aware federated query processing approach.
An evaluation of DAW against existing federated query approaches
is given in Section 6.2.

6.1 daw

In this section we present our DAW approach. DAW can be used
in combination with existing federated query processing systems to
enable a duplicate-aware query execution.

Given a SPARQL query q, the first step is to perform a triple pattern-
wise source selection, i.e., to identify the set of data sources that con-
tain relevant results for each of the triple patterns of the query. This
is done by the underlying federated system. For a given triple pat-
tern, the relevant sources are also called capable sources. The idea of
DAW federated query processing is, for each triple pattern and its set
of capable sources, to (i) rank the sources based on how much they
can contribute with new query results, and (ii) skip sources which are
ranked below a predefined threshold. We call these two steps triple
pattern-wise source ranking and triple-pattern wise source skipping. After
that, the query and the list of not skipped sources are forwarded to
the underlying federated query engine. The engine generates the sub-
queries that are sent to the relevant SPARQL endpoints. The results
of each subquery execution are then joined to generate the result set
of q.

To better illustrate this, consider the example given in Figure 39,
which shows a query with two triple patterns (t1 and t2), and the
lists of capable sources for both patterns. For each source we show
the total number of triples containing the same predicate of the triple
pattern and the estimated number of new triples, i.e. triples that do
not overlap with the previous sources in the list. The triple pattern-
wise source ranking step orders the sources based on their contribu-
tion. As we see in the example, for the triple pattern t1, source d1
is ranked first, since it is estimated to produce 100 results. d1 is fol-
lowed by d2, which can contribute with 40 new results, considering
the overlap between the two sets. d3 is ranked last, despite having
more triples than d2. This is because our duplicated-aware estima-
tion could not find any triple in d3 which is not in either d1 or d2.
In the triple-pattern wise source skipping step, d3 will be discarded,
and t1 will not be sent to d3 during query execution. We can also set
a threshold on the minimum number of results. For instance, by set-
ting the threshold to 10 results, source d4 will be skipped, since it can
only contribute with 5 new results for t2. By applying our duplicate-
aware approach – which would select d1 and d2 both for t1 and t2
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SELECT ?uri ?label  ?symb
WHERE
{  
?uri rdfs:label ?label.     
?uri diseasome:bio2rdfSymbol   ?symb. 

}

Triple  pattern-wise source selection and skipping

d1R1 d2 d3 d1R2 d2 d4

100        50           0                        100        50            5 

Min.  new triples = 10
Total triple pattern-wise selected sources  =  6
Total triple pattern-wise skipped sources  = 2

New triples
Total triples 100        50          70                       100        50           60

Figure 39: Triple pattern-wise source selection and skipping example

and would skip d3 and d4 – we would only send subqueries to two
endpoints instead of four.

Both steps are performed prior to the query execution, by using
only information contained in the DAW index. The main innovation
behind DAW is to avoid querying sources which would lead to du-
plicated results. We achieve this by extending the idea of min-wise
independent permutations (MIPs) [20], which are explained in the
next section.

6.1.1 Min-Wise Independent Permutations (MIPs)

The main rationale behind MIPs is to enable the representation of
large sets as vectors of smaller magnitude and to allow the estima-
tion of a number of set operations, such as overlap and union, with-
out having to compare the original sets directly. The basic assumption
behind MIPs is that each element of an ordered set S has the same
probability of becoming the minimum element under a random per-
mutation. MIPs assumes an ordered set S as input and computes N
random permutations of the elements. Each permutation uses a lin-
ear hash function of the form hi(x) : = ai*x + bi mod U where U is
a big prime number, x is a set element, and ai, bi are fixed random
numbers. By ordering the set of resulting hash values, we obtain a
random permutation of the elements of S. For each of the N permu-
tations, the MIPs technique determines the minimum hash value and
stores it in an N-dimensional vector, thus capturing the minimum set
element under each of these random permutations. The technique is
illustrated in Figure 40.

Let VA = [a1,a2, . . . ,aN] and VB = [b1,b2, . . . ,bN] be the two
MIPs vectors representing two ordered ID’s sets SA, SB, respectively.
An unbiased estimate of the pair-wise resemblance between the two
sets, i.e. the fraction of elements that both sets share with each other,
is obtained by counting the number of positions in which the two
MIPs vectors have the same number and dividing this by the num-
ber of permutations N as shown in Equation 2. It can be shown that
the expected error in the estimation O(1/

√
N) [20]. Given the resem-

blance and the sizes of the two set, their overlap can be estimated as
shown in Equation 3. A MIPs vector representing the union of the
two sets, SA and SB, can be created directly from the individuals

[ 21. Mai 2016 at 23:41 – classicthesis version 4.1 ]



100 duplicate-aware source selection
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0.33*(6+6) / (1+0.33) =>  3  

Figure 40: Min-Wise Independent Permutations

MIPs vectors, VA and VB, by comparing the pair-wise entries, and
storing the minimum of the two values in the resulting union vector
(see Figure 40). A nice property of MIPs is that unions can be com-
puted even if the two MIPs vectors have different sizes, as long as
they use the same sequence of hash functions for creating their per-
mutations. In general, if two MIPs have different sizes, we can always
use the smaller number of permutations as a common denominator.
This incurs in a loss of accuracy in the result MIPs, but still yields to
a more flexible setting, where the different collections do not have to
agree on a predefined MIPs size [59].

Resemblance(SA,SB) =
|SA ∩ SB|
|SA ∪ SB|

≈ |VA ∩ VB|
N

(2)

Overlap(SA,SB) ≈
Resemblance(VA,VB)× (|SA|+ |SB|)

(Resemblance(VA,VB) + 1)
(3)

In the DAW index, MIPs are used as follow: For a distinct predi-
cate p belonging to a data source d, we define T(p,d) as the set of all
triples in d with predicate p. A MIPs vector is then created for every
T(p,d). First an ID set is generated by mapping each triple in T(p,d)
to an integer value. A triple is given in the form of subject, predicate
and object tuples, i.e. < s,p,o >. Since all triples in T(p,d) share the
same predicate by definition, the mapping is done by concatenating
the subject (s) and object (o) of the triple, and applying a hash func-
tion to it (Figure 40). Then, the MIPs vector is created by computing
the N random permutations of each element in the ID set and storing
their minimum value. Finally, the MIPs vector is stored and mapped
to each capability of the service description, as explained in the next
section.
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6.1.2 DAW Index

In order to detect duplicate-free subqueries, DAW relies on an index
which contains the following information for every distinct predicate
p in a source d:

1. The total number of triples nS(p) with the predicate p in d.

2. The MIPs vector MIPsS(p) for the predicate p in d, as described
in the previous section.

3. The average subject selectivity of p in d, avgSbjSelS(p).

4. The average object selectivity of p in d, avgObjSelS(p).

The average subject and object selectivities are defined as the in-
verse of the number of distinct subjects and objects which appears
with predicate p, respectively. For example, given the following set of
triples:

S = {< s1,p,o1 >,< s1,p,o2 >,< s2,p,o1 >,< s3,p,o2 >} (4)

the avgSbjSelS(p) is equal to 1
3 and the avgObjSelS(p) is 12 . These

two values are used in combination with the MIPs vector to address
the expressivity of SPARQL queries as explained below.

Suppose that in a given triple pattern, neither the subject nor the
predicate are bound. That means the pattern is of the form<?s,p, ?o >,
where the question mark denotes a variable. In this case, the MIPs vec-
tors in the DAW index can be used directly to estimate the overlap
among the data sources that can provide results for the pattern. This
is because the MIPs vectors are created by grouping triples according
to their predicate. However, if any of the subject or object is bound
(for example, < s1,p, ?o >), the selectivity of the pattern becomes
much higher and the MIPs vectors alone are unable to address this.
As a result, overlap will be overestimated. To address this issue the
modify Equation 3 to account for the subject and object selectivities
as follows:

Overlapt(SA,SB) ≈
Resemblance(VA,VB)× (|S ′A|+ |S ′B|)

(Resemblance(VA,VB) + 1)
(5)

where the original size of a set Si is replaced by a value |S ′i| which
is given by the following equation:

|S ′i| =


|Si| if neither subject nor object are bound,

|Si|× avgSbjSelS(p) if subject is bound,

|Si|× avgObjSelS(p) if object is bound.
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1 [ ] a sd : S e r v i c e ;
2 sd : endpointUrl <http :// l o c a l h o s t :8890/ sparql > ;
3 sd : c a p a b i l i t y [
4 sd : p r e d i c a t e diseasome : name ;
5 sd : t o t a l T r i p l e s 147 ;
6 sd : avgSb jSe l ‘ ‘ 0 . 0 0 6 8 ’ ’ ;
7 sd : avgObjSel ‘ ‘ 0 . 0 0 6 9 ’ ’ ;
8 sd : MIPs ‘ ‘−6908232 −7090543 −6892373 −7064247 . . . ’ ’ ; ] ;
9 sd : c a p a b i l i t y [

10 sd : p r e d i c a t e diseasome : chromosomalLocation ;
11 sd : t o t a l T t r i p l e s 160 ;
12 sd : avgSb jSe l ‘ ‘ 0 . 0 0 6 2 ’ ’ ;
13 sd : avgObjSel ‘ ‘ 0 . 0 0 7 2 ’ ’ ;
14 sd : MIPs ‘ ‘−7056448 −7056410 −6845713 −6966021 . . . ’ ’ ; ] ;

Listing 9: DAW index example

We call the set CS(p) = {p,nS(p),avgSbjselS(p),avgObjSelS(p),MIPsS(p)}
a capability of the data source. The total number of capabilities of a
data source is equal to the number of distinct predicates in it.

It is crucial to keep the index size small to minimise the pre-processing
time. On the other hand, this index must also contain sufficient infor-
mation to enable an accurate source selection and duplicate-free sub-
query generation. Some federated query approaches such as DARQ
and SPLENDID already provide the total number of triples, as well as
the average selectivity values. Therefore, the storage overhead create
by the DAW index depends mostly on the size of the MIPs vectors
which can be adjusted to any length. In general, MIPs can provide
a good estimation of the overlap between sets with a few integer in
length. An example of a DAW index is given in Listing 9.

6.1.3 DAW Federated Query Processing

As explained earlier, given a SPARQL query, DAW performs the triple
pattern-wise source ranking and skipping steps in order to rank the
sources based on how much they can contribute with new query re-
sults, and skip sources which are below a given threshold. In this
section we describe these two steps in detail.

Triple Pattern-wise Source Ranking: Given the heterogeneity and
independence of data sources, it is expected that each source con-
tributed differently in answering a given triple pattern, and the same
result might be returned by multiple sources. Our goal is to provide a
rank of the sources, according to the estimated number of new results
it can contribute. By new results we mean with respect to the results
already retrieved from sources ranked higher. The source ranking
step works as follows: First, as no source has been ranked yet, the al-
gorithm chooses the largest source, as it will likely to contribute with
more results. To select the next source we use the DAW index to com-
pute the estimated overlap between the already selected source and
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every remaining source. The remaining source with the least amount
of overlap is then chosen and ranked second. Before selecting the next
source in the rank, we first need to estimate the union of the already
selected sources. This is needed since we want to find out how much
a source can contribute with results are not in the sources selected so
far. The union can be easily estimated by applying a vector operator
on the original MIPs, as explained in Section 6.1.1. The new union
MIPs can be further combined with other MIPs to get the estimation
of the union among several sets. The source ranking step continues
until no more sources are left to be ranked.

Triple Pattern-wise Source Skipping: Given the rank of capable sources,
the next step is to prune the rank, but skipping sources which cannot
contribute with a minimum number of new results. This is done by
setting a threshold, and pruning every source which falls below it.
Since the total number of results depends on the triple pattern, the
threshold is chosen in terms of the minimum percentage of new re-
sults a source can contribute. For instance, if the threshold is set to
zero, DAW will aim at retrieving as much results as possible, while
still skipping sources which cannot contribute with new results. Al-
ternatively, the threshold can be set to higher values, in cases where
the tradeoff between recall and number of sources queries is more
important.

The pseudo code of the triple pattern-wise source ranking and skip-
ping is given in Algorithm 6. It takes a triple pattern ti(s,p,o), its list
of capable sources Ri, and the predefined threshold value as input
and returned a ranked list of a subset of the capable source set Rwi,
Rwi ⊆ Ri as output. The ranked list and the MPIs with the union of
the selected sources are initialised with the largest source. Lines 8-14

adjust the size of the dataset to reflect the subject or object selectivities,
depending on the query. Lines 15-16 estimate the overlap and num-
ber of new triples. The source with the highest amount of new triples
is then selected (Lines 17-19). The triple pattern-wise source skipping
is done in Line 23 and sources ranked higher than the threshold are
added to the final ranked list (Line 24). The union MIPs is then up-
dated (Line 26) and the algorithm continues until no more sources
are left.

Before we present our experimental analysis of DAW it is impor-
tant to note the difference between the number of triple pattern-wise
sources and the number of sources (e.g. SPARQL endpoints). The
total number of triple pattern-wise selected sources for a query is cal-
culate as follow: Let NSi ∈ {1 . . .M} be the number of sources capable
of answering a triple pattern ti where M is the number of available
(physical) sources. Then, for a query q with n triple patterns, {t1, t2,
. . . tn }, the total number of triple pattern-wise sources is the sum of
the sources for individual triple patterns, i.e.

∑n
j=1NSj. In the exam-
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Algorithm 6 Triple pattern source-wise ranking and skipping

Require: ti(s,p,o) ∈ T; Ri; thresholdVal //triple pattern ti, capable
data sources of ti; Threshold Value

1: rank1Source = getMaxSizeSource(Ri, ti) ; rnkNo = 1

2: unionMIPs = getMIPs(rank1Source, ti) //get MIP vector for a tp
of a source

3: Rwi[rnkNo] = selectedSource
4: Ri = Ri - {selectedSource}
5: rnkNo = rnkNo+1

6: while Ri 6= ∅ do
7: selectedSource = null; maxNewTriples =0

8: for each di ∈ Ri do
9: MIPs = getMIPs(di, ti)

10: if s is bound in ti then
11: MIPsSetSize =MIPsSetSize*getAvgSbjSel(di,ti)
12: else if o is bound in ti then
13: MIPsSetSize =MIPsSetSize*getAvgObjSel(di,ti)
14: end if
15: overlapSize = Overlap(unionMIPs,MIPs)
16: newTriples = MIPsSetSize - overlapSize
17: if newTriples > maxNewTriples then
18: selectedSource = di
19: maxNewTriples = newTriples
20: end if
21: end for
22: curThresholdVal = maxNewTriples / unionMIPsSetSize
23: if curThresholdVal > thresholdVal then
24: Rwi[rnkNo] = selectedSource
25: selectedMIPs = getMIPs(selectedSource, ti)
26: unionMIPs = Union(unionMIPs,selectedMIPs)
27: rnkNo = rnkNo+1

28: end if
29: Ri = Ri - {selectedSource}
30: end while
31: return Rwi //ranked list of capable sources for ti
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ple from Figure 39, the number of sources is 4 (d1,d2,d3,d4) but the
number of triple pattern-wise sources is equal to 6.

6.2 experimental evaluation

In this section we present an experimental evaluation of the DAW
approach. We first describe the experimental setup, followed by the
evaluation results. All data used in this evaluation can be found at
the project web page.4

6.2.1 Experimental Setup

Datasets: For our experiments, we used four different datasets. The
Diseasome dataset contains diseases and disease genes linked by disease-
gene associations. The Publication dataset is the Semantic Web Dog
Food dataset and contains information on publications, venues and
authors of publications. The Geo dataset resulted from retrieving the
portion of triples from DBpedia that maps resources to their geo-
coordinates. Finally, the Movie dataset is the RDF version of IMDB
and contains amongst others a large number of actors, movies and
directors. To simulate a federated scenario with fragmented datasets
distributed across several sources, we partitioned each dataset in 10

slices and distributed the slices across 10 data sources (one slice per
data source). Each data source is a Virtuoso-2012-08-02 SPARQL end-
point with the specifications given in Table 19.

To distribute the data across our 10 endpoints we defined a discrep-
ancy factor, which controls the maximal size difference between the
different slices.

discrepancy = max
16i6M

|Li|− min
16j6M

|Lj|, (6)

where Li stands for the ith slice. The data is first partitioned ran-
domly among the slices in a way that

∑
i

|Li| = D and ∀i∀j i 6= j →
||Li|− |Lj|| 6 discrepancy. None of the existing benchmarks for feder-
ated query processing addresses the data duplication issue. Therefore,
in order to add duplicates among slices, we randomly selected a num-
ber of slices and duplicated their contents across all remaining slices.
For the DAW index, we use MIPs vectors of different sizes to better
reflect the number of triples per predicate in each source. The sizes
were chosen in a way that the overall index size is kept small. Table 18

presents an overview of the datasets, including the total number of
triples and total size, the size of the DAW index, the index generation
time, the discrepancy value among the 10 slices, the number of slices
that were duplicated and their corresponding ID.

4 https://sites.google.com/site/DAWfederation/
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Dataset Number Dataset Index Index. Gen. Discrepancy No. Duplicated Duplicate

Triples Size (MB) Size (MB) Time (sec) Slices Slice ID

Diseasome 91,122 18.6 0.17 4 1,500 1 10

Publication 234,405 39.0 0.24 6 2,500 1 10

Geo 1,900,006 274.1 1.63 133 50,000 2 5,8

Movie 3,579,616 448.9 1.66 201 100,000 1 2

Table 18: Overview of the datasets used in the experiments

EP CPU(GHz) RAM Hard Disk

1 2.2, i3 4GB 300 GB

2 2.9, i7 16 GB 256 GB SSD

3 2.6, i5 4 GB 150 GB

4 2.53, i5 4 GB 300 GB

5 2.3, i5 4 GB 500 GB

6 2.53, i5 4 GB 300 GB

7 2.9, i7 8 GB 450 GB

8 2.6, i5 8 GB 400 GB

9 2.6, i5 8 GB 400 GB

10 2.9, i7 16 GB 500 GB

Table 19: SPARQL endpoints specification

Queries: We used three types of queries in our experiments: Single
triple patterns queries (STP), star-shaped queries (S-1, S-2), and path-
shaped queries (P-1, P-2, P-3). Single triple pattern (STP) queries con-
sist of exactly one triple pattern in the query. Star-shaped and path-
shaped queries are defined as in [35]. A S-k star-shaped query has one
variable as subject and k joins, i.e., (k+1) triple patterns. An example
of a S-1 star-shaped query is given in Figure 39. A P-k path-shaped
query is generated by using the object of one triple pattern as subject
in the next triple pattern, and it also contains (k+1) triple patterns.
Previous work has shown that these query shapes are the most com-
mon shapes found in real-world RDF queries [64]. Our benchmark
data consisted of 79 queries as shown in Table 20. Some query shapes
could not be used on certain datasets due to the topology of the un-
derlying ontology. For example, P-1 queries could not be sent to the
Geo dataset since it only contained object properties. Each type a
query was executed we used a random resource as subject or object,
depending on the query type. The predicates of all queries are fixed.

Dataset STP S-1 S-2 P-1 P-2 P-3 Total

Diseasome 5 5 5 4 5 2 26

Geo 5 5 5 - - - 15

Movie 5 - - - - - 5

Publication 5 5 5 7 7 4 33

Total 20 15 15 11 12 6 79

Table 20: Distribution of query types across datasets
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Federated Query Engines: We implemented our DAW approach on
top of three different federated query engines: DARQ [71], SPLEN-
DID [28], and FedX [95]. Both DARQ and SPLENDID already pro-
vide an index with some of the statistics needed in DAW. Therefore,
we only needed to extend this index. For FedX, which is index-free,
we added an index similar to the one in DARQ with our DAW exten-
sion. The underlying query execution mechanism remained the same.

Metrics: We compared the three federated approaches against their
DAW extensions. For each query type we measured (i) the average
number of triple pattern-wise sources that were skipped, (ii) the av-
erage recall, and (iii) the average query execution time. We did not
consider the number of endpoints requests, as it depends on a num-
ber of factors, such as join type, block and buffer size, that vary across
the different federated query processors. The threshold was initially
set to zero, in order to maximise recall while querying fewer sources.
All experiments were carried out in a machine with a 2.53GHz i5 pro-
cessor, 4 GB RAM, and 500 GB hard disk. Experiments were carried
out in a local network, so the network costs were negligible. After the
first warm up run, each query type was executed 10 times and results
were averaged.

6.2.2 Experimental Results

Triple Pattern-Wise Source Skipping: Table 22 shows the number
of capable triple pattern-wise sources that were skipped by our ap-
proach, for each query type, as well as the recall. The total number of
triple pattern-wise sources selected by the original systems is shown
in brackets. The threshold was set to zero, which means that only
sources that were estimated to returned no new results were pruned.
We can see that DAW can effectively reduce the total triple pattern-
wise selected sources, thus enable fewer subqueries federation. The
highest gain was in the Diseasome dataset, where 214 sources were
skipped in the DARQ approach, without affecting the recall. This cor-
responds to a decrease on the number of queried sources from 459 to
245. In other words, a full recall was achieved by querying only 53%
of the available triple pattern-wise sources. In all cases except in the
Geo dataset, the recall was not affected and all relevant results were
retrieved. In the Geo dataset, the DAW index incorrectly pruned a
small number of relevant sources, but the recall was still 99.99%. That
means that DAW can deliver the same query results while query-
ing much fewer sources. The source selection methods from FedX
and SPLENDID return the same set of sources, therefore the number
of skipped sources was the same for both. Moreover, they both use
SPARQL ASK queries in the selection mechanisms, which leads to a
better performance for STP queries. For example, consider the STP
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1 SELECT ?title WHERE
2 { www2008-chapter:103 pub:title ?title. }

Listing 10: A Single Triple Pattern (STP) query example

Dataset STP S-1 S-2 P-1 P-2 P-3 Total Recall

Diseasome 14(35) 30(77) 40(107) 35(65) 65(125) 30(50) 214(459) 100%

Geo 22(40) 23(55) 37(101) - - - 82(196) 99.99%

Movie 22(38) - - - - - 22(38) 100%

Publication 9(30) 10(37) 15(86) 14(60) 21(120) 32(102) 101(435) 100%

Total 67(143) 63(169) 92(294) 49(125) 86(245) 62(152) 419(1128) -

Table 21: Distribution of the triple pattern-wise source skipped by DAW ex-
tensions for threshold value 0

query given in Listing 10 where both the subject and predicate are
bound. It is likely that a WWW2008 chapter with id 103 is found in
only one data source but the property pub:title may be found in
every source. As a result, FedX and SPLENDID will only select a sin-
gle capable source while DARQ will select all sources containing that
predicate.

Query Execution Time: For each dataset and query type, we mea-
sured the average query execution time in each of the federated query
approaches and also in their DAW extension. Again, the threshold
was set to zero and the average was over 10 queries. Figures 41, 42,
and 43 show the results. We can see that DAW improves the query
performance for most of the cases. For three of the datasets, Disea-
some, Geo and Movie, DAW improved the query execution times of
all federated systems tested, for all query types. The query perfor-
mance in the Diseasome dataset showed the highest improvements.
This is due to the large number of triple pattern-wise sources that
were pruned. We can also see that if the number of skipped sources
is low – as for the Publication dataset – the overhead in computing
the sources overlap can be higher than the execution time saved by
querying fewer sources, so the overall query execution time is worse.
The overall performance is summarised in Table 23. We were able to
improve the query execution time in DARQ by 16.46%, the SPLEN-
DID by 11.11%, and FedX by 9.76%. For the Diseasome dataset, the
improvement for the DARQ approach was 23.34%. These are aver-

Dataset STP S-1 S-2 P-1 P-2 P-3 Total Recall

Diseasome 7(28) 30(77) 40(107) 35(65) 65(125) 30(50) 207(452) 100%

Geo 19(37) 23(55) 37(101) - - - 79(193) 99.99%

Movie 15(31) - - - - - 15(31) 100%

Publication 3(24) 10(37) 15(86) 14(60) 21(120) 32(102) 95(429) 100%

Total 44(120) 63(169) 92(294) 49(125) 86(245) 62(152) 396(1105) -

Table 22: Distribution of the triple pattern-wise source skipped by DAW ex-
tensions for threshold value 0
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Figure 41: Query execution time of DARQ and its DAW extension

0

1

2

3

4

5

6

7

8

9

10

STP S-1 S-2 P-1 P-2 P-3 STP S-1 S-2 P-1 P-2 P-3 STP S-1 S-2 STP

Diseasome Publication Geo Movie

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

SPLENDID DAW

Figure 42: Query execution time of SPLENDID and its DAW extension

aged values across all datasets and query types. DAW led to a perfor-
mance gain for most of the settings. We expect that in a setup with
larger datasets and higher overlap, DAW can lead to even better im-
provements.

Number of Queried Sources vs. Query Recall:
The evaluation presented so far focused on achieving full recall,

and only discarded sources that the DAW index estimated to con-
tribute with no new results. We have shown that the estimation given
by our algorithm is quite accurate, as only 0.01% of the results in one
dataset were missing. There might be cases, however, where full re-
call is not crucial and the query processing budget is limited. Here,
the goal is to retrieve as many results as possible by querying only
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Figure 43: Query execution time of FedX and its DAW extension
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Diseasome Publication Geo Data Movie Overall

Exe.time Gain Exe.time Gain Exe.time Gain Exe.time Gain Exe.time Gain

DARQ 8.27 5.26 23.44 1.96 9.59

DAW 6.34 23.34 4.94 6.14 19.62 16.31 1.68 13.88 8.01 16.46

SPLENDID 3.78 2.18 7.27 1.90 3.71

DAW 3.04 19.48 2.38 -8.94 6.22 14.40 1.68 11.16 3.30 11.11

FedX 2.44 1.48 4.60 1.74 2.44

DAW 1.98 18.79 1.67 -12.38 3.92 14.71 1.61 7.59 2.20 9.76

Table 23: Overall performance evaluation. Exe.time is the average execution
time in seconds. Gain is the percentage in the performance im-
provement
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Figure 44: Diseasome: Recall for varied number of endpoints queried
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Figure 45: Publication: Recall for varied number of endpoints queried

[ 21. Mai 2016 at 23:41 – classicthesis version 4.1 ]



6.2 experimental evaluation 111

a subset of capable sources. Standard federated query processing ap-
proaches are only able to identify the set of capable sources. They are
not able to compare the contribution of the sources in order to identify
which subset yields to a better recall. With DAW, an approximation
of this contribution is provided by the ranking step. For any given
threshold, DAW is able to provide the subset of capable sources that
will deliver the best recall for that number of sources. To demonstrate
this, we computed the query recall for different threshold values for
the DAW DARQ extension. We ran each of the STP queries 10 times
on the Diseasome and Publication datasets and averaged the results.
We varied the threshold value in order to limit the query to a fixed
number of endpoints and we computed the query recall based on the
DAW source selection. We compared it with the optimal duplicate-
aware approach, where sources were manually selected to maximise
the recall. The results are show in Figure 44 and Figure 45. We can
see that, in both cases, the source selection given by DAW is very
close to the optimal case. Moreover, our experiment demonstrates
the great potential in using source ranking for federated query pro-
cessing. For the Diseasome dataset, by querying only 3 out of the 10
endpoints, DAW is able to retrieve 80% of the query results. A full re-
call is achieved with only 6 endpoints. This naturally depends on the
degree of overlap, but nevertheless it shows promising results that
should be further explored.
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7
P O L I C Y- AWA R E S O U R C E S E L E C T I O N

Inspired by the publication of hundreds of Linked Datasets on the
Web, researchers have been investigating federated querying tech-
niques to enable access to this decentralised content. Query federa-
tion aims to offer clients a single-point-of-access through which mul-
tiple distributed data sources can be queried in unison. In the context
of Linked Data, various optimised query engines have been proposed
that can federate multiple SPARQL interfaces [94; 27; 5; 70; 100].

However, in the Healthcare and Life Sciences (HCLS) domain –
where data-integration is often vital – real-world data are often sen-
sitive: strict ownership is granted to individuals working in hospi-
tals, research labs, clinical trial organisers, etc. Therefore, the legal
and ethical concerns on (i) preserving the anonymity of patients (or
clinical subjects); and (ii) respecting data ownership through policy-
based access control; are key challenges faced by the data analytics
community working within the HCLS domain. In this chapter, we
focus on point (ii): we investigate policy-based access-control over
user-restricted resources residing at different clinical locations. The
key challenges for federated querying are efficient source selection
(i. e.determining which sources are (ir)relevant) and query planning
(i. e.determining an efficient query execution strategy). However, fed-
erated engines often apply source selection at the level of individ-
ual endpoints, whereas in a controlled environment, a user may only
have access to certain graphs within an endpoint. Considering a data-
access layer on top thus adds unique challenges: source-selection
should be more granular to enable effective data-access protocols,
and should be policy-aware to avoid wasteful requests to unautho-
rised resources.

In this chapter, we present SAFE: a query federation engine that
supports policy-based access to sensitive statistical data. SAFE is mo-
tivated by the needs of three clinical organisations who wish to enable
controlled federation over statistical data owned and hosted by multi-
ple clinical sites. To enable interoperability, these data are modelled as
RDF Data Cubes with use of SDMX dimensions [21] and agreed-upon
domain-specific vocabulary. SAFE extends upon the FedX engine [94]
with two novel contributions: (1) graph-level source selection so
as to enable graph-based access-control and (2) optimisations for

federating statistical data given as RDF Data Cubes. With these
modifications, we show that when compared with FedX, SAFE can
(i) support more granular graph-level access control on top, and can
(ii) efficiently reduce the query execution time when federating RDF

113
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Data Cubes. It is important to note that no existing SPARQL query
federation engine supports policy-aware access control over statistical
clinical data sets. We argue that a specialised extension is required in
general purpose query federation engines – like FedX – to address the
specific challenges in combining statistical and distributed datasets
with access restrictions.

The rest of the chapter is structured as follows: Section 7.1 discusses
our motivational scenario where data from different clinical locations
are required to be queried and aggregated. Section 7.2 presents the
three stages of SAFE query processing. Section 7.3 presents evalua-
tion of SAFE against internal and external data sets.

7.1 motivating scenario

Our work is informed by the needs of three clinical organisations:
University Hospital Lausanne (CHUV)1, Cyprus Institute of Neurol-
ogy and Genetics (CING)2, and ZEINCRO3. These organisations wish
to develop a platform for analysing clinical data across multiple clin-
ical sites, which would allow for increasing the total number of pa-
tients that are included in each analysis, thus increasing the statisti-
cal power of conclusions related to biomarkers, effectiveness and/or
side-effects of drugs or combinations of drugs, correlations between
patient groups, etc. The ultimate goal is to enable the collaborative
identification of new drugs and treatments while reducing the high
costs associated with clinical trials.

use of linked data: With these goals in mind, the three clini-
cal organisations mentioned are partners in the Linked2Safety EU
project4. The goal of the project is to leverage Linked Data technolo-
gies to enable collaborative sharing of patient data between clini-
cal organisations: to provide uniform access methods and controlled
vocabularies that enable automated interoperability. The two main
goals of the Linked2Safety project are (i) discovery of eligible pa-
tient data—also known as subject selection criteria—that can be re-
cruited for a clinical trial from multiple clinical sites; and (ii) en-
abling multi-centre epidemiological studies enabling better under-
standing of relationships between pathological processes, risk factors,
adverse events, and between genotype and phenotype [16]. However,
although Linked Data technologies can help enable multi-site interop-
erability, the community largely focuses on datasets that can be made
open to the public. In contrast, clinical data is often of an extremely

1 http://www.chuv.ch/

2 http://www.cing.ac.cy/

3 http:/www.zeincro.com/

4 http://www.linked2safety-project.eu/
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sensitive nature and there is often strict legislation in place protecting
the privacy of patients.

legal and ethical implications of patient privacy: Accord-
ing to EU Data Protection Directive 95/46/EC5, clinical studies that
involve patient-specific information must adhere to data-access re-
strictions that preserve patient anonymity; more specifically, a data
access mechanism must ensure that patient identity cannot be discov-
ered by any direct or indirect means using the dataset. Similar leg-
islation exists in other jurisdictions. To avoid sharing of individual
patient records, the Linked2Safety consortium has developed a data
mining approach for transforming original clinical data into statisti-
cal summaries that may aggregate (or indeed redact) multiple dimen-
sions of raw data.

The result is a set of anonymised data cubes whose dimensions
correspond to insensitive clinical parameters without personal infor-
mation [6]. The resulting multidimensional output contains sufficient
granularity to quickly decide if the dataset is relevant for a given
analysis – e. g.to understand the scale and dimensions of the data –
and to perform high-level meta-analyses of aggregate data. Said data
cubes are represented in a standard format – namely RDF Data Cubes
per the recent W3C standard [74] – to enable interoperability (e. g.use
of controlled vocabularies for dimensions) and to allow later use of
Linked Data publishing/access methods.

Diabetes BMI_Abnormal Hypertension Cases 

0 0 0 11 

1 0 1 26 

Diabetes BMI_Abnormal  Hypertension Cases 

0 0 0 40 

1 0 1 50 

Diabetes BMI_Abnormal Hypertension HIV Cases 

0 0 0 0 30 

1 0 1 0 60 

Diabetes Smoking Gender Cases 

0 0 0 (F) 90 

1 0 1 (M) 120 

      CHUV – S1       CING – S2 

      ZEINCRO – S3       CHUV – S4 

Figure 46: Example data cubes published by CHUV, CING and ZEINCRO

However, although the data considered are aggregated and do not
contain personal information from patients – thus preventing direct
deanonymisation – indirect methods of deanonymisation are impos-
sible to prevent [26]. Thus it is impossible to open a dataset and fully
guarantee that it will not (indirectly) compromise patient anonymity.
Likewise, if a (bio)medical dataset necessarily involves genetic data,
there exist identifying markers by which patients can be directly deanonymised;
thus genetic data can only be pseudoanonymised. Given such issues,
in practice, sharing clinical datasets – even aggregate statistics – is
often conducted under a strict legal framework between parties.

5 http://www.dataprotection.ie/docs/EU-Directive-95-46-EC/89.htm
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In order to employ stricter data access restrictions on the anonymised
multi-dimensional RDF data cubes, we then require a query federa-
tion approach that enforces and optimises for restricted user access
over the statistical information contained in these data cubes. To illus-
trate and motivate, we now discuss a detailed example.

Figure 46 shows four sample datasets published by three differ-
ent clinical sites. Each observation represents the total number of pa-
tients exhibiting a particular adverse event. For example, the CHUV-S1

observations describe the total number of patients (in the Cases col-
umn) that exhibit a particular combination of three adverse events:
Diabetes, (Abnormal) BMI and/or Hypertension. The value 0 or 1
indicates if the condition is present. For example, the second row in
CHUV-S1 represents the observations that there were 26 cases involv-
ing both Diabetes and Hypertension but without problematic BMI.

Once the data are published by clinical sites, they should be acces-
sible to clinical researchers. Figure 47 shows a sample SPARQL query
specifying subject-selection criteria, asking for the counts of cases that
involve some combination of diabetes, abnormal BMI (Body Mass In-
dex), and hypertension. An answer returned by the query, i. e.number
of cases, will play a major role in deciding the resources (i. e.number
of subjects, location, etc. ) required for conducting a clinical trial. How-
ever, answering such a query requires integrating data cubes with
three dimensions – Diabetes, Hypertension, BMI – and respective
counts originating from multiple clinical sites.

Referring back to Figure 46, only three of the datasets (CHUV-S1,
CING-S2, ZEINCRO-S3) contain all required dimensions. An answer re-
turned by the query (Figure 47) should list counts (i. e.cases) from
these 3 data cubes. However, assuming that the policy restrictions are
applied to the user (say James), who wants to execute the query and
has access to CHUV-S1 and CING-S2 data cubes only. Therefore, the
query federation engine should retrieve results only from CHUV-S1

and CING-S2 and should not consider ZEINCRO-S3 for querying.

PREFIX qb: <http://purl.org/linked-data/cube#> 

PREFIX sehr: <http://hcls.deri.ie/l2s/sehr/1.0/> 

SELECT ?diabetes ?bmi ?hypertension ?cases 

WHERE { ?dataset a qb:DataSet.   

                 ?observation qb:dataSet  ?dataset;  

                 a qb:Observation;  sehr:Diabetes ?diabetes ;  

                 sehr:BMI_Abnormal ?bmi ;  

                 sehr:Hypertension ?hypertension ; sehr:Cases ?cases . } 

Figure 47: Example subject selection criteria for clinical trials

Hence, one of the key requirements in the context of Linked2Safety
project is to support federation of queries over clinical data distributed
at multiple clinical sites by taking into account the data access poli-
cies (Figure 48 part c: shows a data access policy) assigned to the
users (Figure 48 part a: shows a user profile for James) executing
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those queries. Since data cubes are self-contained entities associated
with additional provenance information (e. g.creator, location, etc.; see
Figure 48 part b), they are modelled using named graphs [22] as sup-
ported in SPARQL.

In order to create clinical data cubes (Figure 46), formulate queries
(Figure 47), describe user profiles, and their access rights (Figure 48)
used within query federation process, the Linked2Safety consortium
has developed two vocabularies: (i) Semantic EHR Model (prefix “sehr”)
describes the clinical terminologies used by the three clinical partners;
and (ii) Access Policy Model (prefix “lmds”) describes the user profiles
(their activity, location, organisation, position and role) and their re-
spective access rights (e. g.read, write). Considering the space limita-
tion, further details of these two vocabularies are out of scope of this
chapter where we refer the reader to Semantic EHR Model [75] and
Access Policy Model [46] instead.

@prefix  lmds:  <http://www.linked2safety.eu/lmds#>.     @prefix acl:     <http://www.w3.org/ns/auth/acl#>. 

:AP1  a  lmds:AccessPolicy . 

:AP1 lmds:grantsAccess acl:Read_l2s . 

:AP1 lmds:appliesToNamedGraph :  CHUV-S1,    :CING-S2 . 

:AP1 lmds:hasUserProfile :James . 

:CHUV-S1  a  lmds:NamedGraph . 

:CHUV-S1 lmds:hasGraphURI 

"http://linked2safety.eu/CHUV/graph/6" . 

:CHUV-S1 lmds:hasSparqlEndpoint 

"http://10.196.2.116:3030/query" . 

: CING-S2  a  lmds:NamedGraph 

:James lmds:hasRole lmds:ClinicalResearcher . 

:James lmds:hasLocation  “Greece”. 

:James lmds:hasWorkingArea  sehr:Oncology. 

:James lmds:hasOrganization lmds:UCY . 

:James lmds:hasExpertise  sehr:Epidemiologist. 

(a) User Profile  

(c) Access Policy  

(b) Data Cubes Stored Within Named Graph  

Figure 48: Snippets of user profile, access policy, conditions, and data cube
storage

SAFE is uniquely designed to query statistical clinical data cubes
(title of study, time period, the area, funding, etc.) and enforces restric-
tion i. e.denial or access of these data cubes based on the description of
user profiles (their activity, location, organisation, position and role),
and their access rights.

7.2 methodology and architecture

SAFE’s architecture is summarised in Figure 49 showing three main
components: (i) Source Selection: performs multilevel source selection
based on capabilities of data sources; (ii) Policy Aware Query Planning:
filters the selected data sources based on a data-access right defined
for each users; and (iii) Query Execution: performs the execution of sub-
queries against the selected sources, merging results returned. These
components are described in detail in the following sub-sections.

source selection: SAFE performs a tree-based two level source
selection as shown in the Figure 50. At Level 1, like other federa-
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Figure 49: SAFE architecture
Figure 50: Tree-based two level source se-

lection

tion engines [94; 27; 100; 1; 86], we do triple-pattern-wise endpoint selec-
tion, i. e.we identify the set of relevant endpoints that will return non-
empty results for the individual triple pattern in a query. At Level 2

(unlike other federation engines), SAFE performs triple-pattern-wise
named graph selection, i. e.we identify a set of relevant named graphs
containing data cubes for all relevant endpoints already identified
at the Level 1. SAFE relies on data summaries to identify relevant
named graphs.

data summaries: We assume a set of datasets D where each
dataset d ∈ D is a SPARQL dataset: d := {(u1,G1), . . . (un,Gn)},
where each (ui,Gi) is a named graph with (unique) URI ui and
RDF graph Gi. In our use-case, named graphs refer to individual
data cubes; we do not consider a default graph. We denote all graph
names by names(d) and a graph in the dataset by d(u) := G. We de-
note by preds(G) := {p | ∃s,o : (s,p,o) ∈ G} the set of all distinct
predicates in G and, preds(d) :=

⋃
(u,G)∈D preds(G) the set of all

distinct predicates in d. For each dataset d ∈ D, SAFE stores the fol-
lowing as a data summary: (i) the endpoint URL (safe:endpointUrl),
where each endpoint indexes a dataset d; (ii) the set of all graph
names in a dataset d: names(d) where each graph contains a data
cube (safe:cube/safe:graph); and (iii) for each graph G ∈ d, the set
of all predicates in G: preds(G) (safe:cubeProperties).

:source1          lmds:endpointUrl         <http://10.196.2.116:3030/query> . 

:source1          lmds:cube                      :CHUV-s1 ,  :CHUV-s4 . 

:CHUV-s1        lmds:graph                     <http:...CHUV-s1/graph/0007> . 

:CHUV-s1        lmds:cubeProperties    sehr:Diabetes, sehr:BMI_Abnormal,  sehr:Hypertension,  sehr:Cases . 

:CHUV-s4        lmds:graph                     <http:...CHUV-s4/graph/0007> . 

:CHUV-s4        lmds:cubeProperties    sehr:Diabetes, sehr:Smoking, sehr:Gender, sehr:Cases . 

:source2          lmds:endpointUrl         <http://10.196.2.117:3030/query> . 

:source2          lmds:cube                      :CING-s2 . 

:CING-s2          lmds:graph                    <http:...CING-s2/graph/0007> . 

:CING-s2          lmds:cubeProperties   sehr:Diabetes, sehr:BMI_Abnormal, sehr:Hypertension, sehr:Cases . 

:source3          lmds:endpointUrl         <http://10.196.2.118:3030/query> . 

:source3          lmds:cube                      :ZEINCRO-s3 . 

:ZEINCRO-s3   lmds:graph                     <http:...ZEINCRO-s3 /graph/0007> . 

:ZEINCRO-s3   lmds:cubeProperties    sehr:Diabetes, sehr:BMI_Abnormal, sehr:Hypertension, sehr:HIV, sehr:Cases . 
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Figure 51: SAFE data summaries

We (informally) denote the set of all data summaries for d as S

and the data summary for a particular source as S(d). An snippet of
a data summary generated from the three data sources (CHUV, CING,
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ZEINCRO) of Figure 46 is shown in Figure 51, where CHUV contains two
data cubes (CHUV-S1, CHUV-S4), CING contains one data cube (CING-s2),
and ZEINCRO also contain only one data cube (ZEINCRO-s3). Before
explaining the source selection algorithm in the next section, we wish
to make a formal description of the sets that are calculated on-the-fly
by the source selection algorithm as part of the data summary:

1. The set of all predicates in a dataset d : preds(d). This is the set-
union of all preds(Gi) for each Gi ∈ d. For example, preds(CHUV) :=
{Diabetes,BMI,
Hypertension,Smoking,Gender,Cases} (ref. Figure 46, Figure 51).

2. The set of unique predicates in a data source d: upreds(d) := {p ∈
preds(d) | @d ′ ∈ D : d 6= d ′ ∧ p ∈ preds(d ′)}. For example, the
unique predicates of CHUV : upreds(CHUV) := {Smoking,Gender}
(ref. Figure 46, Figure 51).

3. The set of unique properties in a name graph with name u: upreds(u,d) :=
{p ∈ preds(d(u)) | @u ′ : u ′ 6= u ∧ p ∈ preds(d(u) ′)} (overloading
upreds(., .) for use with graphs also). For example, upreds(CHUV−s1,CHUV) :=
{BMI,Hypertension} and upreds(CHUV−s4,CHUV) := {Smoking,Gender}
(ref. Figure 46, Figure 51).

4. The set of graphs in d with unique properties: unames(d) := {u ∈
names(d) | upreds(u,d) 6= ∅}. For example, unames(CHUV) := {CHUV−s1,CHUV−s4}.

SAFE’s triple-pattern-wise source selection is shown in Algorithm
7. The algorithm is designed to exploit some specific properties of
data cubes, particularly the locality of joins: assuming data cubes are
not split over sources, certain types of joins can be answered locally.
In particular, we define a subject–subject join (s–s join), where two
triple patterns share (only) a subject variable, and a subject–object
join (s–o join), where the join variable appears in the subject position
of one triple pattern and the object of the other. For example, in Fig-
ure 47, triple patterns 1–2 form an s–o join and triple patterns 2–7

form an s–s join (in WHERE clause). As per the example, such joins
would have to be answerable by one source/cube; thus (reasonably)
assuming that data cubes are not split across sources, we can exploit
this locality with a join-aware strategy that reduces sources considered
relevant while ensuring complete results. For example, in Figure 47,
though many sources will match the first triple pattern, they will not
be considered relevant unless they are relevant for later triple patterns
also.

algorithm: the source selection algorithm takes the set of all avail-
able sourcesD, their data summaries S, the access policy P, the sender
id user, and a SPARQL query containing a set of basic graph pat-
terns6 BGP as input (source selection only refers to BGPs, which may

6 http://www.w3.org/TR/sparql11-query/#BasicGraphPatterns
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Algorithm 7 SAFE access policies-based triple pattern-wise source
and named graph selection
Require: D = {d1, . . . ,dn}, BGP = {bgp1, . . . ,bgpm}, S, P, user //sources, BGPs of

a SPARQL query, SAFE summaries of sources, Access Policies, User
1: R← {} //initialise relevance set
2: for each bgp ∈ BGP do
3: for each t ∈ bgp do
4: R← {} //initialise set of capable source graphs for triple pattern t
5: s← subj(t), p← pred(t), o← obj(t)
6: //if predicate is bound
7: if bound(p) then
8: //for each data source in D
9: for each d ∈ D do

10: U← upreds(d) //source unique properties read from S(d)
11: A← ⋃

d′∈D upreds(d ′) //all unique properties read from S(d ′)
12: E← preds(D) //all properties of D
13: if p ∈ E∧ (|bgp| = 1∨ (StarJoin(t, bgp, U) ∨ PathJoin(t, bgp, U)) ∨

(!StarJoin(t, bgp, A \U) ∧ !PathJoin(t,bgp,A \U)) then
14: triple pattern-wise named graph selection
15: UG← {}
16: //for each unique cube
17: for each ug ∈ unames(d) do
18: //unique p in bgp
19: if preds(bgp)∩ upreds(ug,d) 6= ∅ then
20: UG← UG∪ {ug} //ug might be relevant
21: end if
22: end for
23: nothing unique so add all
24: if UG = ∅ then
25: R← R∪ ({t}× names(d)× {d})
26: //one unique cube
27: else if |UG| = 1 then
28: R← R∪ ({t}×UG× {d})
29: end if
30: //if |UG| > 1, no source can match the join
31: end if
32: end for
33: else if !bound(p) then
34: //do triple-pattern-wise source selection using SPARQL ASK queries
35: for each d ∈ D do
36: if ASK(d, t) = true then
37: R← R∪ ({t}× names(d)× {d}) //select all graphs
38: end if
39: end for
40: end if
41: //do policy-based graph filtering
42: //for each capable graph
43: for each cgi ∈ R do
44: //Authorise user against graph of a source using access policies
45: if ASK(d, cgi,P,user) = false then
46: RemoveGraph(cgi, R) //remove unauthorised graph
47: end if
48: end for
49: R← R∪ {R}
50: end for
51: end for
52: return R //return relevant sources and graphs for triple patterns
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be extracted from features such as UNION or OPTIONAL, etc.). The algo-
rithm returns the set of relevant sources and corresponding named
graphs for individual triple patterns as output. We handle the indi-
vidual triple patterns of each BGP separately (lines 1–2 of Algorithm
7). Given a triple pattern t ∈ bgp ∈ BGP with bound predicate p,
for each dataset d ∈ D, we collect the dataset-unique properties U,
all unique properties A, and all dataset properties E from SAFE data
summaries (lines 3–10 of Algorithm 7). A dataset d is relevant for
triple pattern t if its predicate is a set member of E and either t forms
a star (s–s) or path join (p–o) with any other triple pattern (in the
same query) having a predicate in U or t does not form both star and
path join with set difference A/U (line 11 of Algorithm 7). Once a rel-
evant source is selected, the next step is to identify the set of relevant
graphs within that relevant dataset (lines 12–19 of Algorithm 7). If
triple pattern t belongs to a unique graph ug in selected data source
d then only uq is selected as relevant graph (lines 13–15 of Algorithm
7). If there is no unique graph in d then all graphs in d are selected
as relevant (lines 16–19 of Algorithm 7). If a predicate is not bound
in t, we fall back to a standard strategy and make use of SPARQL
ASK queries for source selection, i. e.we send a SPARQL ASK request
to each of the endpoints (lines 20–23 of Algorithm 7). Once relevant
graphs within relevant data sources are selected, the final step is to
further prune the select capable graphs using policy-based filtering
(lines 24–26 of Algorithm 7). A capable graph cg is removed If query
sender user does not have grant access (according to policy policies
P) for cg.

Per our running example, consider the triple pattern tp := "?observation

sehr:Diabetes ?diabetes" of the query given in Figure 47. Since
the predicate is bound in tp, the condition given at line 6 of Algo-
rithm 7 holds. For the CHUV dataset, U = {Smoking, Gender}, A =
{Smoking, Gender, HIV}, and E = {Diabetes, BMI, Hypertension,

Smoking, Gender, Cases} (line 8–10), and A \U = {HIV}. The predi-
cate Diabetes ∈ E and tp does not not form a star join (s–s) or path
join (s–o) with A \U in the query. Therefore, the condition given at
line 11 of Algorithm 7 holds and the data source CHUV will be selected
as relevant for TP. The next step is to select named graphs within the
CHUV data source. For both of the named graphs (CHUV-s1, CHUV-s4)
the condition given at line 14 is true, therefore both named graph are
selected as relevant. For both CING and ZEINCRO the condition given
at line 11 also hold; therefore they are also selected.

policy-aware query planning and query execution: After
the identification of relevant sources for the SPARQL query, the next
step is to further filter these sources by authenticating the user that
is making the request. Policy-Aware Query Planning is the process
of identifying capable sources: relevant sources that the user has ac-
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PREFIX acl: <http://www.w3.org/ns/auth/acl#> 

PREFIX lmds: <http://www.linked2safety.eu/lmds#> 

ASK WHERE 

?accessPolicy a lmds:AccessPolicy . 

?accessPolicy lmds:appliesToNamedGraph ?namedGraph . 

?namedGraph lmds:hasGraph lmds:CHUV_S1 . 

?accessPolicy lmds:grantsAccess acl:Read_l2s . 

?accessPolicy lmds:hasRequesterProle lmds:James  . 

Figure 52: SPARQL query authenticating a user against a data cube/named
graph

cess rights for. Access policies on each source are defined in the ac-
cess policy model; for this, we consider graph-level control. The user
authorisation is done by running SPARQL queries encoding infor-
mation about the user and the relevant named graphs against the
access-policy store. Considering the example discussed in Section 7.1,
the SPARQL query generated for authenticating the user James for ac-
cessing the named graph CHUV-S1 is shown in Figure 52. This query
asks if there is any access policy that grants read access to the user
James for the named graph CHUV-S1, returning true or false. As per
the Figure 48 (part c), this example will return true.

Relevant named graphs that return false will be filtered. End-
points with capable named graphs are then queried using standard
federation techniques. For this, we use the FedX query engine [94],
amending the query rewriter to append the capable graph informa-
tion for each endpoint.

7.3 evaluation

This section presents evaluation comparing SAFE against FedX to
validate the extensions we have proposed. The experimental setup
(e. g.datasets, queries and metrics) for evaluation are as follows:

7.3.1 Experimental Setup

Datasets: We use two groups of datasets exploring two different use-
cases.

The first group (internal datasets) are collected from the three
clinical partners involved in our primary use-case as described in
Section 7.1: CHUV, CING and ZEINCRO. These datasets contain aggre-
gated clinical data represented as RDF Data Cubes and are privately
owned/restricted.

The second group (external datasets) are collected from legacy
Linked Data containing sociopolitical and economical statistics (in the
form of RDF Data Cubes) from the World Bank, IMF (International
Monitoring Fund), Eurostat and Transparency International. The
World Bank data contains a comprehensive set of data about countries
around the globe, such as observations on development indicators,
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Table 24: Overview of Experimental Datasets

Dataset Type № trip № obsv № sub № pred № obj data i.size i.time

CHUV int 0.8 M 96 K 96 K 36 88 31 MB - -

CING int 0.1 M 17 K 17 K 21 51 5 MB - -

ZEINCRO int 0.4 M 49 K 49 K 24 59 15 MB - -

Total int 1.3 M 162 K 162 K 81 198 51 MB 8 KB 10 sec

World Bank ext 77 M 10 M 10 M 58 40 K 19 GB - -

IMF ext 18 M 1.8 M 1.8 M 30 3151 3.5 GB - -

Eurostat ext 0.3 M 38 K 44 K 31 5717 205 MB - -

Trans. Int. ext 43 K 3939 4286 64 5290 9.2 MB - -

Total ext 95 M 12 M 2 M 183 54 K 23 GB 12 KB 571 sec

financial statements, climate change, research projects, etc. The IMF

data provides a range of time series data on lending, exchange rates
and other economic and financial indicators. The Eurostat data pro-
vides statistical indicators that enable comparison between countries
and regions across Europe. The Transparency International data in-
cludes a Corruption Perceptions Index (CPI), which ranks countries
and territories based on how corrupt their public sector is perceived
to be.

Table 24 gives an overview of the experimental datasets (i.size
refers to index size and i.time to time taken for index generation).
Each dataset was loaded into a different SPARQL endpoints (Jena
Fuseki) on separate physical machines. Queries: A total of 12 queries
were designed to evaluate and compare the federation performance
of SAFE – for metrics such as source selection time, number of sources
selected and total query execution – with those of FedX. These queries
are of varying complexity and have varying type of characteristics.
For space reasons, the full queries are available at http://linked2safety.
hcls.deri.org:8080/SAFE-Demo/. In Table 25, we summarise the char-
acteristics of these queries following similar dimensions to the SPARQL
Berlin benchmark [17], showing their varying complexity. The num-
ber of sources counts those matched by at least one triple pattern.

Metrics: For each query type we measured (i) the number of sources
selected; (ii) the average source selection time; (iii) the average query
execution time; and (iv) the number of ASK requests issued to sources.
The performance of SAFE and FedX was compared based on these
metrics. All the experiments were carried out on a local network, so
that network cost remains negligible. Machines used for experiments
have a 2.60 GHz Core i5 processor, 8 GB of RAM and 500 GB hard
disk running a 64-bit Windows 7 OS. The answers produced by FedX
and SAFE were the same for all experiments.
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Table 25: Summary of Query Characteristics
Characteristics/Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

# of Triple Patterns 9 7 9 16 7 8 11 10 7 7 3 7

# of Sources 3 4 4 3 4 3 3 4 3 3 3 3

# of Results 41 50 348 41 62 1983 5 10 1701 19656 570 41

Simple Filters

Complex Filters 3

More than 9 pattens 3 3 3 3 3 3 3

Unbound predicates

Negation 3

OPTIONAL operator

LIMIT modifier 3 3 3 3

ORDER BY modifier 3 3 3

DISTINCT modifier 3 3 3 3 3 3 3 3 3 3

REGEX operator 3

UNION operator 3

DESCRIBE operator

CONSTRUCT operator

7.3.2 Experimental Results

Triple pattern-wise sources selected: Table 26 shows the total num-
ber of triple pattern-wise (TP) sources selected by SAFE and FedX
for all the queries. The last column shows the average number of
TP sources selected by each approach. FedX performs optimal source
selection at the triple-pattern-level using ASK queries for each triple
pattern to find out precisely which sources can answer an individual
triple pattern. By using join-aware source selection designed for RDF
Data Cubes, SAFE manages to filter further potential sources that do
not contribute to the end results, thus (as we will see) reducing re-
sponse times.

Table 26: Sum of triple-pattern-wise sources selected for each query

System/Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Avg

SAFE 8 10 13 16 15 13 15 16 7 7 9 7 11

FedX 9 13 16 24 20 14 16 19 15 17 9 16 16

Number of SPARQL ASK requests: Table 27 shows the total num-
ber of SPARQL ASK requests used to perform source selection for each
query. FedX is an index-free approach and performs runtime SPARQL
ASK requests during source selection for each triple pattern in query.
Conversely, SAFE uses data summaries for source selection, reverting
to SPARQL ASK requests only when there is an unbound predicate
in a triple pattern. None of our evaluation queries have an unbound
predicate; hence there are no SPARQL ASK requests for SAFE. Though
flexible in the generic case, index-free approaches can incur a large
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Figure 53: Comparison of source selection time

cost in terms of SPARQL ASK requests used for source selection, which
can in turn increase overall query execution time.

Table 27: Number of SPARQL ASK requests used for source selection

System/Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Avg

SAFE 0 0 0 0 0 0 0 0 0 0 0 0 0

FedX 36 28 40 64 48 40 44 40 21 21 9 21 35

Source selection time: Figure 53 compares the source selection
time of SAFE and FedX for all queries, where the y-axis is presented
in log-scale. The rightmost pair of bars compares the average source
selection time over all queries. As expected, the source selection time
for SAFE is much less that of FedX: this is primarily attributable to
SAFE’s use of a domain-specific index for source-selection, which
avoids incurring heavy traffic for ASK queries. The index can typically
be pre-loaded into memory before query execution, which means that
the source selection time for the presented use-case(s) will be mini-
mal.

Query execution time: For each query, the average query execution
time was calculated for both approaches by running each query ten
times. Figure 54 compares the overall query execution time of SAFE
and FedX for all queries. Again, the y-axis is logscale and the right-
most pair of bars compares the average query execution times. The
results shows that SAFE has significantly outperformed FedX in all
queries in the context of the presented use-cases. In fact, we see that
FedX times-out in the case of three queries (in our experiments, we
set queries to timeout after 25 minutes).

There are a number of factors that can influence the overall query
execution time of a federation engine, such as join type, join order
selection, block and buffer size, etc. However, given that SAFE is
based on the FedX architecture, we can attribute the observed run-
time improvements to three main factors: (i) source selection time is
reduced (as we have seen in the previous sets of results); (ii) fewer
sources are queried meaning less time spent waiting for responses;
and (iii) triple patterns are more selective in SAFE, where, for ex-
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Figure 54: Comparison of query execution time

ample, our join-awareness makes it unlikely that all rdf:type triple
patterns will need to be retrieved/queried for all sources but rather
only from sources where such a triple pattern joins with a more se-
lective one. Taken together, these three main observations explain the
time saving observed for our presented use-cases.
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8
D ATA D I S T R I B U T I O N - B A S E D S O U R C E S E L E C T I O N

This chapter is based on [90] and explains TopFed, a personalized
Cancer Genome Atlas1 (TCGA) federation engine which keeps the
data locality information in its index. The work is motivated by pro-
viding important biological queries, followed by the details of TCGA
data conversion and distribution.

The TCGA is an effort led by the National Cancer Institute to char-
acterize and sequence more than 30 cancer types from 9000 patients
at the molecular level. The goal is to analyse DNA for every partic-
ipant to discover abnormalities present in a tumour sample that are
peculiar to the oncogenic process and whether it affect progression
and regression of the tumours. Each cancer type published by TCGA
has three levels. Level 1 is raw data, level 2 is normalized data, and
level 3 is processed data. The analytics are performed on the level 3

data, which is also of our interest for the work presented in this chap-
ter. TCGA is a valuable resource for hypothesis-driven translational
research as all of its data results from direct experimental evidence.
Analysis of such evidence within cancer research has led in recent
years to clinically relevant findings in the genetic mark-ups of differ-
ent cancer types and is at the forefront of a coordinated worldwide
effort towards making more molecular results from cancer analyses
publicly available [42].

Big data research initiatives such as the International Cancer Ge-
nomics Consortia2, the 1000genomes3 and the One Million Genomes
project4, the $10 Million Genome Prize5, and the remarkable drop
in the cost of genome sequencing6 will soon mean that the current
bioinformatics paradigm in which researchers download all the data,
extract the interesting pieces and remove the rest, will no longer be
feasible [51; 13]. The rapid development of advanced statistical meth-
ods for analysing cancer genomics [98; 10; 44] further emphasizes
the need to enable smooth online data collection and aggregation. As
pointed out in [23], “Large-scale genome characterization efforts in-
volve the generation and interpretation of data at an unprecedented
scale that has brought into sharp focus the need for improved in-
formation technology infrastructure and new computational tools to
render the data suitable for meaningful analysis”. A scalable and ro-

1 https://tcga-data.nci.nih.gov/tcga/

2 http://icgc.org/

3 http://www.1000genomes.org/

4 http://www.genomics.cn/en/navigation/show_navigation?nid=5658

5 http://in.reuters.com/article/2012/07/24/us-science-genome-prize-idINBRE86M02G20120724

6 http://www.genome.gov/sequencingcosts/
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bust solution is therefore a critical requirement, whereby researchers
can obtain a subset of big data they are interested in by executing a
query using a particular service.

In addition to the large semi-structured experimental results avail-
able through TCGA and related projects, there is a significant num-
ber of unstructured and structured biomedical datasets available on
the Web. Most of these datasets are critical towards annotating and
integrating the experimental results. Remote query processing and
virtual data integration, i.e., transparent on-the-fly-view creation for
the end user, can provide a scalable solution to both challenges. Due
to the majority of TCGA data being available in text files (in tabular
format), it is difficult to query the contents of a particular file or to
enable virtual data integration. In this chapter, we have addressed
above problems by applying Semantic Web technologies and feder-
ated query processing. Semi-structured level 3 TCGA data were con-
verted into Semantic Web standard format RDF such that it could
be queried and publicly accessed via SPARQL endpoints. This choice
of technology complies with the W3C recommendation of integrat-
ing distributed and heterogeneous data sources. There are currently
a large number of applications supporting SPARQL and RDF, both
academic and commercial, and both SwissProt7 and EBI8 have made
their databases available as SPARQL endpoints.

In order to address the scalability issue while dealing with big data,
we propose an efficient data distribution strategy and a TCGA tai-
lored federated query engine (named TopFed) that leverages the data
distribution along with the structure of triple pattern joins in a query
for smart source selection. The logistics of the proposed solution will
be assessed by comparison with a well established federation engine
FedX [95].

8.1 motivation

Before TCGA, most cancer genomics studies have focused on only
one type of data or one cancer histology. The Cancer Genome At-
las project changes that paradigm by making available to oncologists
and biomedical scientists a comprehensive compilation of raw and
processed data files on over 30 different cancer histologies and at
several levels of “Genomics” (e.g. SNP, protein expression, exon ex-
pression, sequences, methylation, etc.). Since 2006, when the Cancer
Genome Atlas first became available, multiple studies were devised
to exploit its data. Nevertheless, a means to easily exploit this “can-
cer atlas” like one would exploit an atlas of planet Earth, does not
yet exist. Part of the challenge is caused by a need to represent, or-

7 http://beta.sparql.uniprot.org/sparql

8 http://www.ebi.ac.uk/rdf/
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ganize and structure the 28.3 TB of data9 available to the public in a
way that can be easily queried by computational/statistics tools. Fur-
ther complicating this task has been the growth of TCGA data. Some
institutions have access to the computational resources necessary to
provide a TCGA-synchronized and query-able interface suitable to
address the most complex questions such as comparing methylation
across cancer histologies or correlating exon expression results with
methylation patterns regardless of cancer histology. One institution
providing a tool and query language to exploit this data is Memorial
Sloan Kettering through its cBio portal10. However, the data must first
be constrained to the type of cancer before it can be exploited from
a biological/molecular stand point. A second challenge is caused by
the applications of the data - not all data are useful for all cancer re-
searchers. Some researchers focus on a particular type of data, or a
particular cancer histology, and therefore have little or no interest in
hosting the entire Cancer Genome Atlas in a structured, query-able
form.

The aim behind the work presented in this chapter was to develop
the computational concepts - and devise a prototype - that enable
the exposure of TCGA as a distributed, semantically aware API (ap-
plication programming interface). Although the data can be freely
downloaded and analyzed by anyone with a sufficiently powerful
computer, the computational tools available nowadays do not enable
exploring this “atlas” without significant effort involved in selecting
and downloading the data, mapping it to genomic coordinates and
easily navigating to the sections of the genome that are relevant for
understanding cancer. For example, zooming into genomic regions
known as “Cancer Hotspots” or into the genomic coordinates where
oncogenes and tumour suppressors are encoded, requires a combina-
tion of efforts including: 1) downloading the data; 2) parsing the text
files for relevant results; and 3) mapping each file to the same set of
genomic coordinates. On the other hand, fast, easy to use and inte-
grated access to the big data such as TCGA requires: 1) Representing
data in a format (e.g. RDF) amenable to integrated search; 2) logically
connect all data; 3) distributing data across multiple locations (load
balancing); and 4) supporting linking and federated querying (col-
lecting data from more than one location using a single query) with
external data sources.

TopFed is devised to address these requirements. Whereas require-
ments 1 and 2 are addressed using RDF and class level connectivity
(see section TCGA Data Work flow), addressing requirements 3 and 4

relies on techniques that make the best use of the architecture of the
Web to enable both redundancy when resources are down and shar-
ing the load of hosting this data across multiple locations. As a proof

9 https://tcga-data.nci.nih.gov/datareports/statsDashboard.htm

10 http://www.cbioportal.org/
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of concept, TopFed links different portions of the Cancer Genome At-
las across two institutions, one at Insight Centre for Data Analytics
at NUIG in Ireland and other at the University of Alabama at Birm-
ingham in United States. TopFed is devised as a federation query
engine that enables selection of the appropriate endpoints necessary
to address an incoming query as well as optimization of the services
discovery based on metadata about each endpoint. TopFed accepts
queries in SPARQL, the same universal, standardized query language
as each of the endpoints connected to it, making its functionality
straightforward. For example, if someone is looking to query only one
cancer histology, they can direct their queries at the endpoint hosting
that data. However, if someone wants to exploit and compare mul-
tiple cancer histologies, the query can be pointed at TopFed, which
automates and optimizes the task of discovering endpoints that con-
tain the data necessary to address the question. To illustrate a typical
use case, we exemplify a genomic region query enabled by TopFed.

8.1.1 Biological query example

This example makes use of the KRAS gene, a gene that is commonly
mutated and constitutively active in many cancer types, leading the
cell to replicate DNA and make copies of itself at a very fast pace.
Genes with this type of behaviour in the cell are commonly called
oncogenes. When mutated, these genes become constitutive active,
thus having the potential to cause normal cells to become cancerous.
Imagine that for five different cancer histologies, we used TopFed to
search for the methylation status of the KRAS gene (chr12:25386768-
25403863), and created a box plot comparing the values, shown in
Figure 55. The query (given in Listing 11) executed on each of the
five SPARQL endpoints11, resulting in five different samples.

This query returns the average methylation results for the KRAS
gene of all patients in a particular cancer histology. The results show
a clear distinction between solid tumours and hematopoetic cancers.
This differential in the methylation values is not necessarily surpris-
ing results, given that blood cancers are known to be significantly dif-
ferent genetically from solid tumours. What is interesting and worth
further exploring in these cases is the shape of the distribution: why
Acute Myeloid Leukemia (AML) samples, a cancer of the myeloid
of blood cells, appear to have high methylation, effectively creating
a bi-modal distribution? Exploring the provenance of this data may
provide a clue for that - one hypothesis is that these samples were in-
correctly diagnosed as AML or it may be that these AML samples are
indeed genetically different - and therefore should not be treated with
the same therapies as the others. Since TopFed integrates both the

11 URLs of SPARQL endpoints hosting five cancer histologies that are shown in Fig-
ure 55 can be found at http://tcga.deri.ie/
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Figure 55: Biological query results. We used TopFed to search for the methy-
lation status of the KRAS gene (chr12:25386768-25403863) across
five cancer histologies (hosted by five SPARQL endpoints) and
created a box plot comparing the methylation values. The cor-
responding SPARQL query to retrieve the required methylation
values is given in Listing 11.

PREFIX tcga : <http :// tcga . der i . i e /schema/>
PREFIX rdf : <http ://www. w3 . org/1999/02/22− rdf−syntax−ns#>
PREFIX xsd : <http ://www. w3 . org /2001/XMLSchema#>
SELECT DISTINCT ? p a t i e n t avg ( xsd : decimal ( ? methylationKRAS ) )

as ?avgMethKRAS
WHERE
{
? patientURI tcga : bcr_pat ient_barcode ? p a t i e n t .
? patientURI tcga : r e s u l t ? recordNo .
? recordNo tcga : chromosome "12" .
? recordNo tcga : p o s i t i o n ? p o s i t i o n .
? recordNo tcga : beta_value ? methylationKRAS .
FILTER ( xsd : decimal ( ? p o s i t i o n ) >= 25386768 && xsd : decimal ( ?

p o s i t i o n ) < 25403863 )
}

Listing 11: Query to retrieve average methylation values for the KRAS gene
and for all patient of a particular cancer type
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clinical and genomic parameters, exploring these different hypothe-
sis is as easy as returning to the query and retrieving the potentially
relevant clinical parameters that could explain the difference. Explor-
ing the same gene (KRAS) in another type of data (e.g. exon expres-
sion) could also help explain why these samples are different. Since
TopFed is “aware” of which SPARQL endpoints store each data prop-
erty, it will appropriately select the correct source for the data, thereby
adding the extra parameters to the query sufficient to generate suffi-
ciently robust hypothesis.

Further exploring these examples is beyond the scope of this manuscript
- however, we encourage our readers to experiment themselves with
their own hypothesis or with a different set of genes/genomic loca-
tions by changing the values for tcga:chromosome and tcga:position.
We include an example of a query that could be used to retrieve the
clinical parameters for the outlier patients (and compare with non-
outlier patients) in Listing 12.

The main contributions of this chapter are the following:

1. We have proposed a Linked Data version of TCGA that sup-
ports efficient data distribution and federated SPARQL queries
to integrate data from multiple SPARQL endpoints efficiently
by only sending remote queries.

2. We have published, to the best of our knowledge, the largest
RDF dataset (20.4 billion triples) and linked it to various datasets
in the LOD cloud to enable annotation and enhancement with
public knowledge bases as well as virtual data integration.

3. We devised the basic architecture and logic rules governing
TopFed, a smart federated query engine for virtual integration
of the TCGA data from multiple SPARQL endpoints that com-
ply with the TCGA organizational schema. Further, we provide
easy to use utilities12 in order to refine and transform TCGA
raw text files into RDF.

4. We evaluate our approach against FedX using 10 different SPARQL
queries and show that our source selection algorithm, on aver-
age, selects less than half sources compared to FedX (with 100%
recall). Also, our average query processing time is one third in
comparison to FedX.

The remaining part of this chapter is organized as follows: we
present our methodology to refine, RDFize and link the TCGA data
to LOD datasets in detail. Subsequently, we present a thorough eval-
uation of our approach against state of the art approaches. We fi-
nally conclude the chapter with a discussion of our findings and an
overview of future work.

12 http://goo.gl/rtwm6q
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PREFIX tcga : <http :// tcga . der i . i e /schema/>
PREFIX rdf : <http ://www. w3 . org/1999/02/22− rdf−syntax−ns#>
PREFIX xsd : <http ://www. w3 . org /2001/XMLSchema#>
SELECT ? o u t l i e r s P a t i e n t ?avgMethKRAS ? piordiagn ? v i t a l s t a t ?

ageatdiag ? gender ? p r e t r e a t H i s t o r y ? e t h n i c i t y ? race
{

{
SELECT DISTINCT ? o u t l i e r s P a t i e n t ( avg ( xsd : decimal ( ?

methylationKRAS ) ) as ?avgMethKRAS ) ? piordiagn ? v i t a l s t a t ?
ageatdiag ? gender ? p r e t r e a t H i s t o r y ? e t h n i c i t y ? race

WHERE
{
? patientURI <http :// tcga . der i . i e /schema/bcr_pat ient_barcode >

? o u t l i e r s P a t i e n t .
? patientURI <http :// tcga . der i . i e /schema/ r e s u l t > ? recordNo .
? recordNo tcga : chromosome "12" .
? recordNo tcga : p o s i t i o n ? p o s i t i o n .
? recordNo tcga : beta_value ? methylationKRAS .
FILTER ( xsd : decimal ( ? p o s i t i o n ) >= 25386768 && xsd : decimal ( ?

p o s i t i o n ) < 25403863 )
SERVICE <http :// vmlion14 . der i . i e /node42/8081/ sparql >

{
? patientURI tcga : bcr_pat ient_barcode ? o u t l i e r s P a t i e n t .
? patientURI tcga : p r i o r _ d i a g n o s i s ? piordiagn .
? patientURI tcga : v i t a l _ s t a t u s ? v i t a l s t a t .
? patientURI tcga : a g e _ a t _ i n i t i a l _ p a t h o l o g i c _ d i a g n o s i s ?

ageatdiag .
? patientURI tcga : gender ? gender .
? patientURI tcga : pre t rea tment_h is tory ? p r e t r e a t H i s t o r y .
? patientURI tcga : e t h n i c i t y ? e t h n i c i t y .
? patientURI tcga : race ? race .

}
}

}
FILTER ( ? avgMethKRAS > 0 . 0 5 )

}

Listing 12: Query to retrieve average methylation values for the KRAS gene,
along with clinical data, for all AML outlier patients. This query
can be run at http://vmlion14.deri.ie/node45/8082/sparql
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Text File 
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Figure 56: TCGA text to RDF conversion process. Given a text file, first it
is refined by the Data Refiner. The refine file is then converted
into RDF (N3 notation) by the RDFizer. Finally, the RDF file is
uploaded into a SPARQL endpoint.

8.2 methods

8.2.1 Transforming TCGA data to RDF

The process of transforming TCGA data into RDF13 is shown in Fig-
ure 56. Given a TCGA text file, the first processing step is carried out
by the Data Refiner, which selects the specific fields14 necessary for
traditional molecular analysis algorithms. This step is necessary to
minimize the size of the resulting RDF according to what we expect
will be the most useful results. It is important to note that the above
required fields for different types of results may not be directly acces-
sible through raw text files. To this end, our Data Refiner makes use
of the annotations files15 for the required fields lookup. For example,
methlylation annotation files are used to obtain chromosome and po-
sition values using Probe_Name lookup. Finally, the refined text file
is sent to the RDFizer, which generates the resulting RDF dump in N3

format16. Our choice of N3 was due of its efficient space consumption.
The generated RDF dumps17 are then uploaded to various SPARQL
endpoints according to the distribution rules shown in Figure 57.

An example of the above RDFication process is shown in Figure 58,
where part of raw methylation result of patient TCGA-A2-A0CX is
provided as input to the Data Refiner. The Data Refiner selects chrome,
position, and beta_value out of the five available columns. The selected
columns are commonly used for traditional molecular analysis algo-
rithms targeting methylation data. It is important to note that Data

13 A step-by-step user manual is also available at: http://goo.gl/0oTAKV
14 https://code.google.com/p/topfed/wiki/SelectedFields

15 http://goo.gl/pb3o2G

16 http://www.w3.org/TeamSubmission/n3/

17 Available to download from: http://tcga.deri.ie/dumps/
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Figure 57: TCGA data distribution/load balancing and source selection. The
proposed data distribution and source selection diagram for host-
ing the complete Linked TCGA data.

Refiner also skipped the yellow highlighted line because beta_value is
not available for that specific methylation result. The refined text file
is then passed to RDFizer that generates the RDF dump (N3 format).
The values d1...d8 show DNA methylation results from 1 to 8. The
use of this information is further explained in the Source Selection
sub-section.

The accuracy of the text to RDF conversion is 100% (to the best of
our understanding) since our Data Refiner selects a predefined set of
fields for different types of results. Further, it skips specific field val-
ues (such as NA, Null, Unknown, Not Reported etc.) during RDFication
process as shown in the above example. Currently, we have RDFized
27 cancer tumours and the statistics are shown in Table 28. We will
RDFize new TCGA data once it is available through the TCGA data
portal.

8.2.2 Linking TCGA to the LOD cloud

One of the design principles of Linked Data18 is the provision of links
to other data sources. Adding links from TCGA to other knowledge
bases is particularly crucial to ensure that the information already
contained in other data sources can be easily (1) merged with the new
TCGA data as well as (2) queried in combination with the TCGA data
by means of federated SPARQL queries19. Moreover, links can facili-

18 http://www.w3.org/DesignIssues/LinkedData.html

19 See http://www.w3.org/TR/sparql11-query/ for more information on federated
queries based on SPARQL 1.1.
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Figure 58: Text to RDF conversion process example. An example showing
the refinement and RDFication of the TCGA file.

Table 28: Statistics for 27 tumours sorted by number of triples
Tumour Type Raw(GB) Refined(GB) RDF(GB) Triples(Million)

Lymphoid Neoplasm Diffuse Large 0.37 0.20 0.83 35

B-cell Lymphoma (DLBC)

Cutaneous melanoma (UCS) 1.2 0.64 2.6 113

Glioblastoma multiforme (GBM) 2.3 0.77 2.8 132

Esophageal carcinoma (ESCA) 1.5 0.88 3.4 149

Adrenocortical carcinoma (ACC) 1.6 0.90 3.6 158

Pancreatic adenocarcinoma (PAAD) 2.6 1.1 4.5 200

Kidney Chromophobe (KICH) 3.7 1.4 5.3 242

Sarcoma (SARC) 3.8 1.5 5.9 267

Cervical (CESC) 8.75 2.44 8.86 400.19

Ovarian serous cystadenocarcinoma (OV) 8.2 2.4 8.7 410

Rectal adenocarcinoma (READ) 8.07 2.25 9.04 413.31

Papillary Kidney (KIRP) 10.40 2.90 10.4 469.65

Stomach adenocarcinoma (STAD) 5.5 2.9 12 529

Liver hepatocellular carcinoma (LIHC) 8.2 3.1 12 550

Bladder cancer (BLCA) 12.16 3.39 12.3 556.38

Acute Myeloid Leukemia (LAML) 14.85 4.14 15.1 684.05

Lower Grade Glioma (LGG) 17.08 4.76 17.1 778.82

Prostate adenocarcinoma (PRAD) 18.05 5.03 18.1 821.01

Lung squamous carcinoma (LUSC) 20.63 5.75 20.5 927.08

Cutaneous melanoma (SKCM) 23.22 6.47 23.2 1050.94

Uterine Corpus Endometrial Carcinoma (UCEC) 13 5.98 24.2 1070

Colon adenocarcinoma (COAD) 18 6.64 26 1175

Head and neck squamous cell(HNSC) 27.6 7.69 27.5 1245.37

Lung adenocarcinoma (LUAD) 23 9.1 36 1611

Kidney renal clear cell carcinoma (KIRC) 24 9.4 37 1658

Thyroid carcinoma (THCA) 26 10.1 40 1796

Breast invasive carcinoma (BRCA) 45 17 65 2959

A total of 20.4 Billion triples
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Table 29: Excerpt of the links for the lookup files of TCGA

Source Target Class # links Runtime (ms)

DNA27 HGNC Genes 23,181 154

DNA27 Homologene Genes 27,654 193

DNA27 OMIM Genes 15,171 158

DNA450 Homologene Genes 489,643 5,710

DNA450 OMIM Genes 212,284 429

DNA27 HGNC Chromosomes 108,662 96

DNA27 OMIM Chromosomes 16,039,535 8,055

The source column shows the name of the look-up file that was linked
to the target dataset named in the second column. The class column
shows the type of resources that were linked. The fourth column
shows the number of links that were generated while the runtime
column shows the time required by LIMES to carry out the linking
process in ms.

tate other tasks such as cross-ontology question answering, data inte-
gration and data analytics. Yet, the sheer size of bio-medical knowl-
edge base available on the LOD cloud and of the TCGA knowledge
base itself makes it impossible to use manual linking to provide such
cross knowledge-base links from TCGA to other data sources. We
thus made use of the LIMES framework [65] for discovering links
between TCGA and other knowledge bases. LIMES is a framework
for link discovery that provides time-efficient implementations of sev-
eral string and numeric similarity and distance measures. The frame-
work provides both means to define link specifications explicitly and
machine-learning algorithms for finding link specifications in an un-
supervised and supervised fashion. Given that genes and chromo-
somes have dedicated IDs that are used across several biomedical
knowledge bases, we used LIMES exactMatch measure for linking.
We focused on linking patient data and lookup data with knowledge
bases that describe genes and chromosomes. In particular, we linked
TCGA to HGNC20, OMIM21 and Homologene22. Tables 29 and 30

provide an excerpt of the links generated for the TCGA dataset, while
Listing 13 provides an excerpt of the specifications used for linking.
The linking tasks were carried out on one kernel of a 2.3GHz i7 pro-
cessor with 4GB RAM. Given that we used exact matches, we ensured
that our link discovery achieves a precision of 100%. The recall of the
linking process is tedious to assess as it would require assessing mil-
lions of links manually.

20 http://hgnc.bio2rdf.org/sparql

21 http://omim.bio2rdf.org/sparql

22 http://homologene.bio2rdf.org/sparql
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1 <SOURCE>

2 <ID>TCGA</ID>

3 <ENDPOINT>dna_methylation450_Lookup.nt</ENDPOINT>

4 <VAR>?x</VAR>

5 <PAGESIZE>-1</PAGESIZE>

6 <RESTRICTION>?x rdf:type tcga-schema:dna_methylation450_lookup</

RESTRICTION>

7 <PROPERTY>tcga-schema:Gene_Symbol AS lowercase</PROPERTY>

8 <TYPE>N-TRIPLE</TYPE>

9 </SOURCE>

10 <TARGET>

11 <ID>homologene</ID>

12 <ENDPOINT>http://homologene.bio2rdf.org/sparql</ENDPOINT>

13 <VAR>?y</VAR>

14 <PAGESIZE>10000</PAGESIZE>

15 <RESTRICTION>?y a homologene:HomoloGene_Group</RESTRICTION>

16 <PROPERTY>homologene:has_gene_symbol AS lowercase</PROPERTY>

17 </TARGET>

18 <METRIC>exactmatch(x.tcga-schema:Gene_Symbol,

19 y.homologene:has_gene_symbol)</METRIC>

20 <ACCEPTANCE>

21 <THRESHOLD>1</THRESHOLD>

22 <FILE>dna_450_homologene_accepted.nt</FILE>

23 <RELATION>tcga-schema:Homologene</RELATION>

24 </ACCEPTANCE>

Listing 13: Excerpt of the LIMES link specification for linking TCGA and
Homologene

Table 30: Excerpt of the links for the methylation results of a single patient

Source Target Class # links Runtime (ms)

Methylation HGNC Chromosomes 97,530 205

Methylation OMIM Chromosomes 14,407,269 6,095

Gene expression HGNC Chromosomes 86,052 80

Gene expression OMIM Chromosomes 12,535,829 4,679

The source column shows the name of the patient file that was linked
to the target dataset named in the second column. The class column
shows the type of resources that were linked. The fourth column
shows the number of links that were generated while the runtime
column shows the time required by LIMES to carry out the linking
process in ms.
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chromosome position beta_value 

16 28890100 0.439271303584937 

3 57743543 0.245147665381461 

7 15725862 0.0440161061196347 

2 177029073 0.741342927038953 

11 93862594 0.0290713821114479 

14 93813777 0.985555436681019 

18 11980953 0.0109832005732912 

14 89290921 0.0104525957219692 

composite 
element REF gene_symbol chromosome position beta_value 

cg00000292 ATP2A1 16 28890100 0.439271303584937 

cg00002426 SLMAP 3 57743543 0.245147665381461 

cg00003994 MEOX2 7 15725862 0.0440161061196347 

cg00005847 HOXD3 2 177029073 0.741342927038953 

cg00006414 ZNF425 7 148822837 NA 

cg00007981 PANX1 11 93862594 0.0290713821114479 

cg00008493 COX8C 14 93813777 0.985555436681019 

cg00008713 IMPA2 18 11980953 0.0109832005732912 

cg00009407 TTC8 14 89290921 0.0104525957219692 

@prefix b:<http://tcga.deri.ie/>.  

@prefix d:<http://tcga.deri.ie/schema/bcr_patient_barcode>. 

@prefix r:<http://tcga.deri.ie/schema/result>.  

@prefix c:<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>. 

@prefix w:<http://tcga.deri.ie/schema/dna_methylation_result>.  

@prefix m:<http://tcga.deri.ie/schema/chromosome>. 

@prefix v:<http://tcga.deri.ie/schema/position>.  

@prefix u:<http://tcga.deri.ie/schema/beta_value>.  

b:TCGA-A2-A0CX d: "TCGA-A2-A0CX".  

b:TCGA-A2-A0CX r: b:TCGA-A2-A0CX-d1 .  

b:TCGA-A2-A0CX-d1 c: w: ; m: "16"; v: "28890100"; u: "0.439271303584937".  

b:TCGA-A2-A0CX r: b:TCGA-A2-A0CX-d2 .  

b:TCGA-A2-A0CX-d2 c: w: ; m: "3"; v: "57743543"; u: "0.245147665381461".  

b:TCGA-A2-A0CX r: b:TCGA-A2-A0CX-d3 .  

b:TCGA-A2-A0CX-d3 c: w: ; m: "7"; v: "15725862"; u: "0.0440161061196347".  

b:TCGA-A2-A0CX r: b:TCGA-A2-A0CX-d4 .  

b:TCGA-A2-A0CX-d4 c: w: ; m: "2"; v: "177029073"; u: "0.741342927038953".  

b:TCGA-A2-A0CX r: b:TCGA-A2-A0CX-d5 .  

b:TCGA-A2-A0CX-d5 c: w: ; m: "11"; v: "93862594"; u: "0.0290713821114479".  

b:TCGA-A2-A0CX r: b:TCGA-A2-A0CX-d6 .  

b:TCGA-A2-A0CX-d6 c: w: ; m: "14"; v: "93813777"; u: "0.985555436681019".  

b:TCGA-A2-A0CX r: b:TCGA-A2-A0CX-d7 .  

b:TCGA-A2-A0CX-d7 c: w: ; m: "18"; v: "11980953"; u: "0.0109832005732912".  

b:TCGA-A2-A0CX r: b:TCGA-A2-A0CX-d8 .  

b:TCGA-A2-A0CX-d8 c: w: ; m: "14"; v: "89290921"; u: "0.0104525957219692".  

Data Refiner 

RDFizer 

Refined 

RDFized Raw 

Figure 59: TCGA class diagram of RDFized results. Each level 3 data is fur-
ther divided into three layers where: layer 1 contains patient data,
layer 2 consists of clinical information and layer 3 contain results
for different samples of a patient.

8.2.3 TCGA data workflow and schema

To devise a fast, big data driven query federation engine, we started
by exploiting how the various files and types of data in TCGA are
interconnected. To date, 23054 raw data files from 28 cancer tumours
have been collected, summing up to a total of 28.3 TB of data23. For
each level 3 data, we have identified three different types, i.e., we RD-
Fized level 3 data for each cancer type and further define 3 data types
for each of the level 3 tumours data of data. The resulting data are
organized as a three layer architecture where layer 1 contains patient
data, layer 2 consists of clinical information and layer 3 contain results
for different samples of a patient. Each type of data is assigned to a
different class in the RDFized version as depicted in Figure 59. For
each patient, tumour and blood/normal tissue samples are collected
and divided into different portions upon which different protocols
such as DNA, RNA and so on, are applied to extract the analytes
for the analysis of the sample. The extracted analytes are distributed
across plates. All these plates containing patients tumour and normal
samples are shipped to Genome Characterization Centres (GCCs) and
Genome Sequencing Centres (GSCs) that produce different data type
results which are shown in layer 3 (cf. Figure 59). The schema of the
corresponding Linked TCGA is shown in Figure 60. We have included
only important properties from clinical data (e.g., drug, follow-up, ra-
diation etc.) as the complete list of properties is around 300. This
diagram is useful to understand the connectivity between the Linked
TCGA data and to formulate SPARQL queries.

23 https://tcga-data.nci.nih.gov/datareports/statsDashboard.htm
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Figure 60: Linked TCGA schema diagram. The schema diagram of the
Linked TCGA, useful for formulating SPARQL queries.

8.2.4 Data distribution and load balancing

A key property of the federation method described here is the effi-
cient distribution of the data among SPARQL endpoints to enable
access to around 20 billion resulting triples in a virtual integrated
manner, i.e., the required data are transparently collected from differ-
ent SPARQL endpoints. Proper load balancing among SPARQL end-
points is also ensured to reduce the query execution time. To this
end, we have divided each tumour data into three categories, each of
which is assigned a different colour – blue, pink and green – as shown
in Figures 57 and 61. The green category contains only methylation
results, pink contains expression exon results and all other data are
grouped in the blue category. The ratio of the sizes is 1:3:4 for blue,
pink, and green respectively.

In order to achieve proper load balancing, if we allocate one SPARQL
endpoint to the blue category data (smallest) then we must assign
three SPARQL endpoints to pink and four SPARQL endpoints to
the green category data. We propose 17 SPARQL endpoints to be
assigned for the complete TCGA level 3 data (around 33 tumours ex-
pected) distribution as shown in Figure 57. We assigned two SPARQL
endpoints for blue, six endpoints for pink and nine endpoints for
green category data.

Data are also balanced across each of the coloured category SPARQL
endpoints according to cancer type (tumour). For example, in blue
category, tumours 1-16 are stored in the first blue SPARQL endpoint
and the remaining tumours (17-33) are stored in the second blue
SPARQL endpoint. It is important to note that we have RDFized 27

tumours while in our data distribution diagram we show 33 tumours.
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Figure 61: TopFed federated query processing model. TCGA tailored feder-
ated query processing diagram, showing system components.

This is because we are expecting around 33 cancer tumours24 data to
be made available by the TCGA data portal in the future. To achieve
a similar size-oriented division, each of the SPARQL endpoints in the
pink category contains either five or six tumours data as shown in
Figure 57 and each of the first six SPARQL endpoints in the green cat-
egory contain data for four tumours and each of the remaining three
SPARQL endpoints contain three tumours data. Each of the three cat-
egories is used to create a conditional statement (labelled C-1, C-2,
and C-3 given in Listing 14), used by the federated engine for source
selection. For source selection, the predicates sets shown in Figure 57

(D, C, B, M, F, E, A and G) are also relevant. We further explain the
decision model in Source Selection sub-section.

C−1 = { { p ∈ {D ∪ A ∪ G} ∨ { p = r d f : t y p e ∧ o ∈ C} } ∧ { { S−J o i n
( p , D ∪ C) ∨ P−J o i n ( p , D ∪ C) } ∨ { ! S−J o i n ( p , M ∪ B ∪ E ∪
F ) ∧ ! P−J o i n ( p , M ∪ B ∪ E ∪ F ) } } }

C−2 = { { p ∈ { E ∪ A ∪ G} ∨ { p = r d f : t y p e ∧ o ∈ F } } ∧ { { S−J o i n
( p , E ∪ F ) ∨ P−J o i n ( p , E ∪ F ) } ∨ { ! S−J o i n ( p , M ∪ B ∪ D ∪
C) ∧ ! P−J o i n ( p , M ∪ B ∪ D ∪ C) } } }

C−3 = { { p ∈ {M ∪ A} ∨ { p = r d f : t y p e ∧ o ∈ B } } ∧ { { S−J o i n ( p , M
∪ B ) ∨ P−J o i n ( p , M ∪ B ) } ∨ { ! S−J o i n ( p , E ∪ F ∪ D ∪ C) ∧

! P−J o i n ( p , E ∪ F ∪ D ∪ C) } } }

Listing 14: Conditions for colour category selection

24 https://tcga-data.nci.nih.gov/tcga/
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8.2.5 TopFed federated query processing approach

Before going into the details of our federated query processing model
shown in Figure 61, we first briefly explain TopFed’s index which
comprise of an N3 specification file and a Tissue Source Site to Tu-
mour (TSS-to-Tumour) hash table. The N3 specification file, shown
in Listing 15, is devised based on the data distribution described in
previous section. It contains metadata relevant for data distribution
across SPARQL endpoints. For each SPARQL endpoint, its colour cat-
egory, endpoint url, and the list of tumours data stored therein are
specified. Moreover, the specification file also contains the various
sets of predicates. In addition, we also create a Tissue Source Site to
Tumour (TSS-to-Tumour25) hash table that contains key value pairs
for TSS to tumour name. The TSS is the location identifier from where
the results of the different tissues are obtained. This hash table was
formed using “File_Sample_Map” files (containing file to patient bar-
code entries) provided as meta data, with every TCGA archive down-
load via its Data Matrix portal26. This meta file provides a list of pa-
tient barcodes belonging to a particular cancer tumour. We extract the
TSS part of patient barcode27 and use this along with tumour name
as a hash entry. Both N3 specification file and TSS-to-Tumour hash
table are used by our federated query processor for efficient relevant
data source (SPARQL endpoints) selection, which is explained in the
next sub-section.

Given a SPARQL query, it is first parsed and then sent to the fed-
erator that makes use of the N3 specification file along with the TSS-
to-Tumour hash table, in order to find the relevant sources for each
of the triple pattern using Algorithm 8. The optimizer makes use of
the source selection to generate an optimized sub-query execution
plan. The optimized sub-queries are then forwarded to the relevant
SPARQL endpoints. The results of each sub-query execution are inte-
grated and the final query result set is generated.

8.2.6 Source selection

The goal of the source selection is to find the optimal list of relevant
sources (i.e., SPARQL endpoints) against individual query triple pat-
tern. According to the distribution of Figure 57, if we can infer the
category colour and tumour number for a triple pattern then we only
need to query a single endpoint for that triple pattern. For example,
starting from the root node of Figure 57, we can go to the second level
of the tree by knowing the category colour (blue, pink, and green).
Further, at second level, if we know the tumour number then we can

25 https://topfed.googlecode.com/files/TSS-to-Tumour_hash_table.txt

26 TCGA Data Matrix: https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
27 Patient barcode format: https://wiki.nci.nih.gov/display/TCGA/TCGA+Barcode
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Algorithm 8 triple pattern source selection
Require: Dblue = {b1, b2}; Dpink ={p1, p2, ... p6}; Dgreen ={g1, g2,... g9}; T =

{t1, t2, ...tn}; tumourNo //data sources, query triple patterns, tumour number
(can be null)

1: for each bgp ∈ T do
2: for each ti ∈ bgp do
3: sources = null; c1Sources = null; c2Sources = null; c3Sources = null;

type = null; s = subj(ti); p = pred(ti); o = obj(ti)
4: if bound(s) then
5: catColour = s.getCategorycolour() //get category colour from subject
6: tNo = s.getTumour() //get tumour from subject
7: if catColour = ‘blue’ then
8: sources = Dblue
9: else if catColour = ‘pink’ then

10: sources = Dpink
11: else if catColour = ‘green’ then
12: sources = Dgreen
13: end if
14: Si = sources.filter(tNo) //this will return a single capable source
15: else if bound(p) then
16: if C-1 then
17: c1Sources = Dblue
18: end if
19: if C-2 then
20: c2Sources = Dpink
21: end if
22: if C-3 then
23: c3Sources = Dgreen
24: end if
25: sources = c1Sources∪ c2Sources∪ c3Sources
26: if sources = null then
27: sources = Dblue //only check for clinical properties
28: end if
29: if tumourNo 6= null then
30: Si = sources.filter(tumourNo)
31: else
32: Si = sources
33: end if
34: else if !bound(p) ∧ !bound(s) then
35: // prune selected sources with ASK queries
36: for each si ∈ {Dblue ∪Dpink ∪Dgreen} do
37: if ASK(si, ti) = true then
38: Si = Si ∪ {si}
39: end if
40: end for
41: end if
42: return Si //reutrn the set of relevant sources for triple pattern ti
43: end for
44: end for
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@prefix t c g a : < h t t p : //tcga . der i . i e /schema/> .
< h t t p : //tcga . der i . i e / s e t /setA> tcga:setName "A" ;

t c g a : s e t E l e m e n t s "result" , "chromosome" , "

bcr_patient_barcode" .
< h t t p : //tcga . der i . i e / s e t /setE> tcga:setName "E" ;

t c g a : s e t E l e m e n t s "RPKM" .
< h t t p : //tcga . der i . i e / s e t /setG> tcga:setName "G" ;

t c g a : s e t E l e m e n t s "start" , "stop" .
< h t t p : //tcga . der i . i e / s e t /setM> tcga:setName "M" ;

t c g a : s e t E l e m e n t s "position" , "beta_value" .
< h t t p : //tcga . der i . i e /endpoint/blue1> t c g a : c a t e g o r y "blue" ;

t cga :endpointUr l "http: //10.196.2.214 :8890/

sparql" ;
tcga:containTumours "BLCA" , "CESC" , "HNSC" ,

"KIRP" , "LAML" .
< h t t p : //tcga . der i . i e /endpoint/blue2> t c g a : c a t e g o r y "blue" ;

t cga :endpointUr l "http: //10.196.2.123 :8890/

sparql" ;
tcga:containTumours "LGG" , "LUSC" , "PRAD" , "

READ" , "SKCM" .
< h t t p : //tcga . der i . i e /endpoint/pink1> t c g a : c a t e g o r y "pink" ;

t cga :endpointUr l "http: //10.196.2.130 :8890/

sparql" ;
tcga:containTumours "BLCA" , "CESC" , "HNSC" .

Listing 15: Part of the N3 specification file

reach to a single SPARQL endpoint to query. For each query triple
pattern, our source selection algorithm tries to get such information
using the specification file and type (star, path) of the join between
the query triple patterns.

A star join between two triple patterns is formed if both of the
triple patterns share the same subject. Consider the query given in
Listing 16: the first two triple patterns form a star join and the last
four triple patterns form a second star join. A path join between two
triple patterns is formed if object of the first triple pattern is used as
subject of the second triple pattern. For example, the second triple pat-
tern form a path join with the third triple pattern in the query shown
in Listing 16. Moreover, every TCGA patient is uniquely identified by
its barcode of the format <TCGA-TSS-PatientNo>. For example, the
patient barcode used in the first triple pattern of the Listing 16 query
has a TSS identifier 18 and patient number 3406. This means we can
infer tumour name/number from patient barcode using the TSS to
tumour hash table.

As discussed in the Data distribution section, we have categorized
all SPARQL endpoints into three different category colours named
blue, pink, and green. Our source selection algorithm (cf. Algorithm
8) requires the set of SPARQL endpoints in each of the colour cate-
gory and stores three different sets namedDblue,Dpink, andDgreen.
Moreover, it requires the tumour number tumourNo, which can be
null and is obtained from the query as follow: if a triple pattern with
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PREFIX tcga : <http :// tcga . der i . i e /schema/ >.
SELECT ? recordNo ?chromosom ? s t a r t ? stop ?mean
WHERE
{
? s tcga : bcr_pat ient_barcode "TCGA-18-3406" .
? s tcga : r e s u l t ? recordNo .
? recordNo tcga : chromosome ?chromosom .
? recordNo tcga : s t a r t ? s t a r t .
? recordNo tcga : stop ? stop .
? recordNo tcga : seq_mean ?mean .
}

Listing 16: TCGA query with bound predicate

PREFIX tcga : <http :// tcga . der i . i e /schema/>
SELECT ? recordNo ? s t a r t ? stop ?rpkm
WHERE
{
<ht tp :// tcga . der i . i e /TCGA−18−3406−e266> tcga : s t a r t ? s t a r t .
<ht tp :// tcga . der i . i e /TCGA−18−3406−e266> tcga : stop ? stop .
<http :// tcga . der i . i e /TCGA−18−3406−e266> tcga :RPKM ?rpkm .
}

Listing 17: TCGA query with bound subject

predicate tcga:bcr_patient_barcode and bound object containing the
patient barcode form a star join with a triple pattern having predicate
tcga:result, then by using the patient barcode value specified in the
former triple pattern can be used to get the required tumour number
using TSS-to-Tumour hash table. Our source selection algorithm runs
for each basic graph pattern (BGP28) and for each individual triple
pattern of BGP as follow.

If subject of the triple pattern is bound then we can get both the cat-
egory colour and tumour name from the subject URI. The format of
the TCGA URI is <http://tcga.deri.ie/Patient_barcode-ResultType>.
The tumour name can be obtained from Patient_Barcode and the cat-
egory colour can be inferred from ResultType. For example, if the
first character is e (shortcut for exon-expression), then it belongs to
the pink category. However, if the first character is d (shortcut for
dna-methylation), then it belongs to the green category and all other
characters belong to the blue category. Consider the query given in
Listing 17: the tumour name can be obtained using hash table lookup
for TSS 18 and the colour category is pink.

Source selection for a triple pattern with only bound predicate is
more challenging. We have divided various predicates and classes of
the TCGA data into different sets that are shown in Listing 18. Set
D contains all the predicates that uniquely identify the blue category
and set C contains a list of classes specific to it. The sets B and M
uniquely identify the methylation, i.e., the green category while sets

28 http://www.w3.org/TR/sparql11-query/#BasicGraphPatterns
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F and E are for the pink category. Sets A and G contain predicates that
can be found in more than one colour category. Starting from the root
of the source selection tree, if the condition C-1 given in Listing 14

holds then all of the sources in blue category are relevant for that
triple pattern. This means that if predicate p of the triple pattern is
set member of {D ∪ A ∪ G} or it is equal to rdf:type and the object o
belongs to set C and either the star or path join between p and {D ∪
C} is true or the star and path join of p with {M ∪ B ∪ E ∪ F} is false,
then all of the sources in the blue category are relevant.

D = { seq_mean , reads_per_million_mirna_mapped , sca led_es t imate
, prote in_express ion_value }

C = { copy_number_result , snp_resul t , express ion_gene_resul t ,
e x p r e s s i o n _ p r o t e i n _ r e s u l t , mirna_result , C l i n i c a l }

B = { dna_methylat ion_resul t }
M = { beta_value , p o s i t i o n }
F = { express ion_exon_resu l t }
E = {RPKM}
A = { chromosome , r e s u l t , bcr_pat ient_barcode }
G = { s t a r t , stop }

Listing 18: Predicate and class sets

Consider the third triple pattern of the query given in Listing 16:
the predicate chromosome is set member of A, which means this pred-
icate can be found in all of the endpoints. However, chromosome
has a star join with seq_mean, which is unique for the blue category
sources. Therefore, instead of selecting all of the sources (overesti-
mated as in FedX, SPLENDID etc.), TopFed will only select Dblue
as relevant sources that can be further filtered, provided that the tu-
mourNo given as input to Algorithm 8 is not null. Similarly, C-2 holds
for Dpink and C-3 holds for Dgreen relevant source selection. It is im-
portant to note that more than one condition (C-1, C-2, C-3) can be
true for a triple pattern, therefore we check each of the three condi-
tions individually and make a union of the sources as given in line 24

of Algorithm 8. Further, if none of the condition is true then we need
to query the blue category sources because we did not list many of
the blue category predicates as they are numerous.

For a triple pattern with bound object, we send SPARQL ASK
queries including the triple pattern to all of the sources and select
sources that pass the test. This is similar to the source selection tech-
nique used in FedX for all the triple patterns. Along with Algorithm 8,
Figure 57 also provides a visual demonstration of our triple pattern-
wise source selection.

As an example, consider the query of Listing 16 and the data dis-
tribution given in Figure 57. TopFed selects one source for the first
triple pattern because we can obtain tumour number from the given
patient barcode and this triple pattern only passes C-1. FedX selects
three sources since every patient data can be found in each of the
three colour categories exactly at one SPARQL endpoint. For the sec-
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ond triple pattern, TopFed again selects only one source because C-1
only holds. However, FedX selects all of the 17 sources as predicate
tcga:result can be found in all of the endpoints. For each of the re-
maining triple patterns (3 to 6), TopFex selects only one source as
tcga:seq_mean is unique for the blue category endpoints and the oth-
ers triple patterns (3 to 5) has star join with it. We have only two
endpoints in blue category, which is filtered to one using the tumour
number given in triple pattern 1. FedX selects all of the 17 sources for
tcga:chromosome, eight sources each for tcga:start, tcga:stop, and two
sources for last triple pattern. In total, TopFed selects only six sources
while FedX selects 52 to answer this query. Additionally, FedX also
needs to send 102 (6*17) SPARQL ASK queries. We want to empha-
size that we have replaced only source selection algorithm of FedX.
The join order optimization and the join implementation remains the
same.

8.3 results and discussion

8.3.1 Evaluation

The goal of this evaluation is to support the claim that TopFed selects
a significantly smaller number of sources for the same recall as FedX,
thus achieving a good query execution performance for large datasets.
We compare TopFed with the state-of-the-art approach for query fed-
eration (FedX) both in terms of the total number of sources selected
and the execution time to achieve a 100% recall, using 10 TCGA
benchmark SPARQL queries29 of different shapes (i.e. star, path, and
hybrid). A textual description of all the benchmark queries is given
in Table 31. FedX has been shown previously [29; 82] to be the fastest
and more precise SPARQL federated query engine (to the best of our
knowledge). Therefore, we evaluate TopFed’s query performance by
comparing it with FedX.

8.3.1.1 TCGA benchmark setup

TCGA benchmark data consists of genomic results from 25 patients
randomly selected from ten different tumour types and distributed
across ten local SPARQL endpoints with the specifications given in
Table 32. Furthermore, the benchmark N3 specification30 file (used in
the current experiments) assigns two, three, five SPARQL endpoints
to the blue, pink, and green categories respectively.

We have selected ten SPARQL queries based on expert opinion re-
flecting typical requests on TCGA data. Further, we have categorized
our benchmark queries into four different quadrants as shown in Ta-

29 Benchmark queries: http://goo.gl/UxUEXk
30 TopFed index: https://topfed.googlecode.com/files/loadDistribution.n3
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Table 31: Benchmark queries descriptions

Query Description

Q1 Get the chromosome, start, stop and mean copy number val-
ues of the patient TCGA-18-4721 for genome locations 554268

to 5994290

Q2 Get the chromosome, start, stop and mean exon-expression val-
ues of all the TCGA patients

Q3 Get the chromosome, position and mean methylation values of
all the TCGA patients

Q4 Get the chromosome, start and stop values of the TCGA patient
TCGA-C4-A0F6

Q5 Get the chromosome, start, stop values of all the TCGA patients

Q6 Get the chromosome, start, stop and miRNA values of the 20th
record of TCGA patient TCGA-AB-2821

Q7 Get the chromosome, start and stop values of the TCGA patient
TCGA-AB-2823 for mean sequence value of 0.0839

Q8 Get the chromosome, start, stop, mean protein expression and
mean exon-expression values of the TCGA patient TCGA-18-
3410

Q9 Get the chromosome, mean gene expression and mean methyla-
tion values of the TCGA patient TCGA-C5-A1BF

Q10 Get the chromosome, mean gene expression, mean exon expres-
sion and mean methylation values of all the TCGA patients

The corresponding SPARQL queries can be downloaded from
http://goo.gl/UxUEXk.

Table 32: Benchmark SPARQL endpoints specifications

SPARQL endpoint CPU RAM Hard Disk

virtuoso-blue1 2.2 GHz, i3 4 GB 300 GB

virtuoso-blue2 2.6 GHz, i5 4 GB 150 GB

virtuoso-pink1 2.53 GHz, i5 4 GB 300 GB

virtuoso-pink2 2.3 GHz, i5 4 GB 500 GB

virtuoso-pink3 2.53 GHz, i5 4 GB 300 GB

virtuoso-green1 2.9 GHz, i7 16 GB 256 GB SSD

virtuoso-green2 2.9 GHz, i7 8 GB 450 GB

virtuoso-green3 2.6 GHz, i5 8 GB 400 GB

virtuoso-green4 2.6 GHz, i5 8 GB 400 GB

virtuoso-green5 2.9 GHz, i7 16 GB 500 GB
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Table 33: Benchmark queries distribution

Single Colour Cross-Colour

Star 2 2

Hybrid (star + path) 2 4

ble 33. A single colour query collects results from SPARQL endpoints
listed in one of the three colour categories. A cross-colour query tar-
gets more than one colour category results. A hybrid query contains
both star and path joins between various triple patterns. Moreover,
we can also obtain the tumour number (to be used as input to Algo-
rithm 8) from all of the hybrid queries. All of the benchmark data,
including benchmark queries, can be found at the project website.

8.3.1.2 Experimental results

In order to show the effects of source selection on performance (run-
time + recall of sources selected), the number of sources selected for
each triple pattern of the query are added (equation 7). Let mi equal
the number of sources capable of answering a triple pattern ti and S
is the total number of available sources (10 in our benchmark). Then,
for a query q with triple patterns {t1, t2, . . . , tn}, the total number
of sources selected (triple pattern-wise sources selected) is given in
equation 7.

total number of sources selected =

n∑
t=1

mt : 0 6 mt 6 S (7)

The source selection results are shown in Figure 62. Overall, our
source selection algorithm selects on average less than half of the
sources selected by FedX. This is due to the possible overestimation
of the sources by FedX while using SPARQL ASK queries for rele-
vant source selection [95]. For example, any data source will likely
match a triple pattern (?s, rdf:type, ?o). However, the same sources
might not lead to any results at all once the actual mappings for ?s
and ?o are included in a join evaluation. On the contrary, our source
selection algorithm was designed to resolve the join types between
query triple patterns specifically to avoid such overestimation (which
can later greatly increase the query processing time as reflected in Ta-
ble 34). Only in queries 5 and 10, TopFed selected sources are equal to
FedX. The explanation for this can be found in the amount of useful
information available in each query - both query 5 and query 10 are
generic queries from which a tumour or a performance-improving
colour category cannot be derived, because all logic conditions are
exactly satisfied. Overall, TopFed selects the optimal (the actual re-
quired sources) number of sources with 100% recall for all of the
benchmark queries.
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Figure 62: Efficient source selection. Comparison of the TopFed and FedX
source selection in terms of the total number of triple pattern-
wise sources selected. Y-axis shows the total triple pattern-wise
sources selected for each of the benchmark query given in X-axis.

Table 34: sectionage execution time for each query (based on a sample of
10)

FedX(first run) FedX(cached) TopFed

Query No Execution Time(msec) Execution Time(msec) S.E Execution Time(msec) S.E

1 913 401.2 5.22 341.5* 5.60

2 81619 81170.7 655.93 866.5* 22.08

3 82271 81817.8 653.22 666* 27.12

4 1199 367.6 6.88 262.7* 7.35

5 80423 78723.5 459.43 78691.5 458.70

6 837 416.9 8.38 246.1* 3.56

7 921 399.6 4.41 248.1* 7.20

8 900 89 2.45 72.7* 1.52

9 950.3 76.8 2.16 63.3* 1.89

10 912 63.6 1.99 49.6* 1.02

Average 25094.53 24352.67 180.01 8150.8 53.60

*Significant improvement.
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Table 35: Comparison of source selection average execution time (based
on a sampling of 10)

FedX(first run) FedX(cached) TopFed

Query No Execution Time(msec) Execution Time(msec) S.E Execution Time(msec) S.E

1 530 11.7 0.35 28.1 0.98

2 487 11.4 0.67 5.2 0.57

3 470 11.9 0.78 5 0.42

4 510 12 0.52 23.6 1.57

5 473 9.8 0.65 4.8 0.29

6 371 9.9 0.38 21.7 0.68

7 521 10 0.39 24.4 0.76

8 483 9.5 0.45 29.5 0.86

9 496 9.8 0.39 20.1 0.99

10 456 10.6 0.40 7.4 0.58

Average 479.7 10.66 0.50 16.98 0.77

We have performed a two-tailed heteroscedastic t-test based on a
sample of 10 (each query was run 10 times) to compare the source
selection execution time. The source selection execution time and the
standard error (S.E) obtained are presented in Table 35. On average,
our source selection algorithm only requires 17 msec per query. This
is because our N3 specification file is much smaller (only 43 lines) and
we have created an in-memory Sesame repository to load and access
this file. For the first run, the FedX source selection execution time
is much higher. This delay is caused by the query engine sending
a SPARQL ASK query for each of the query triple patterns, and for
each of the sources. As explained above, FedX needs to issue 102

SPARQL ASK queries to perform source selection for the query in
Listing 16 and the data distribution in Figure 57. In order to minimise
the number of SPARQL ASK queries, FedX makes use of the cache
to store the result of the recent SPARQL ASK request. Every time a
query is issued, the engine first looks for a cache hit before issuing the
actual SPARQL ASK query. To show the effect of the cache, we have
rerun the same query 10 times after the first run and we have noticed
a reasonable improvement. For a complete cached entries (100% cache
hit), our source selection execution time is still comparable with FedX.
It is important to note that all queries that are not specific to a patient
(i.e, queries 2, 3, 5, 10), the TopFed source selection time is small
(less than 10 msec). The reason is that the tumour number cannot be
inferred from these queries and as a result less computation (index
lookups) is required in the source selection Algorithm 8.

In Table 34, we compare the execution time of TopFed and FedEx
for all of the benchmark queries using a two-tailed heteroscedastic t-
test based on a sample of 10. It is important to mention that the query
execution time was measured when the first result was retrieved, i.e.,
we did not iterate over all results. As an overall performance evalua-
tion, the query execution time of TopFed is about one third to that of
FedX. Specifically, TopFed significantly outperforms FedX in bench-
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mark queries 2 and 3 related to exon expression and methylation, re-
spectively. These queries select the complete set of results for all of the
25 patients. TopFed is able to infer from the query that the category
colour should be pink and green, respectively, and issue the complete
query to only the endpoints in the corresponding colour categories.
In contrast, FedX is not able to perform such pre-processing, hence
issuing the query to all endpoints. As a result, it has to collect results
from all of the endpoints in the blue, pink, and green categories when
only one of the categories can produce results for each query. As an
example of the FedX approach addressing query 2, the triple pattern
(?recordNo, tcga:chromosome, ?chromosom) relies on retrieving the
results from all of the endpoints in both the blue and green categories,
only to return an empty set of results, after making a star join with the
triple pattern (?recordNo, tcga:RPKM, ?RPKM). We expect that our
approach will generally lead to much faster resolution for queries of
this nature, where a large number of triples is retrieved for a specific
colour category. This reflects the improvement that TopFed’s engine
is able to determine those queries that will return empty sets prior
to requesting the data. Although the benchmark query 5 results in a
very large set of triples, the execution time for both systems is almost
the same. As pointed out above, the reason for this is that the query is
too generic and it is impossible to infer the category colour or tumour
number.

8.4 availability of supporting data

The TCGA data is available under the original TCGA Data Use Certi-
fication Agreement31 and TopFed source code along with utilities are
available under GNU GPL v3 licence at the project home page https:

//code.google.com/p/topfed/.

31 https://tcga-data.nci.nih.gov/docs/TCGA_Data_Use_Certification.pdf
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9
L A R G E R D F B E N C H : L A R G E S PA R Q L E N D P O I N T
F E D E R AT I O N B E N C H M A R K

This chapter is based on [79] and provides the details of LargeRDF-
Bench, a benchmark for SPARQL endpoint federation. The impor-
tance of Linked Data management and SPARQL queries has led to the
development of several benchmarks (e.g., [3; 17; 32; 63; 91; 93; 102])
that allow assessing the performance of SPARQL query processing
systems. However, all of these benchmarks (except FedBench [91])
have focused on the problem of query evaluation over local, cen-
tralised repositories. Hence, these benchmarks do not consider fed-
erated queries over multiple interlinked datasets hosted by different
SPARQL endpoints. Moreover, most of them either rely on synthetic
data (e.g., [17; 32; 93]) or synthetic queries [3].

While synthetic benchmarks allow generating datasets of virtually
any size, they often fail to reflect reality [25]. In particular, previous
works [25] point out that artificial benchmarks are typically highly
structured while real Linked Data sources are less structured. More-
over, the synthetic queries should reflect the characteristics of the real
queries (i.e., they should show typical requests on the underlying
datasets) [8; 68]. Thus, synthetic benchmark results are rarely suffi-
cient to extrapolate the performance of federation engines when faced
with real data and in real queries. A trend towards benchmarks with
real data and real queries (e.g., FedBench [91], DBPSB [63], BioBench-
mark [102]) has thus been pursued over the last years but has so far
not been able to produce federated SPARQL query benchmarks that
reflect the data volumes and query complexity that federated query
engines already have to deal with on the Web of Data. While the trend
towards using real data and real queries in benchmarks addresses the
need to reflect reality, most of the current benchmarks for SPARQL
query execution rely only on a single performance criterion, i.e., the
query execution time. Thus, they fail to provide results that allow a
more fine-grained evaluation of SPARQL query processing systems to
detect the components of systems that need to be improved [62; 87].
For example, performance metrics such as the completeness and correct-
ness of result sets and the effectiveness of source selection both in terms
of total number of data sources selected, and the corresponding source
selection time are not addressed in the existing benchmarks [62; 87].

In this chapter, we address these drawbacks by presenting Larg-
eRDFBench. (1) LargeRDFBench is an open-source benchmark for
SPARQL endpoint query federation. To the best of our knowledge,
this is the first federated SPARQL query benchmark with real data
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(from multiple interlinked datasets pertaining to different domains)
to encompass more than 1 billion triples. (2) We provide the SPARQL
1.0 and SPARQL 1.1 versions of the queries that are mostly collected
from domain experts. In particular, we provide three types of queries
that allow evaluating different aspects of the scalability of the cur-
rent query federation frameworks. Note that for a particular Larg-
eRDFBench query, the SPARQL 1.0 and SPARQL 1.1 versions of the
query retrieve exactly the same result set. (3) We evaluate state-of-the-
art SPARQL endpoint federation systems by using LargeRDFBench
against several metrics including the source selection time, number
of sources selected, result set correctness and completeness, and the
query runtime. This fine-grained evaluation allows us to pinpoint the
restrictions of current SPARQL endpoint federation systems when
faced with large datasets, large intermediate results and large result
sets. (4) Furthermore, we show that the current ranking of these sys-
tems based on simple queries differs significantly from their ranking
when on more complex queries.

The rest of this chapter is structured as follows: We begin by pro-
viding an overview of the main components of a SPARQL query fed-
eration benchmark (short: benchmark) and key features that need to
be considered while designing such a benchmark. Thereafter, we give
an overview of related work and point out the current drawbacks of
existing benchmarks in more detail (Section 9.2). In Section 9.3, we
describe LargeRDFBench. In particular, we present the datasets and
queries contained in the benchmark as well as the metrics used for
benchmarking with LargeRDFBench. An evaluation of state-of-the-art
systems based on LargeRDFBench and the metrics presented in the
prior section follows. The results are discussed and we finally con-
clude. The benchmark and further evaluation results can be found at
benchmark homepage.1

9.1 background

This section explains the main components of the SPARQL query pro-
cessing benchmarks and the key features of each of these components
that should be considered during the benchmark creation. In general,
a SPARQL query benchmark can be regarded as consisting of three
main components: (1) a set of RDF datasets, (B) a set of SPARQL
queries and (3) a set of performance metrics.

Datasets: The datasets used in the federated SPARQL benchmark
should complement each other in terms of the total number of triples,
number of classes, number of resources, number of properties, num-
ber of objects, average properties and instances per class, average in-
degrees, outdegrees and their resource wise distributions [25]. Duan
et al. [25] combines all of these datasets features into a single com-

1 LargeRDFBench http://LargeRDFBench.googlecode.com
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posite metric called structuredness or cohesion. For a given dataset, the
structuredness value ranges [0,1] with 0 means less structured and
1 means high structured dataset. A federated SPARQL query bench-
mark should comprise datasets of varying structuredness values.

SPARQL Queries: According to previous works [3; 30], a federated
SPARQL query benchmark should vary the queries it contains w.r.t.
the following query characteristics: number of triple patterns, number
of join vertices, mean join vertex degree, number of sources span,
query result set sizes, mean triple pattern selectivities (should be
mean Filtered triple pattern selectivities if SPARQL FILTER clause is
attached to the triple pattern), join vertex types (’star’, ’path’, ’hy-
brid’, ’sink’), and SPARQL clauses used (e.g., LIMIT, OPTIONAL, ORDER
BY, DISTINCT, UNION, FILTER, REGEX).

Performance Metrics: Previous works [62; 87] show that the re-
sult set completeness and correctness, the total triple pattern-wise sources
selected, the number of SPARQL ASK requests used during source se-
lection, the source selection time, and the overall query execution time
are important metrics to be considered in SPARQL query federation
benchmarks. We thus decided to implement these measures in Larg-
eRDFBench. Note that LargeRDFBench is a benchmark for SPARQL
endpoint federation, in contrast to Linked Data federation [87].

9.2 the need of more comprehensive sparql federation

benchmark

A large number of benchmarks for comparing SPARQL query pro-
cessing systems have been developed over the last decade. These in-
clude the Waterloo Stress Testing Benchmark (WSTB) [3], the Berlin
SPARQL Benchmark (BSBM) [17], the Lehigh University Benchmark
(LUBM) [32], the DBpedia Sparql Benchmark (DBPSB) [63], FedBench [91],
SP2Bench [93], and the BioBenchmark [102]. WSTB, BSBM, DBPSB,
SP2Bench, and BioBenchmark were designed with the main goal of
evaluating query engines that access data kept in a single repository.
They are used for the performance evaluation of different triple stores.
LUBM was designed for comparing the performance of OWL rea-
soning engines. However, all of these benchmarks do not consider
distributed data and federated SPARQL queries, thus they are not
further considered in the discussion.

SPLODGE [30] is a heuristic for automatic generation of feder-
ated SPARQL queries which is limited to conjunctive BGPs. Non-
conjunctive queries that make use of the SPARQL UNION, OPTIONAL
clauses are not considered. Thus, the generated set of synthetic queries
fails to reflect the characteristics of the real queries. For example, the
DBpedia query log [68] shows that 20.87%, 30.02% of the real queries
contains SPARQL UNION and FILTER clauses, respectively. However,
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Table 36: Queries distribution with respect to different SPARQL clauses.
SPARQL Clauses

Benchmark LIMIT OPTIONAL ORDER BY DISTINCT UNION FILTER REGEX

FedBench 0% 7.14% 0% 0% 21.42% 7.14% 0%

LargeRDFBench 12.5% 25% 9.3% 28.1% 18.75% 31.25% 3.12%

Table 37: Queries distribution with respect to join vertex types.

Join Vertex Type

Benchmark Star Path Hybrid Sink

FedBench 85.71% 57.14% 14.28% 35.71%

LargeRDFBench 75% 78.12% 40.62% 40.62%

both of these clauses are not considered in SPLODGE queries gen-
eration. Moreover, the use of different SPARQL clauses and triple
pattern join types greatly varies from one dataset to another dataset,
thus making it almost impossible for automatic query generator to
reflect the reality. For example, the DBpedia and Semantic Web Dog
Food (SWDF) query log [8] shows that the use of the SPARQL LIMIT

(27.99% for SWDF vs 1.04% for DBpedia) and OPTIONAL (0.41% for
SWDF vs 16.61% for DBpedia) clauses greatly varies for these two
datasets.

To the best of our knowledge, FedBench is the only benchmark that
encompasses real-world datasets, commonly used federated SPARQL
queries and a distributed data environment. It comprises a total of 14

queries for SPARQL endpoint federation and 11 queries for Linked
Data federation approaches. In addition, this benchmark includes a
dataset and queries from SP2Bench. FedBench is commonly used in
the evaluation of SPARQL query federation systems [94; 27; 61; 87; 77].
However, the real queries (excluding synthetic SP2Bench benchmark
queries) are low in complexity. The 11 Linked Data federation queries
do not make use of any of the SPARQL clauses given in Table 36, the
number of triple patterns included in the query ranges from 2 to 5,
and the query result set sizes only ranges from 1 to 1216 (6/11 queries
having result set size less than 51). As mentioned before, we are only
interested in SPARQL endpoint federation queries. Therefore, the 14

SPARQL endpoint federation queries are further discussed in rest of
the chapter.

Table 36 and Figure 63 show that the FedBench SPARQL endpoint
federation queries are also low in complexity and do not sufficiently
complement (in terms of standard deviations for various query fea-
tures discussed in previous section) each other’s. Consequently, they
may favour (in fact our evaluation given in Section 9.4.2.4 shows
that indeed this is the case) a particular type of federation system.
The number of Triple Patterns (#TP, ref. Figure 63a) included in the
query ranges from 2 to 7. Consequently, the standard deviations of
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Figure 63: Comparison of query characteristics of FedBench and Sliced-
Bench. #TP = Number of triple patterns, #JV = Number of join
vertices, MJVD = Mean join vertices degree, #SS = Number of
sources span, #R = Number of results, MTPS = Mean Triple Pat-
tern Selectivity, F.S.D. = FedBench Standard Deviation, B.S.D.
= LargeRDFBench Standard Deviation. X-axis shows the query
name.
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the number of Join Vertices (#JV, ref. Figure 63b), the Mean Join Ver-
tices Degrees (#MJVD, ref. Figure 63c), and the number of Sources the
query Span (#SS, ref. Figure 63d) are on the lower side. In particular,
there are: 6/14 queries with #JV exactly equal to 3, 8/14 queries with
#MJVD exactly equal to 2, and 5/14 queries with #SS exactly equal
to 2. The query result set sizes (#R, ref. Figure 63e) are small (maxi-
mum 9054, 6/14 queries lead to a result set whose magnitude is less
than 4). The query triple patterns are not highly selective in general
(ref. Figure 63f). The important SPARQL clauses such DISTINCT, ORDER
BY and REGEX are not used (ref. Table 36). Moreover, the SPARQL
OPTIONAL and FILTER clauses are only used in a single query (i.e., LS7

of FedBench). Most importantly, the average query execution is small
(about 2 seconds on average ref. Section 9.4.2.4). Finally, FedBench
rely only on the number of endpoints requests and the query execu-
tion time as performance criteria. These limitations make it difficult
to extrapolate how SPARQL query federation engines will perform
when faced with the growing amount of data available on the Data
Web based on FedBench results. Furthermore, a more fine-grained
evaluation of the federation engines, to detect the components that
need to be improved is not possible [62].

To address these limitations, we propose LargeRDFBench, a billion-
triple benchmark which encompasses a total of 13 real, interconnected
datasets of varying structuredness (ref. Figure 64) and real queries of
varying complexities. (see Table 36 and Figure 63). Our benchmark
includes all of the 14 SPARQL endpoint federation queries (which
we named simple queries) from FedBench, as they are useful but not
sufficient all alone. In addition, we provide 10 complex and 8 large
data queries, which lead to larger result sets (see Figure 63e) and
intermediary results (see triple pattern selectivities, Figure 63f) . Be-
side the central performance criterion, i.e., the query execution time,
our benchmark includes result set completeness and correctness, ef-
fective source selection in terms of the total number of data sources
selected, the total number of SPARQL ASK requests used and the
corresponding source selection time. Our evaluation results (section
9.4.2) suggest that the performance of current SPARQL query fed-
eration systems on simple queries (i.e., FedBench queries) does not
reflect the systems’ performance on more complex queries. In addi-
tion, none of the state-of-the-art SPARQL query federation is able to
fully answer the real use-case large data queries.

9.3 benchmark description

The idea behind this work was to design a benchmark based on real
data and real queries that implements all of the key benchmark com-
ponents features discussed in Section 9.1. The data was chosen to
reflect the topology of the current Web of Data, with some of the
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Figure 64: Structuredness. (FedBench Standard Deviation = ±0.26, Larg-
eRDFBench Standard Deviation = ±0.28)

datasets being highly connected with other datasets while others are
isolated (ref. Figure 65). Furthermore, some of the datasets are highly
structured while others are low structured (ref. Figure 64). The queries
were chosen to reflect a wide range of complexities w.r.t. the number
of triple patterns they contain, the use of different SPARQL clauses,
the triple patterns’ selectivity, the number of join vertices, the mean
join vertices degrees, the number of sources span, and the result set
sizes they lead to (see Table 36 and Figure 63). The resulting bench-
mark, dubbed LargeRDFBench, consists consequently of three main
components: (1) real-world datasets collected from different domains,
(2) real queries mostly collected from domain experts and represent-
ing real use cases, and (3) a comprehensive set of fine-grained evalu-
ation measures. In the following section, we present each of the three
main components in detail.

9.3.1 Benchmark Datasets

Our benchmark consists of a total of 13 real-world datasets2 of which
12 are interlinked. The datasets were collected from different domains
as shown in Figure 65. We began by selecting all nine real-world
datasets from Fedbench [91]. We added three sub-datasets from three
different Linked TCGA live SPARQL endpoints [90] (i.e. Linked TCGA-
A, Linked TCGA-M, and Linked TCGA-E) along with Affymetrix. We
chose Linked TCGA because it is one of the first datasets that abides
by many of the Vs of Big Data (Volume, Velocity, Value, ...) [89]. More-
over, Linked TCGA has a large number of links to Affymetrix, which
we thus added to the list of our datasets. The addition of these four
datasets enabled us to include real federated queries with large result
set sizes (minimum 80459, see Figure 63e and benchmark homepage)
into the benchmark. Figure 65 shows the topology of all 13 datasets in

2 Live SPARQL endpoints, datadumps URL’s are given at project homepage: See foot-
note 1
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Figure 65: LargeRDFBench datasets connectivity diagram.

Table 38: LargeRDFBench datasets statistics. Structuredness is calculated ac-
cording to [25] and is averaged in the last row.

Dataset #Triples #Subjects #Predicates #Objects #Classes #Links Structuredness

Linked TCGA-M 415,030,327 83,006,609 6 166,106,744 1 - 1

Linked TCGA-E 344,576,146 57,429,904 7 84,403,422 1 - 1

Linked TCGA-A 35,329,868 5,782,962 383 8,329,393 23 251.3k 0.998

ChEBI 4,772,706 50,477 28 772,138 1 - 0.340

DBpedia-Subset 42,849,609 9,495,865 1,063 13,620,028 248 65.8k 0.196

DrugBank 517,023 19,693 119 276,142 8 9.5k 0.726

Geo Names 107,950,085 7,479,714 26 35,799,392 1 118k 0.518

Jamendo 1,049,647 335,925 26 440,686 11 1.7k 0.961

KEGG 1,090,830 34,260 21 939,258 4 30k 0.919

LinkedMDB 6,147,996 694,400 222 2,052,959 53 63.1k 0.729

New York Times 335,198 21,666 36 191,538 2 31.7k 0.731

Semantic Web Dog Food 103,595 11,974 118 37,547 103 1.6k 0.426

Affymetrix 44,207,146 1,421,763 105 13,240,270 3 246.3k 0.506

Total/Average 1,003,960,176 165,785,212 2,160 326,209,517 459 818.7k 0.696

LargeRDFBench while some other basic statistics like the total num-
ber of triples, the number of resources, predicates and objects, as well
as the number of classes and the number of links can be found on
project homepage. It is important to note that ChEBI has no link with
any other benchmark dataset. However, its predicate "title" and Drug-
Bank’s predicate "genericName" display the same literal values. Sim-
ilarly, the Linked TCGA-A predicate "drug_name" and DrugBank’s
"genericName" display the same values. Thus, they can be used in
federated SPARQL queries. Furthermore, each Linked TCGA patient
(uniquely identified by bcr_patient_barcode) expression data is dis-
tributed across the three large data datasets, i.e., Linked TCGA-A,
Linked TCGA-E, and Linked TCGA-M (further explained in 9.3.1.3
subsection Large Data). Further datasets statistics can be found in
Table 38.
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The datasets in LargeRDFBench belong to three categories: Cross-
domain, Life Sciences domain and large data.

9.3.1.1 Cross-domain Datasets

This category comprises datasets which pertain to several domains
including news, movies, music, semantic web conferences and geog-
raphy. These datasets include a 1) subset from DBpedia comprising
infoboxes and the instance types, 2) the music knowledge base called
Jamendo, 3) LinkedMDB , a knowledge base containing movie and
actor information, 4) GeoNames , which contains geographical data
about persons, locations, as well as organisations, 5) Semantic Web
Dog Food which describes Semantic Web conferences and publica-
tions, and 6) a knowledge base containing news from the New York
Times . Figure 65 shows the links between these data sources.

9.3.1.2 Life Sciences Domain

Life Sciences domain data sources include 1) Drugbank, a knowledge
base containing information pertaining to drugs, their composition
and their interactions with other drugs, 2) the Kyoto Encyclopedia
of Genes and Genomes (KEGG) which contains further information
about chemical compounds and reactions with a focus on informa-
tion relevant for geneticists, 3) the Chemical Entities of Biological In-
terest (ChEBI) knowledge base which describes the life sciences do-
main from a chemical point of view and 4) the Affymetrix dataset
that contains the probesets used in the Affymetrix microarrays.

9.3.1.3 Large Data: Linked TCGA

Linked TCGA is the RDF version of Cancer Genome Atlas3 (TCGA)
presented in [90]. This knowledge base contains cancer patient data
generated by the TCGA pilot project, started in 2005 by the National
Cancer Institute (NCI) and the National Human Genome Research
Institute (NHGRI). Currently, Linked TCGA comprises a total of 20.4
billion triples4 from 9000 cancer patients and 27 different tumour
types. For each cancer patient, Linked TCGA contains expression re-
sults for the DNA methylation, Expression Exon, Expression Gene,
miRNA, Copy Number Variance, Expression Protein, SNP, and the
corresponding clinical data.

We selected the data of 306 patients distributed evenly across 3

different cancer types, i.e. Cervical (CESC), Lung squamous carci-
noma (LUSC) and Cutaneous melanoma (SKCM). The selection of the
patients was carried out by consulting domain experts. This data is
hosted in three TCGA SPARQL endpoints with all DNA methylation

3 http://cancergenome.nih.gov/

4 http://tcga.deri.ie/
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Table 39: LargeRDFBench query characteristics. (#TP = total number of
triple patterns in a query, Query structure = Star, Path, Hybrid,
#Src = number of sources span, #Res. = total number of results).

LargeRDFBench Queries

Qry #TP Struct. #Src #Res. Qry #TP Struct. #Src #Res.

Simple Queries C3 8 H 3 9

S1 3 S 2 90 C4 12 S 8 50

S2 3 S 2 1 C5 8 H 8 500

S3 5 H 5 2 C6 9 H 2 148

S4 5 P 5 1 C7 9 H 2 112

S5 4 P 5 2 C8 11 H 3 3067

S6 4 P 4 11 C9 9 H 3 100

S7 4 P 5 1 C10 10 H 3 102

S8 2 - 2 1159 Large Data Queries

S9 3 P 4 333 L1 6 P 3 227192

S10 5 H 2 9054 L2 6 H 3 152899

S11 7 H 2 3 L3 7 H 3 257158

S12 6 H 3 393 L4 8 H 4 397204

S13 5 H 3 28 L5 11 H 4 190575

S14 5 H 3 1620 L6 10 H 4 282154

Complex Queries L7 5 H 4 80459

C1 8 H 5 1000 L8 8 H 3 306705

C2 8 H 5 4

data in the first endpoint, all Expression Exon data in the second end-
point, and the remaining data in the third endpoint. Similarly, we cre-
ated three different datasets namely Linked TCGA-M, Linked TCGA-
E, and Linked TCGA-A containing methylation, exon, and all remain-
ing data, respectively. Further statistics about these three datasets can
be found at the project homepage.

9.3.2 Benchmark Queries

LargeRDFBench comprises a total of 32 queries for SPARQL endpoint
federation approaches. These queries are divided into three different
types: the 14 simple queries (namely S1-S14) are from FedBench). The
10 complex queries C1-C10 and the 8 large data dubbed C1-C8 were
created by the authors with the help of domain experts. Table 39,
Table 36 and Figure 63 shows key features of these queries. Further
query statistics can be found on project home page.
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1 SELECT ? party ? page WHERE {
2 dbpedia : Barack_Obama dbpedia : party ? party .
3 ?x nyt : topicPage ? page .
4 ?x owl : sameAs dbpedia : Barack_Obama . }

Listing 19: Return Barack Obama’s party membership and news pages.
Prefixes are ignored for simplicity

SELECT DISTINCT ?drug ? drugDesc ? molecularWeightAverage
?compound ? R e a c t i o n T i t l e ? ChemicalEquation WHERE {

?drug drugbank : d e s c r i p t i o n ? drugDesc .
?drug drugbank : drugType drugtype : smallMolecule .
?drug drugbank : keggCompoundId ?compound .
?enzyme kegg : xSubs t ra te ?compound .
? Chemicalreact ion kegg : xEnzyme ?enzyme .
? Chemicalreact ion kegg : equation ? ChemicalEquation .
? Chemicalreact ion purl : t i t l e ? R e a c t i o n T i t l e
OPTIONAL {

?drug drugbank : molecularWeightAverage ?
molecularWeightAverage

FILTER ( ? molecularWeightAverage > 114 ) } }
Limit 1000

Listing 20: Find the equations of chemical reactions and reaction title related
to drugs with drug description and drug type ’smallMolecule’.
Prefixes are ignored for simplicity

9.3.2.1 Simple Queries

In comparison to the other queries in the benchmark, the queries in
this category comprise the smallest number of triple patterns, which
ranges from 2 to 7. These queries require retrieving data from 2 to 5

data sources (ref. Figure 63d). Moreover, they only use a subset of the
SPARQL clauses as shown in Table 36(see FedBench row as all of the
simple queries are from FedBench). Amongst others, they do not use
LIMIT, REGEX, DISTINCT and ORDER BY clauses. Finally, we will see in
the evaluation section that the query execution time for such queries
are small (around 2 seconds for FedX).

An example of such query is shown in Listing 19. It is important to
mention that we removed the FILTER (?mass > ’5’) from the Fed-
Bench life sciences query LS7 (S14 in LargeRDFBench) because the
KEGG drug mass is a string. Thus, using this operator on KEGG
would lead to semantics different from that intended in the origi-
nal query. Consequently, the result set size changes from 114 to 1620

rows.

9.3.2.2 Complex Queries

The complex queries were defined to address the restrictions of sim-
ple queries with respect to the number of triple patterns they use,
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1 SELECT ?methylationCNTNAP2 WHERE {
2 ? s a f f y m e t r i x : x−symbol bio2rdfSymbol :CNTNAP2 .
3 ? s a f f y m e t r i x : x−geneid ? geneId .
4 ? geneId rdf : type tcga : expression_gene_lookup .
5 ? geneId tcga : chromosome ?lookupChromosome .
6 ? geneId tcga : s t a r t ? s t a r t .
7 ? geneId tcga : stop ? stop .
8 ? u r i tcga : bcr_pat ient_barcode ? p a t i e n t .
9 ? p a t i e n t tcga : r e s u l t ? recordNo .

10 ? recordNo tcga : chromosome ?chromosome .
11 ? recordNo tcga : p o s i t i o n ? p o s i t i o n .
12 ? recordNo tcga : beta_value ?methylationCNTNAP2 .
13 FILTER ( ? p o s i t i o n >= ? s t a r t && ? p o s i t i o n <= ? stop &&

s t r ( ? chromosome ) = s t r ( ? lookupChromosome ) ) }

Listing 21: Get the methylation values for CNTNAP2 gene of all the cancer
patients. Prefixes are ignored for simplicity

the SPARQL clauses, and the small query execution times. Conse-
quently, queries in this category rely on at least 8 triple patterns. In
addition, they were designed to use more SPARQL clauses, especially,
DISTINCT, LIMIT, FILTER and ORDER BY. Later, we will see in the eval-
uation that the query execution time for complex queries reaches up
to more than 10 minutes. An example of such query is shown in List-
ing 20.

9.3.2.3 Large Data Queries

The large data queries were designed to test the federation engines for
real large data use cases, particularly in life sciences domain. These
queries span over large data sets (such as Linked TCGA-E, Linked
TCGA-M) and involve processing large intermediate result sets (usu-
ally in hundreds of thousands, see mean triple pattern selectivities in
Figure 63f) or lead to large result sets (minimum 80459, see Figure
63e). In order to collect real queries with these characteristics, we con-
tacted different domain experts and obtained a total of 8 large data
queries to be included in our benchmark. An example of such query
is given in Listing 21.

9.3.3 Performance Metrics

As discussed in Section 9.1, previous works [62; 87] suggest that the
following five metrics are important to evaluate the performance of
federation engines: (1) the total number of triple pattern-wise (TPW)
source selected during the source selection, (2) the total number of
SPARQL ASK requests submitted to perform (1), (3) the completeness
(recall) and correctness (precision) of the query result set retrieved, (4)
the average source selection time and (5) the average query execution
time. The source index/data summaries generation time and index
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compression ratio (i.e., index to dataset ratio) are also of central im-
portance when evaluating endpoints. However, they are not applica-
ble to index-free approaches such as FedX [94]. Previous works [87]
show that an overestimation of triple pattern-wise sources selected
can greatly increase the overall query execution time. This is because
extra network traffic is generated and unnecessary intermediate re-
sults are retrieved, which are excluded after performing all the joins
between query triple patterns. The time consumed by the SPARQL
ASK queries during the source selection is directly added into the
source selection time which in turns added into the overall query
execution time.

9.4 evaluation

In this section, we evaluate state-of-the-art SPARQL query federation
systems by using both SPARQL 1.0 and SPARQL 1.1 versions of Larg-
eRDFBench queries. We first describe our experimental setup in de-
tail. Then, we present our evaluation results. All data used in this
evaluation can be found on the benchmark homepage.

9.4.1 Experimental Setup

Each of the 13 Virtuoso SPARQL endpoint used in our experiments
was installed on a separate machine. The specification of each of the
machines is given on the project home page. To avoid server bottle-
necks, we started the two largest endpoints (i.e., Linked TCGA-E and
Linked TCGA-M) in machines with high processing capabilities. All
experiments (i.e., the federation engines themselves) were ran on a
separate Linux machine with a 2.70GHz i7 processor, 8 GB RAM and
500 GB hard disk. We used the default Java Virtual Machine (JVM)
initial memory allocation pool (Xms) size of 40MB and the maximum
memory allocation pool (Xmx) size of 512MB. The experiments were
carried out in a local network, so the network costs were negligible.
Each query was executed 10 times and results were averaged. The
query timeout was set to 20 min (1.2× 106 ms) both for simple and
complex queries and 1 hour (3.6× 106 ms) for large data queries.

We compared five SPARQL endpoint federation engines5 – FedX
[94], SPLENDID [27], ANAPSID [27], FedX+HiBISCuS [87], SPLEN-
DID+HiBISCuS [87] – on all of the 32 benchmark queries. Note that
HiBISCuS [87] is only a source selection approach and FedX+HiBISCuS
and SPLENDID+HiBISCuS are the HiBISCuS extensions of the FedX
and SPLENDID query federation engines, respectively. To the best
of our knowledge, the five systems we chose are the most state-of-
the-art SPARQL endpoint federation engines [87]. Of all the systems,

5 Versions available as of October 2014
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Table 40: Comparison of index construction time, compression ratio, and
support for index update. (NA = Not Applicable).

FedX SPLENDID ANAPSID HiBISCuS

Index Gen. Time(min) NA 190 6 92

Compression Ratio(%) NA 99.998 99.999 99.998

Index update? NA 7 7 3

only ANAPSID and HiBISCuS perform join-aware Triple Pattern-Wise
Source Selection (TPWSS).

9.4.2 SPARQL 1.0 Experimental Results

9.4.2.1 Index Construction Time and Compression Ratio

Table 40 shows a comparison of the index/data summaries construc-
tion time and the compression ratio6 of the selected approaches. A
high compression ratio is essential for fast index lookups during
source selection and query planning. FedX does not rely on an in-
dex and makes use of a combination of SPARQL ASK queries and
caching to perform the whole of the source selection steps it requires
to answer a query. Therefore, these two metrics are not applicable
for FedX. As pointed out in [87], ANAPSID only stores the set of
distinct predicates corresponding to each data source. Therefore, its
index generation time and compression ratio are better than that of
HiBISCuS and SPLENDID on our benchmark.

9.4.2.2 Efficiency of Source Selection

We define efficient source selection in terms of: (1) the total number
of triple pattern-wise sources selected (#TP), (2) the total number of
SPARQL ASK requests (#AR) used to obtain (1), and (3) the source
selection time (SST). Table 41 shows the results of these three metrics
for the selected approaches.

Overall, ANAPSID is the most efficient approach in terms of total
TPW sources selected, HiBISCuS is the most efficient in terms of to-
tal number of SPARQL ASK requests used, and FedX (100% cached)
is the fastest in terms of source selection time (see Table 41). Still,
FedX (100% cached) clearly overestimates the set of capable sources
(474 in FedX vs. 229 optimal). FedX (100% cached) is clearly outper-
formed by ANAPSID (255 sources selected in total) and HiBISCuS
(302 sources selected in total). FedX (100% cached)’s poorer perfor-
mance is due to FedX only performing TPWSS while both HiBISCuS
and ANAPSID perform join-aware TPWSS. As mentioned before, such
overestimation of sources can be very costly because of the extra net-
work traffic and irrelevant intermediate results retrieval. The effect

6 Compression ratio = 100*(1 - index size/total data dump size)
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Table 41: Comparison of the source selection in terms of total triple pattern-
wise sources selected #TP, total number of SPARQL ASK requests
#AR, and source selection time SST in msec. SST* represents the
source selection time for FedX (100% cached i.e. #A =0 for all
queries). (T/A = Total/Avg., where Total is for #TP, #AR, and Avg.
is SST, SST*)

FedX SPLENDID ANAPSID HiBISCuS Optimal

Query #TP #AR SST SST* #TP #AR SST #TP #AR STT #TP #AR SST #TP

S1 15 39 238 5 15 34 622 3 23 227 4 26 322 3

S2 3 39 229 6 3 9 380 3 1 46 3 13 201 3

S3 12 65 275 5 12 2 358 5 2 70 5 0 52 5

S4 19 65 270 7 19 2 340 5 3 74 5 0 130 5

S5 11 52 268 8 11 1 330 4 1 65 4 0 90 4

S6 9 52 245 5 9 2 303 9 10 197 8 0 96 8

S7 13 52 248 6 13 2 354 6 5 273 6 0 149 6

S8 1 26 223 5 1 0 189 1 0 51 1 0 9 1

S9 15 39 240 6 15 34 592 15 23 356 9 26 449 3

S10 12 65 296 5 12 1 334 5 16 262 5 0 250 5

S11 7 91 300 7 7 2 299 7 0 333 7 0 12 7

S12 10 78 260 5 10 1 355 7 4 105 8 0 115 6

S13 9 65 262 3 9 2 262 5 24 180 7 0 132 5

S14 6 65 268 5 6 1 252 5 2 81 6 0 94 7

T/A 142 793 258 5 142 93 355 80 114 165 78 65 150 67

C1 11 104 308 7 11 1 291 8 1 72 9 0 120 8

C2 11 104 307 6 11 1 347 8 2 180 9 0 23 8

C3 21 104 318 5 21 3 350 10 33 549 11 0 230 10

C4 28 156 360 7 28 0 230 28 32 451 18 0 45 18

C5 33 104 315 6 33 0 199 8 3 156 10 0 56 8

C6 24 117 430 5 24 0 245 9 3 90 9 0 450 9

C7 17 117 436 7 17 2 422 9 5 380 9 0 168 9

C8 25 143 402 4 25 2 300 11 2 308 11 0 200 11

C9 16 117 400 6 16 2 480 9 16 185 9 0 180 9

C10 13 130 350 8 13 0 240 11 6 160 11 0 150 11

T/A 199 1196 363 6 199 11 310 111 103 253 106 0 162 101

L1 14 78 282 5 14 12 720 6 10 260 14 0 124 6

L2 10 78 279 7 10 1 230 6 5 142 10 0 94 6

L3 10 91 314 9 10 2 314 7 5 146 11 0 99 7

L4 18 104 321 7 18 0 198 8 8 338 16 0 80 8

L5 21 143 400 5 21 2 277 12 31 10255 20 0 130 11

L6 20 130 419 4 20 2 298 10 52 13173 18 0 160 10

L7 20 65 320 6 20 13 240 6 7 1822 9 0 270 5

L8 20 104 366 7 20 12 700 9 17 404 20 0 170 8

T/A 133 793 337 6 133 44 372 64 135 3317 118 0 140 61

Net T/A 474 2782 311 6 474 148 345 255 352 980 302 65 151 229
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Table 42: Result set completeness and correctness: Systems with incomplete
precision and recall. The values inside brackets show the Larg-
eRDFBench query version, i.e., SPARQL 1.0 and SPARQL 1.1. For
queries L2, L3, and L5 FedX and its HiBiSCUS extension produced
zero results, thus both precision, recall is zero and F1 is undefined
for these queries. (NA = SPARQL 1.1 not applicable, TO = Time
out)

System C7 (v1.0, v1.1) L1 (v1.0, v1.1) S14 (v1.1) C6 (v1.1)

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

FedX 0.25 0.19 0.22 TO TO TO 1 0.65 0.78 1 0.97 0.98

FedX+HiBISCuS 0.25 0.19 0.22 TO TO TO NA NA NA NA NA NA

ANAPSID 1 1 1 1 0.14 0.25 1 1 1 1 1 1

of such overestimation is consequently even more critical while deal-
ing with large data queries. HiBISCuS is better than ANAPSID in
terms of total TPW source selected both for simple (78 for HiBISCuS
and 80 for ANAPSID) and complex (106 for HiBISCuS and 111 for
ANAPSID) queries. For large data queries (118 for HiBISCuS and
64 for ANAPSID), HiBISCuS is not able to skip many sources. This
is because of the approach being based on making use of different
URI authorities to perform source pruning [87]. However, most of the
large data queries come from Linked TCGA with single URI authority
(i.e., tcga.deri.ie). Hence, HiBISCuS tends to overestimate the num-
ber of sources in this case. On the other hand, ANAPSID makes use
of SPARQL ASK requests combined with SSGM (Star Shaped Group
Multiple Endpoints) [61] to skip a large number of sources. However,
SPARQL ASK queries are expensive compare to local index lookups,
as performed in HiBISCuS.

9.4.2.3 Completeness and Correctness of Result Sets

Two systems can only be compared to each other if they provide the
same results for a given query execution. Table 42 shows the fed-
eration engines and the corresponding LargeRDFBench queries for
which complete and correct results were not retrieved by at least one
of the system. All those queries for which every system either timed
out or resulted in runtime errors are not included, since results com-
pleteness and correctness cannot be determined in such cases. Here,
SPLENDID and its HiBISCuS extension are the only systems that pro-
vide complete and correct results provided that the query is fully ex-
ecuted within the time out limit. The incomplete results generated by
some of the systems can be due to a number of reasons, e.g., their
join implementation, the type of network [62], the use of an outdated
index or cache or even endpoints restrictions on the maximum result
set sizes. However, in our evaluation we always used an up-to-date
index and cache, there was no restriction on SPARQL endpoints max-
imum result set sizes, and a dedicated local network. Thus, the sole
reason (to the best of our knowledge) for the systems at hand not
providing complete/correct result is the type of the join used and
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Figure 66: Query execution time for simple category queries.
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Figure 67: Query execution time for complex category queries.

its implementation. For query C7, FedX and its HiBISCuS extension
were able to retrieve 85 records instead of the actual result set size,
i.e., 112. For query L1, ANAPSID retrieved 35810 results while the ac-
tual result set size for this query is 227192. For the same query, both
SPLENDID and FedX along with their extensions were only able to
produce less than 30K results within timeout limit of one hour. For
the SPARQL 1.1 versions of S14, FedX retrieved 1054 of the expected
1620 results while for C6 145 of the 148 results were retrieved.

9.4.2.4 Query Execution Time

The query execution time has often been used as key metric to com-
pare federation engines. Figure 66, Figure 67, and Table 43 show the
query execution time of the selected approaches for simple, complex,
and large data queries, respectively. Note that we considered each
time-out to be equal to a runtime of 20min while computing the av-
erage runtimes presented in Figure 66 and Figure 67. The query ex-
ecution time was calculated once all the results were retrieved from
the result set iterator. Overall, our results are rather surprising as no
system is best over all query types.

• Simple queries: FedX+HiBISCuS and FedX clearly outperform
the remaining systems (see Figure 66). In particular, FedX and
its extension were better than SPLENDID+HiBISCuS in 12/14
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Figure 68: Query execution time for the SPARQL 1.1 version of the simple
queries of LargeRDFBench.

queries. On the other hand, SPLENDID+HiBISCuS was better
than ANAPSID in 8/14 queries, which in turn was better than
SPLENDID in 10/14 queries.

• Complex queries: SPLENDID+HiBISCuS performed better than
SPLENDID and was followed by ANAPSID, FedX+HiBISCuS
and FedX. ANAPSID is better than SPLENDID+HiBISCuS in
4/7 comparable (those for which complete and correct results
are retrieved by both systems) queries, SPLENDID+HiBISCuS
is better than FedX and FedX+HiBISCuS in 5/7 comparable
queries, which in turn better than SPLENDID in 5/7 compa-
rable queries.

• Large Data queries: The most important result for large data queries
is that no system can be regarded as superior because all sys-
tems are only able to produce complete results for a single
query (i.e., L7). This shows the current implementation of query
planning strategies (i.e., bushy trees in ANAPSID, left-deep trees
in FedX, and dynamic programming [97] in SPLENDID) and
join techniques (i.e., adaptive group and dependent join in ANAP-
SID, bind and nested loop in FedX, and bind, hash in SPLEN-
DID) in the selected systems are not mature enough to deal
with large data. For the only one comparable large data query,
ANAPSID perform better than other systems. All of the errors
thrown by the systems are available at benchmark homepage.

In a nutshell, our results clearly suggests that benchmarks with
only simple queries with small number of result sets are not sufficient
to make a fair judgment of the performance of the SPARQL query
federation engines. The performance of these systems are greatly af-
fected once the queries goes from small to complex and large data.
Furthermore, the current state-of-the-art SPARQL query federation
systems are not yet ready to deal with large data queries pertaining
to real large data use cases.
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Table 43: Runtimes on large data queries. F(c) = FedX (cold), F(w) =
FedX(100% cached), S = SPLENDID, A = ANAPSID, F+H =
FedX+HiBISCuS, S+H = SPLENDID+HiBISCuS. ( TO = Time out
after 1 hour, ZR = zero results, IR = incomplete results, RE = run-
time error). Times are in seconds.

Query F(c) F(w) S A F+H S+H

L1 TO TO TO IR TO TO

L2 ZR ZR TO TO ZR TO

L3 ZR ZR TO ZR ZR TO

L4 TO TO TO TO TO TO

L5 ZR ZR TO RE ZR TO

L6 TO TO TO TO TO TO

L7 122 122 114 105 119 114

L8 TO TO TO TO TO TO
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Figure 69: Query execution time for the SPARQL 1.1 version of the complex
queries of LargeRDFBench.
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9.4.3 SPARQL 1.1 Experimental Results

As per current implementations (October 2014), only ANAPSID and
FedX support SPARQL 1.1 queries. Thus, they are the only frame-
works we compared on the simple and complex SPARQL1.1 queries.
For large data queries, the results remained the comparable to those
presented before. Note that our SPARQL 1.1 version of the queries
make use of the SPARQL SERVICE clause, which means the TPWSS
is already performed. Furthermore, it is optimally chosen by manu-
ally looking at the intermediate results from all the data sources for
a given query. Thus, the results presented in Figure 66 show the pure
query execution performance without TPWSS.

For simple queries ANAPSID is better than FedX in 8/14 queries
in contrast to the results on SPARQL1.0 queries. A deeper look into
the results shows the reason for ANAPSID’s poor performance on
SPARQL 1.0 simple queries is due to the time consumed by the source
selection. On average, FedX (100% cached) spent only 6ms for the
source selection. On the other hand, ANAPSID spent 165ms on aver-
age. For 4/14 queries, ANAPSID’s source selection time was greater
than the rest of the query execution time (excluding source selection).
This shows that efficient TPWSS and the corresponding source se-
lection time is of significant importance while dealing with simple
queries. In the simple query category, FedX overestimates more than
half (142 FedX vs. 67 optimal ref. Table 41) of the sources on aver-
age. Thus, by using a perfect TPWSS (i.e., in SPARQL 1.1 version),
FedX’s performance is improved by 54%. This further shows that the
total triple pattern-wise sources selected is one of key performance metric
missing in the state-of-the-art SPARQL query federation benchmarks.
Even though ANAPSID does not overestimate the relevant sources
to a large extent (80 ANAPSID vs. 67 optimal), yet its performance
is improved by 94% on SPARQL 1.1 versions of the simple queries.
The reason is the poor query decomposition plan7 generated for the
SPARQL 1.0 version of queries S6 (308514 ms vs. 1620 ms) and S7

(298954 ms vs. 2157 ms).
For complex queries the ranking is reversed and FedX is better than

ANAPSID in 6/8 comparable queries. This result is as expected be-
cause FedX overestimated more sources than ANAPSID (199 FedX vs.
111 ANAPSID ref. Table 41). Thus, an optimal TPWSS (as in SPARQL
1.1 version of LargeRDFBench) provides more benefits to FedX. Due
to the optimal source selection, FedX’s performance is improved by
28.5% and ANAPSID’s performance is only improved by 0.8%.

In general, the results above clearly suggests that FedX’s perfor-
mance can be improved significantly by using smart source selec-
tion such as join-aware triple pattern-wise source selections as imple-
mented by HiBISCuS and ANAPSID. Furthermore, the metrics total

7 Decomposed plans given at: http://goo.gl/AUa0uS
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triple pattern-wise sources selected and the corresponding source selec-
tion time, which were previously ignored, have a significant impact
on overall query performance and allow providing tool developers
with more fine-grained insights pertaining to their frameworks.
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10
F E A S I B L E : A F E AT U R E D - B A S E D S PA R Q L
B E N C H M A R K S G E N E R AT I O N F R A M E W O R K

This chapter is based on [78] and introduces FEASIBLE, a feature-
based SPARQL benchmark generation framework. Triple stores are
the data backbone of many Linked Data applications [63]. The perfor-
mance of triple stores is hence of central importance for Linked-Data-
based software ranging from real-time applications [48; 80] to on-the-
fly data integration frameworks [1; 77; 94]. Several benchmarks (e.g.,
[3; 17; 32; 63; 91; 93]) for assessing the performance of the triple stores
have been proposed. However, many of them (e.g., [3; 17; 32; 93])
either rely on synthetic data or synthetic queries. The main advan-
tage of synthetic benchmarks is that they commonly rely on data
generators that can produce benchmarks of different data sizes and
thus allow to test the scalability of triple stores. On the other hand,
they often fail to reflect reality. In particular, previous works [25]
point out that artificial benchmarks are typically highly structured
while real Linked Data sources are most commonly weakly struc-
ture. Moreover, synthetic queries most commonly fail to reflect the
characteristics of the real queries sent to applications [8; 68]. Thus,
synthetic benchmark results are rarely sufficient to detect the most
suitable triple store for a particular real application. The DBpedia
SPARQL Benchmark (DBPSB) [63] addresses a portion of these draw-
backs partly by evaluating the performance of triple stores based on
real DBpedia query logs. The main drawback of this benchmark is
still that it does not consider important data-driven and structural
query features (e.g., number of join vertices, triple patterns selec-
tivities or query execution times etc.) which greatly affect the per-
formance of triple stores [3; 30] during the query selection process.
Furthermore, it only considers SELECT queries. The other three ba-
sic SPARQL query forms, i.e., ASK, CONSTRUCT, and DESCRIBE are not
included.

In this chapter we present FEASIBLE, a benchmark generation frame-
work able to generate benchmarks from a set of queries (in particular
from query logs). Our approach aims to generate customized bench-
marks for given use cases or needs of an application. To this end,
FEASIBLE assumes that it is given a set of queries well as the number
of queries (e.g., 25) to be included into the benchmark as input. Then,
our approach computes a sample of the selected subset that reflects
the distribution of the queries in the input set of queries. The result-
ing queries can then be fed to a benchmark execution framework to
benchmark triple stores. The contributions of this work are as follows:

175
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1. We present the first structure and data-driven feature-based
benchmark generation approach from real queries. By compar-
ing FEASIBLE with DBPSB, we show that considering data-
driven and structural query features leads to benchmarks of
better approximation of the input set of queries.

2. We present a novel sampling approach for queries based based
on exemplars [66] and medoids.

3. Beside SPARQL SELECT, we conduct the first evaluation of 4

triple stores w.r.t. to their performance on ASK, DESCRIBE and
CONSTRUCT queries separately.

4. We show that the performance of triple stores varies greatly
across the four basic forms of SPARQL query. Moreover, the fea-
tures used by FEASIBLE allow for a more fine-grained analysis
of the results of benchmarks.

The rest of this chapter is structured as follows: We begin by pro-
viding an overview of the key SPARQL query features that need to be
considered while designing SPARQL benchmarks. Then, we compare
existing benchmarks against these key query features systematically
(Section 10.2) and point out the weaknesses of current benchmarks
that are addressed by FEASIBLE. Our benchmark generation pro-
cess is presented in Section 10.3. A detailed comparison with DBPSB
and an evaluation of the state-of-the-art triple stores follows next.
The results are then discussed and we finally conclude. FEASIBLE
is open-source and available online at https://code.google.com/p/
feasible/. A demo can be found at http://titan.informatik.uni-leipzig.
de:8080/feasible/.

10.1 key sparql features

According to previous works [3; 30], a SPARQL query benchmark
should vary the queries it contains w.r.t. the following query charac-
teristics: number of triple patterns, number of join vertices, mean join
vertex degree, query result set sizes, mean triple pattern selectivities,
join vertex types (’star’, ’path’, ’hybrid’, ’sink’), and SPARQL clauses
used (e.g., LIMIT, OPTIONAL, ORDER BY, DISTINCT, UNION, FILTER, REGEX).
In addition, a SPARQL benchmark should contain (or provide op-
tions to select) all four SPARQL query forms (i.e., SELECT, DESCRIBE,
ASK, and CONSTRUCT). Furthermore, the benchmark should contain
queries of varying runtimes, ranging from small to reasonably large
query execution times. In the next section, we compare state-of-the-
art SPARQL benchmarks based on these query features.
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10.2 a comparison of existing triple stores benchmarks

and query logs

Different benchmarks have been proposed to compare triple stores for
their query execution capabilities and performance. Table 44 provides
a detailed summary of the characteristics of the most commonly used
benchmarks as well as of two real query logs. Note of the results of
this table is already presented in Chapter 3. We are reusing the text to
better motivate the need of comprehensive SPARQL benchmark for
triple stores evaluation.

LUBM was designed to test the triple stores and reasoners for their
reasoning capabilities. It is based on a customizable and deterministic
generator for synthetic data. The queries included in this benchmark
commonly lead to query results sizes ranges from 2 to 3200, query
triple patterns ranges from 1 to 6, and all the queries consist of a
single BGP. LUBM includes a fixed number of SELECT queries (i.e., 15)
where none of the clauses shown in Table 44 is used.

The Berlin SPARQL Benchmark (BSBM) [17] uses a total of 125 query
templates to generate any number of SPARQL queries for benchmark-
ing. Multiple use cases such as explore, update, and business intelli-
gence are included in this benchmark. Furthermore, it also includes
many of the important SPARQL clauses of Table 44. However, the
queries included in this benchmark are rather simple with an average
query runtime of 9.1 ms and largest query result set size equal to 31.

SP2Bench mirrors vital characteristics (such as power law distri-
butions or Gaussian curves) of the data in the DBLP bibliographic
database. The queries given in benchmark are mostly complex. For
example, the mean (across all queries) query result size is above one
million and the query runtimes are very large (see Table 44).

The Waterloo SPARQL Diversity Test Suite (WatDiv) [3] addresses the
limitations of previous benchmarks by providing a synthetic data and
query generator to generate large number of queries from a total of
125 queries templates. The queries cover both simple and complex
categories with varying number of features such as result set sizes,
total number of query triple patterns, join vertices and mean join
vertices degree. However, this benchmark is restricted to conjunc-
tive SELECT queries (single BGPs). This means that non-conjunctive
SPARQL queries (e.g., queries which make use of the UNION and
OPTIONAL features) are not considered. Furthermore, WatDiv does not
consider other important SPARQL clauses, e.g., FILTER and REGEX.
However, our analysis of the query logs of DBpedia3.5.1 and SWDF
given in table 44 shows that 20.1% resp. 7.97% of the DBpedia queries
make use of OPTIONAL resp. UNION clauses. Similarly, 29.5% resp. 29.3%
of the SWDF queries contain OPTIONAL resp. UNION clauses.

While the distribution of query features in the benchmarks pre-
sented so far is mostly static, the use of different SPARQL clauses
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Table 44: Comparison of SPARQL benchmarks and query logs (F-DBP =
FEASIBLE Benchmarks from DBpedia query log, DBP = DBpe-
dia query log, F-SWDF = FEASIBLE Benchmark from Semantic
Web Dog Food query log, SWDF = Semantic Web Dog Food query
log, TPs = Triple Patterns, JV = Join Vertices, MJVD = Mean Join
Vertices Degree,S.D. = Standard Deviation). Runtime(ms)

LUBM BSBM SP2Bench WatDiv DBPSB F-DBP DBP F-SWDF SWDF

#Queries 15 125 12 125 125 125 130466 125 64030

Fo
rm

s
(%

) SELECT 100 80 91.67 100 100 95.2 97.9 92.8 58.7

ASK 0 0 8.33 0 0 0 1.93 2.4 0.09

CONSTRUCT 0 4 0 0 0 4 0.09 3.2 0.04

DESCRIBE 0 16 0 0 0 0.8 0.02 1.6 41.1

C
la

us
es

(%
)

UNION 0 8 16.67 0 36 40.8 7.97 32.8 29.3

DISTINCT 0 24 41.6 0 100 52.8 4.1 50.4 34.18

ORDER BY 0 36 16.6 0 0 28.8 0.3 25.6 10.67

REGEX 0 0 0 0 4 14.4 0.2 16 0.03

LIMIT 0 36 8.33 0 0 38.4 0.4 45.6 1.79

OFFSET 0 4 8.33 0 0 18.4 0.0 20.8 0.14

OPTIONAL 0 52 25 0 32 30.4 20.1 32 29.5

FILTER 0 52 58.3 0 48 58.4 93.3 29.6 0.72

GROUP BY 0 0 0 0 0 0.8 7.6E-6 19.2 1.34

R
es

ul
ts

Min 3 0 1 0 197 1 1 1 1

Max 1.3E+4 31 4.3E+7 4.1E+9 4.6E+6 1.4E+6 1.4E+6 3.0E+5 3.0E+5

Mean 4.9E+3 8.3 4.5E+6 3.4E+7 3.2E+5 5.2E+4 404 9091 39.5

S.D. 1.1E+4 9.03 1.3E+7 3.7E+8 9.5E+5 1.9E+5 1.2E+4 4.7E+4 2208

B
G

Ps

Min 1 1 1 1 1 1 0 0 0

Max 1 5 3 1 9 14 14 14 14

Mean 1 2.8 1.5 1 2.69 3.17 1.67 2.68 2.28

S.D. 0 1.70 0.67 0 2.43 3.55 1.66 2.81 2.9

T
Ps

Min 1 1 1 1 1 1 0 0 0

Max 6 15 13 12 12 18 18 14 14

Mean 3 9.32 5.9 5.3 4.5 4.8 1.7 3.2 2.5

S.D. 1.81 5.17 3.82 2.60 2.79 4.39 1.68 2.76 3.21

JV

Min 0 0 0 0 0 0 0 0 0

Max 4 6 10 5 3 11 11 3 3

Mean 1.6 2.88 4.25 1.77 1.21 1.29 0.02 0.52 0.18

S.D. 1.40 1.80 3.79 0.99 1.12 2.39 0.23 0.65 0.45

M
JV

D

Min 0 0 0 0 0 0 0 0 0

Max 5 4.5 9 7 5 11 11 4 5

Mean 2.02 3.05 2.41 3.62 1.82 1.44 0.04 0.96 0.37

S.D. 1.29 1.63 2.26 1.40 1.43 2.13 0.33 1.09 0.87

M
T

PS

Min 3.2E-4 9.4E-8 6.5E-5 0 1.1E-5 2.8E-9 1.2E-5 1.0E-5 1.0E-5

Max 0.432 0.045 0.53 0.011 1 1 1 1 1

Mean 0.01 0.01 0.22 0.004 0.119 0.140 0.005 0.291 0.0238

S.D. 0.074 0.01 0.20 0.002 0.22 0.31 0.03 0.32 0.07

R
un

ti
m

e Min 2 5 7 3 11 2 1 4 3

Max 3200 99 7.1E+5 8.8E+8 5.4E+4 3.2E+4 5.6E+4 4.1E+4 4.1E+4

Mean 437 9.1 2.8E+5 4.4E+8 1.0E+4 2242 30.4 1308 16.1

S.D. 320 14.5 5.2E+5 2.7E+7 1.7E+4 6961 702.5 5335 249.6
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and triple pattern join types varies greatly from data set to data set,
thus making it very difficult for any synthetic query generator to re-
flect real queries. For example, the DBpedia and SWDF query log
differ significantly in their use of DESCRIBE (41.1% for SWDF vs 0.02%
for DBpedia), FILTER (0.72% for SWDF vs 93.3% for DBpedia) and
UNION (29.3% for SWDF vs 7.97% for DBpedia) clauses. Similar vari-
ations have been reported in [8] as well. To address this issue, the
DBpedia SPARQL Benchmark (DBPSB) [63] (which generates bench-
mark queries from query logs) was proposed. However, this bench-
mark does not consider key query features (i.e., number of join ver-
tices, mean join vertices degree, mean triple pattern selectivities, the
query result size and overall query runtimes) while selecting query
templates. Note that previous works [3; 30] pointed that these query
features greatly affect the triple stores performance and thus should
be considered while designing SPARQL benchmarks.

In this work we present FEASIBLE, a benchmark generation frame-
work which is able to generate a customizable benchmark from any
set of queries, esp. from query logs. FEASIBLE addresses the draw-
backs on previous benchmark generation approaches by taking all
of the important SPARQL query features of Table 44 into considera-
tion when generating benchmarks. In the following, we present our
approach in detail.

10.3 feasible benchmark generation

The benchmark generation behind our approach consists of 3 main
steps. The first step is the cleaning step. Thereafter, the features of
the queries are normalized. In a final step, we then select a sample
of the input queries that reflects the cleaned input queries and re-
turn this sample. The sample can be used as seed in template-based
benchmark generation approaches such as DBSBM and BSBM.

10.3.1 Data Set Cleaning

The aim of the data cleaning step is to remove erroneous and zero-
result queries from the set of queries used to generate benchmarks.
This step is not of theoretical necessity but leads to practically reliable
benchmarks. To clean the input data set (here query logs), we begin
by excluding all syntactically incorrect queries. The syntactically cor-
rect queries which lead to runtime errors1 as well as queries which
return zero results are removed from the set of relevant queries for
benchmarking. We attach all 9 SPARQL clauses (e.g., UNION, DISTINCT)
and 7 query features (i.e., runtime, join vertices, etc.) given in Table 44

to each of the queries. For the sake of simplicity we call these 16 (i.e.,

1 The runtime errors were measured using Virtuoso 7.2.
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9+7) properties query features in the following . All unique queries are
then stored in a file2 and given as input to the next step.

10.3.2 Normalization of Features Vectors

The query selection process of FEASIBLE demands computing dis-
tances between queries. To ensure that dimensions with high values
(e.g., the result set size) do not bias the selection, we normalize the
query representations to ensure that all queries are located in a unit
hypercube. To this end, each of the queries gathered from the pre-
vious step is mapped to a vector of length 16 which stores the cor-
responding query features as follows: For the SPARQL clauses, which
are binary (e.g., UNION is either used or not used), we store a value 1

if that clause in used in the query. Otherwise we store a 0. All non-
binary features vectors are normalized by dividing their value with
the overall maximal value in the data set. Therewith, we ensure that
all entries of the query representations are values between 0 to 1.

10.3.3 Query Selection

The query selection process is based on the idea of exemplars used in
[66] and is shown in Algorithm 9. We assume that we are given (1) a
number e ∈N of queries to select as benchmark queries as well as (2)
a set of queries L with |L| = n >> e, where L is the set of all cleaned
and normalized queries. The intuition behind our selection approach
is to compute an e-sized partition L = {L1, . . . ,Le} of L that is such
that (1) the average distance between the points in two different ele-
ments of the partition is high and (2) the average distance of points
within a partition is small. We can then select the point closest to the
average of each Li (i.e., the medoid of Li) to be a prototypical exam-
ple of a query from L and include it into the benchmark generated
by FEASIBLE. We implement this intuition formally by (1) selecting
e exemplars (i.e., points that represent a portion of the space) that are
as far as possible from each other, (2) partitioning L by mapping ev-
ery point of L to one of these exemplars to compute a partition of the
space at hand and (3) selecting the medoid of each of the partitions
of space as a query in the benchmark. In the following, we present
each of these steps formally. For the sake of clarity, we use the fol-
lowing running example: L = {q1 = [0.2, 0.2],q2 = [0.5, 0.3],q3 =

[0.8, 0.5],q4 = [0.9, 0.1],q5 = [0.5, 0.5]} and assume that we need a
benchmark with e = 2 queries. Note for the sake of simplicity, we
used normed features vectors of length 2 instead of 16.

2 A sample file can be found at http://goo.gl/YUSU9A
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Algorithm 9 Query Selection Approach
Require: Set of queries L; Size of the benchmark e
1: L̃ = 1

|L|

∑
q∈L

q

2: X1 = {arg min
x∈L

d(L̃, x)}

3: X = {X1}
4: for i = 2; i 6 e; i++ do
5: Xi = {arg max

y∈L\X
d(y,X)}

6: X = X∪ {Xi}
7: end for
8: L = ∅
9: for i = 1; i 6 e; i++ do

10: Li = {Xi} L = L∪ {Li}
11: end for
12: for i = 1; i 6 e; i++ do
13: Li = {q ∈ L\X : Xi = arg min

X∈X

d(X,q)}

14: end for
15: B = ∅
16: for i = 1; i 6 e; i++ do
17: L̃i =

1
|Li|

∑
q∈Li

q

18: bi = arg min
q∈Li

d(L̃i,q)

19: B = B∪ {bi}
20: end for
21: return B

10.3.3.1 Selection of Exemplars

We implement an iterative approach to the selection of exemplars (see
lines 1-7 of Algorithm 9). We begin by finding the average L̃ = 1

n

∑
q∈L

q

of all representations of queries q ∈ L. In our example, this point has
the coordinates [0.58, 0.32]. The first exemplar X1 is the point of L that
is closest to the average and is given by X1 = arg min

x∈L
d(L̃, x), where d

stands for the Euclidean distance. In our example, this is the query q2
with a distance of 0.08. We follow an iterative procedure to extending

the set X of all exemplars: We first find η = arg max
y∈L\X

(∑
x∈X

d(x,y)

)
. η

is the point that is furthest away from all exemplars. In our example,
that is the query q4 with a distance of 0.45 from q2. We then add η
to X and repeat the procedure for finding η until |X| = e. Given that
e = 2 in our example, we get the set X = {q2,q4} as set of exemplars.

10.3.3.2 Selection of Benchmark Queries

Let X = {X1, . . . ,Xe} the set of all exemplars. The selection of bench-
mark queries begins with partitioning the space according to X. The
partition Li is defined as Li = {q ∈ L : ∀i 6= j : d(q,Xi) 6 d(q,Xj)}
((see lines 8-15 of Algorithm 9). It is simply the set of queries that
are closer to Xi than to any other exemplar. In case of a tie, i.e.,
d(q,Xi) = d(q,Xj) with i 6= j, we assign q to min(i, j). In our exam-
ple, we get the following partition: X = {{q1,q2,q3,q5}, {q4}}. Finally,
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(a) DBpedia-125 (b) DBpedia-175

Figure 70: Voronoi diagrams for benchmarks generated by FEASIBLE along
the two axes with maximal entropy. Each of the red points is a
benchmark query. Several points are superposed as the diagram
is a projection of a 16-dimensional space unto 2 dimensions.

we perform the selection of prototypical queries from each partition
(see lines 17-22 of Algorithm 9). For each partition Li we begin by
computing the average L̃i of all representations of queries in Li. We
then select the query bi = arg min

q∈Li
d(L̃i,q). The set B of benchmark

queries is the set of all queries bi over all Li. Note that |B| = e. In our
example, q4 being the only query in the second partition means that
q4 is selected as representative for the second partition. The average
of the first partition is located at [0.5, 0.375]. The query q2 is the clos-
est to the average, leading to q2 being selected as representative for
the first partition. Our approach thus returns a benchmark with the
queries {q2,q4} as result.

Figures 70a and 70b show Voronoi diagrams of the results of our ap-
proach for benchmarks of size 125 and 175 derived from the DBpedia
3.5.1 query log presented in Table 44 along the two dimensions with
the highest entropy. Note that some of the queries are superposed in
the diagram.

10.4 complexity analysis

In the following, we study the complexity of our benchmark genera-
tion approach. We denote the number of features considered during
the generation process with d. e is the number of exemplars and |L|

the size of the input data set.
Reading and cleaning the file can be carried out in O(|L|d) as each

query is read once and the features are extracted one at a time. We
now need to compute the exemplars. We begin by computing the av-
erage A of all queries, which can be carried out using O(|L|d) arith-
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metic operations. Finding the query that is nearest to A has the same
complexity. The same approach is used to detect the other exemplars,
leading to an overall complexity of O(e|L|d) for the computation of
exemplars. Mapping each point to the nearest exemplar has an a-priori
complexity ofO(e|L|d) arithmetic operations. Given that the distances
between the exemplars and all the points in L are available from the
previous step, we can simply look up the distances and thus gather
this information in O(1) for each pair of exemplar and point, leading
to an overall complexity of O(e|L|). Finally, the selection of the represen-
tative in the cluster demands averaging the elements of the cluster and
selecting the query that is closest to this point. For each cluster of size
|Cl|, we need (d|Cl|) arithmetic operations to find the average point.
The holds for finding the query nearest to the average. Given that the
sum of the sizes of all the clusters is |L|, we can conclude that the over-
all complexity of the selection step is O(d|L|). Overall, the worst-case
complexity of our algorithm is thus O(d|L||E|).

In the best case, no queries passes the cleaning test, leading to no
further processing and to the same complexity as reading the data,
which is O(|L|d). The same best-case complexity holds when a bench-
mark is generated. Here, the filtering step returns exactly e queries,
leading to the exemplar generation step being skipped and thus to a
complexity of O(|L|d).

10.5 evaluation and results

Our evaluation comprises two main parts. First, we compare FEASI-
BLE with DBPSB w.r.t. how well the benchmarks represent the input
data. To this end, we use the composite error function defined below.
In the second part of our evaluation, we use FEASIBLE benchmarks
to compare triple stores for their query execution performance.

10.5.1 Composite Error Estimation

The benchmarks we generate aim to find typical queries for a given
query log. From the point of view of statistics, this is equivalent to
computing a subset of a population that has the same characteristics
(here mean and standard deviation) as the original population. Thus,
we measure the quality of the sampling approach of a benchmark
by how much the mean and standard deviation of the features of its
queries deviates from that of the query log. We call µi resp. σi the
mean resp. the standard deviation of a given distribution w.r.t. to the
ith feature of the said distribution. Let B be a benchmark extracted
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from a set of queries L. We use two measures to compute the similar-
ity of B and L. The error on the means Eµ and deviations Eσ

Eµ =
1

k

k∑
j=1

(µi(L) − µi(B))
2 and Eσ =

1

k

k∑
j=1

(σi(L) − σi(B))
2. (8)

We define a composite error estimation E as the harmonic mean of
Eµ and Eσ:

E =
2EµEσ

Eµ + Eσ
. (9)

10.5.2 Experimental Setup

data sets and query logs : We used the DBpedia 3.5.1 (232.5M
triples) and SWDF (294.8K triples) data sets for triple stores evalua-
tion. As queries (see Section 10.2), we used 130,466 cleaned queries
for DBpedia and 64,029 cleaned queries for SWDF.

benchmarks for composite error analysis : In order to
compare FEASIBLE with DBPSB, we generated benchmarks of sizes
15, 25, 50, 75, 100, 125, 150, and 175 queries from the DBpedia 3.5.1
query log. Recall this is exactly the same query log used in DBPSB.
DBPSB contains a total of 25 query templates derived from 25 real
queries. A single query was generated per query template in order
to generate a benchmark of 25 queries. Similarly, 2 queries were gen-
erated per query template for a benchmark of 50 queries and so on.
The 15 queries benchmark of DBPSB was generated from the 25-query
benchmark by randomly choosing 15 of the 25 queries. We chose to
show results on a 15-query benchmark because LUBM contains 15

queries while SP2Bench contains 12. We also generated the bench-
marks of the same size (15-175) from SWDF to compare FEASIBLE’s
composite errors as well as the performance of triple stores across
different data sets.

triple stores : We used four triple stores in our evaluation: (1)
Virtuoso Open-Source Edition version 7.2 with NumberOfBuffers = 680000,
MaxDirtyBuffers = 500000; (2) Sesame Version 2.7.8 with Tomcat 7 as
HTTP interface and native storage layout. We set the spoc, posc, opsc
indices to those specified in the native storage configuration. The Java
heap size was set to 6GB; (3) Jena-TDB (Fuseki) Version 2.0 with a Java
heap size set to 6GB and (4) OWLIM-SE Version 6.1 with Tomcat 7.0
as HTTP interface. We set the entity index size to 45,000,000 and en-
abled the predicate list. The rule set was empty and the Java heap
size was set to 6GB. Ergo, we configured all triple stores to use 6GB
of memory and used default values otherwise.
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benchmarks : Most of the previous evaluations were carried out
on SELECT queries only (see Table 44). Here, beside evaluating the
performance of triples stores on SELECT evaluation, we also wanted
to compare triple stores on the other three forms of SPARQL queries.
To this end, we generated DBpedia-ASK-100 (100-ASK-query bench-
mark derived from DBpedia) and SWDF-ASK-50 (50-ASK-query bench-
mark derived from SWDF)3 and compared the selected triple stores
for their ASK query processing performances. Similarly, we generated
DBpedia-CONSTRUCT-100 and SWDF-CONSTRUCT-23, DBpedia-DESCRIBE-
25 and SWDF-DESCRIBE-100, and DBpedia-SELECT-100 and SWDF-
SELECT-100 benchmarks to test the selected systems for CONSTRUCT,
DESCRIBE, and SELECT queries, respectively. Furthermore, we gener-
ated DBpedia-Mix-175 (DBpedia benchmark of 175 mix queries of all
the four query forms) and SWDF-Mix-175 to test the selected triple
stores for their general query processing performance.

benchmark execution : The evaluation was carried out one triple
store at a time on one machine. First, all data sets were loaded into
the selected triple store. Once the triple store had completed the data
loading, the 2-phase benchmark execution phase began: (1) Warm-
up Phase: To measure the performance of the triple store under nor-
mal operational conditions, a warm-up phase was used where ran-
dom queries from the query log were posed to triple stores for 10

minutes; (2) Hot-run Phase: During this phase, the benchmark query
mixes were sent to the tested store. We kept track of the average ex-
ecution time of each query as well as of the number of query mixes
per hour (QMpH). This phase lasted for two hours for each triple
store. Note that the benchmark and the triple store were run on the
same machine to avoid network latency. We set the query timeout to
180 seconds. The query was aborted after that and maximum time
of 180 seconds was used as the query runtime for all queries which
timed out. All the data (data dumps, benchmarks, query logs, FEASI-
BLE code) to repeat our experiments along with complete evaluation
results are available at the project website.

10.5.3 Experimental Results

10.5.3.1 Composite Error

Table 45 shows a comparison of the composite errors of DBPSB and
FEASIBLE for different benchmarks. Note that DBPSB queries tem-
plates are only available for the DBpedia query log. Thus, we were
not able to calculate DBPSB’s composite errors for SWDF. As an
overall composite error evaluation, FEASIBLE’s composite error is

3 We chose to select only 50 queries because the SWDF log we used does not contain
enough ASK queries to generate a 100 query benchmark.
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54.9% smaller than DBPSB. The reason for DBPSB’s error being higher
that FEASIBLE’s lies in the fact that it only considers the number
of query triple patterns and the SPARQL clauses UNION, OPTIONAL,
FILTER, LANG, REGEX, STR, and DISTINCT as features. Important query
features (such as query result sizes, execution times, triple patterns
and join selectivities, and number of join vertices) were not consid-
ered when generating the 25 queries templates4. Furthermore, DBPSB
only includes SELECT queries. The other three SPARQL query forms,
i.e., CONSTRUCT, ASK, and DESCRIBE are not considered. In contrast,
our approach considers all of the query forms, SPARQL clauses, and
query features reported in Table 44.5 It is important to mention that
FEASIBLE’s overall composite error across both data sets is only 0.038.

4 Queries templates available at: http://goo.gl/1oZCZY
5 See FEASIBLE online demo for the customization of these features
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10.5.3.2 Triple Store Performance

Figure 71 shows a comparison of the selected triple stores in terms of
queries per second (QpS) and query mixes per hour (QMpH) for different
benchmarks generated by FEASIBLE. Table 46 shows the overall rank-
wise query distributions of the triple stores. Our ranking is partly dif-
ferent from the DBPSB ranking. Overall, (for mix DBpedia and SWDF
benchmarks of 175 queries each, Figure 71e to Figure 71g), Virtuoso
ranks first followed by Fuseki, OWLIM-SE, and Sesame. Virtuoso is
59% faster than Fuseki. Fuseki is 1.7% faster than OWLIM-SE, which
in turn 16% faster than Sesame. 6

A more fine-grained look at the evaluation reveals surprising find-
ings: On ASK queries, Virtuoso is clearly faster than the other frame-
works (45% faster than Sesame, which is 16% faster than Fuseki,
which is in turn 96% faster than OWLIM-SE, see Figure 71a). The
ranking changes for CONSTRUCT queries: While Virtuoso is still first
(87% faster than OWLIM-SE), OWLIM-SE is now faster that 14% faster
than Fuseki, which in turn is 42% faster than Sesame (Figure 71b).
The most drastic change occurs on the DESCRIBE benchmark, where
Fuseki ranks first (66% faster than Virtuoso, which is 86% faster than
OWLIM-SE, which in turns 47% faster than Sesame, see Figure 71c).
Yet another ranking emerges from the SELECT benchmarks, where
Virtuoso is overall 55% faster than OWLIM-SE, which is 41% faster
than Fuseki, which in turns 11% faster than Sesame (Figure 71d).
These results show that the performance of triple stores varies greatly
across the four basic SPARQL forms and none of the system is the
sole winner across all query forms. Moreover, the ranking also varies
across the different datasets (see, e.g., ASK benchmark for DBpedia
and SWDF). Thus, our results suggest that (1) a benchmark should
comprise a mix of SPARQL ASK, CONSTRUCT, DESCRIBE, and SELECT

queries that reflects the real intended usage of the triple stores to gen-
erate accurate results and (2) there is no universal winner amongst
triple stores, which points again towards the need to create customized
benchmarks for applications when choosing their backend. FEASI-
BLE addresses both of these requirements by allowing users to gener-
ate dedicated benchmarks from their query logs.

Some interesting observations were revealed by the rank-wise queries
distributions of triple stores shown in Table 46: First, none of the
system is sole winner or loser for a particular rank. Overall, Virtu-
oso’s performance mostly lies in the higher ranks, i.e., rank 1 and
2 (68.29%). This triple stores performs especially well at CONSTRUCT

queries. Fuseki’s performance is mostly in the middle ranks, i.e., rank
2 and 3 (65.14%). In general, it is faster for DESCRIBE queries and is
on a slower side for CONSTRUCT and queries containing FILTER and
ORDER BY clauses. While OWLIM-SE’s performance is usually on the

6 Note the percentage improvements are calculated from the QMpH values as A is
(1-QMpH(A)/QMpH(B)*100) percent faster than B.
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Figure 71: Comparison of the triple stores in terms of Queries per Second
(QpS) and Query Mix per Hour (QMpH), where a Query Mix
comprise of 175 distinct queries.
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slower side, i.e., rank 3 and 4 (60.86 %), it performs well on complex
queries with large result set sizes and complex SPARQL clauses. Fi-
nally, Sesame is either fast or slow. For example, for 31.71% of the
queries, it achieve the rank 1 (second best after Virtuoso) and but
achieves rank 4 on 23.14% of the queries (Second worse after OWLIM-
SE). In general Sesame is very efficient on simple queries with small
result set sizes, a small number of triple triple patterns, and a few
SPARQL clauses. However, it performs poorly as soon as the queries
grow in complexity. These results shows yet another aspect of the
importance of taking structural and data-driven features into consid-
eration while generating benchmarks as they allow deeper insights
into the type of queries on which systems perform well or poorly.
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Finally, we also looked into the number of query timeouts dur-
ing the complete evaluation. Most of the systems timeout for SELECT

queries. Overall, Sesame has the highest number of timeouts (43) fol-
lowed by Fuseki (32), OWLIM-SE (22), and Virtuoso (14). For Virtu-
oso, the timeout queries have at least one triple pattern with an un-
bound subject, an unbound predicate and an unbound object. The cor-
responding result sets were so large that they could not be computer
in 3 minutes. The other three systems mostly timeout for the same
queries. OWLIM-SE generally performs better for complex queries
with large result set sizes. Fuseki has problems with queries contain-
ing FILTER (12/32) and ORDER BY clauses (11/32 queries). Sesame per-
forms slightly poorer for complex queries containing many triple pat-
terns and joins as well as complex SPARQL clauses. Note that Sesame
also times out for 8 CONSTRUCT queries. All the timeout queries for
each triple store are provided at project website.
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C O N C L U S I O N

In this chapter we summarize our research work, highlight our core
contributions and give general conclusions and future directions.

Overall, our source selection results suggest that the join-aware
TPW source selection (as implemented by HiBISCuS, TBSS, SAFE,
and TopFed) is the superior paradigm when performing source se-
lection for SPARQL endpoint federation. Our benchmark evaluation
clearly indicates that while current federation engines can deal with
simple and complex queries, they are currently not up to the chal-
lenge of dealing with real queries that involve processing large inter-
mediate result sets or lead to large result sets. In addition, one-fits-all
solutions do not work when benchmarking towards a given use case
and benchmarks must look at all types of SPARQL constructs. In the
following, we provide more details pertaining to these insights.

11.1 hibiscus

We presented HiBISCus, a novel labelled-hypergraph-based approach
for efficient source selection for SPARQL endpoint federation. HiBIS-
CuS makes use of URI authorities to only select those sources that
contribute the final result set of any given query. We evaluated our
approach against DARQ, SPLENDID, FedX and ANAPSID. The eval-
uation shows that the query runtime of these systems is improved
significantly.

In future, the impact of the threshold θ on our approach will be
investigated. The effect of our source pruning algorithm on SPARQL
1.1 queries with SPARQL service clause will be studied, where the TPW
sources are already specified by the user. Furthermore, our approach
can be evaluated on big data as the query execution time for majority
of the FedBench queries is less than 1s, which makes it difficult to
select the best SPARQL federation engine and have a deeper look
into the behaviour of these engines in different data environments.

11.2 tbss/quetsal

We have seen that HiBISCuS can significantly remove irrelevant sources.
However, it fails to prune those sources which share the same URI
authority. We have addressed some of limitations HiBISCuS in TBSS
by using common name spaces instead of URIs authorities. In addi-
tion, we combined HiBISCuS, TBSS, and DAW with global SPARQL
1.1 query rewriting into Quetsal, a complete SPARQL query federa-

193
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tion engine. We evaluated Quetsal against state-of-the-art federation
systems. The evaluation shows that Quetsal outperforms the state-
of-the-art by reducing the number of sources selected and generating
a considerable number of remote joins, a key to federated query pro-
cessing optimization.

In future,Quetsal will be improved further by using bind joins (as
used in state-of-the-art engines) to solve the problem of retrieving
many intermediate results for queries where many SPARQL UNION

clauses are introduced by the SPARQL 1.1 query rewrite.

11.3 daw

In this thesis we presented DAW, an approach for duplicate-aware
federated query over the Web of Data. DAW combines min-wise inde-
pendent permutations with selectivity values to estimate the number
of duplicate-free results. This estimation is used to first rank triple
pattern-wise sources, based on their contribution, and to skip sources
that contribute with little or no new results. DAW will be directly
combined with existing index-assisted federated query processing
systems, in order to improve the query execution. We evaluated our
approach against DARQ, SPLENDID and FedX – three well known
federated systems. The evaluation shows that by using the DAW ex-
tension the query execution times were improved in most of the cases,
while recall was marginally affected. Moreover, DAW is suitable for
maximising the recall for a fixed number of queried sources.

In the future, DAW index will be extended to further reduce the
query execution time, for instance, by pre-computing some of the
overlap statistics, based on query logs. The effect of different MIPs
sizes and threshold values to find the optimal trade-off between ex-
ecution time and recall will be explored, as well as different data
partition methods.

11.4 safe

We have presented SAFE: a query federation engine that enables
policy-based access to sensitive statistical datasets represented as RDF
Data Cubes. The work is motivated in particular by the needs of three
clinical organisations who wish to develop a platform for collabora-
tively analysing clinical data that spans multiple clinical sites, thus
improving the statistical power of conclusions that can be drawn (ver-
sus one source alone). Clinical data – even in aggregated form – is of
a highly sensitive nature, and thus federated querying methods must
take access policies into account. SAFE is developed as an extension
on top of the FedX federation engine to support two main features:
(i) optimisations tailored for federating querying of RDF Data Cubes;
and (ii) source-selection on the level of named graphs that allows for
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integration with an existing access-control layer. We evaluated these
extensions based on our internal data sets (private data owned by
clinical organisations) as well as external data sets (public data avail-
able from the LOD cloud) in order to measure the efficiency of SAFE
against FedX. Our evaluation results show that, for our use-case(s),
SAFE outperforms FedX in terms of fastest source selection and query
execution time. SAFE will further be extended to work on top of any
datasets, instead of RDF data cubes.

11.5 topfed

In this work, we have published a Linked Data version of TCGA data
level 3 (to the best of our knowledge the largest Linked Data dump
anywhere) and further linked it to the LOD cloud. This big data re-
source is designed to be used as infrastructure for biomedical and
bioinformatics applications that analyse and query both the file anno-
tations but also the internal content of the patient-derived files of this
key reference for molecular biology and epidemiology of cancer. The
TCGA data dump (and what we expect will be the genomics datasets
in the future) is already too large to be effectively handled by a single
server. If the relationships between TCGA and other related resources
are taken into account, a smart data distribution framework that dis-
tributes the data among multiple SPARQL endpoints, such as the one
reported here is, an absolute necessity. This framework, TopFed, is
specifically designed as a federated query processing engine that han-
dles a collection of physically distributed RDF data sources. The re-
sulting virtually integrated data resource was observed to enable sig-
nificantly faster querying and retrieval (one third) than current solu-
tions, such as FedX. The TopFed source selection algorithm achieves
this result by considering the metadata about the data distribution
with the type of the joins among query triples patterns. The substan-
tial improvements in efficient processing achieved, also in the use of
network traffic, suggests that the development of systems designed
to process an individual patient clinical data to identify the drugs
leading to better outcomes in related cohorts in TCGA-like resources
(e.g., ICGC 1) is now at hand.

One of our future aims is to develop an intelligent system, in which
a cancer patient’s genomic data are used as input to suggest effec-
tive drugs for treatment while comparing against results from TCGA
patients with the same or similar cancer sub-types. In 2009, we con-
tributed to CNViewer 2, a browser based tool that could be used, via
oncologists uploading their own patient’s copy number result, to cal-
culate the Euclidean (or other) distance to all other patients with the
same tumour type. With TopFed, not only we can calculate these dis-

1 http://icgc.org/

2 https://sites.google.com/site/cnviewerguide/
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tances using copy number results, but in future work we expect to
use aggregation/correlation of molecular results to match and better
understand both the biology driving cancer and the most effective
treatment for a patient given a set of genetic alterations.

11.6 largerdfbench

In this thesis we presented LargeRDFBench, the first billion-triple
benchmark for federated SPARQL query engines based on real data
and real queries. We presented the three different types of queries
contained in the benchmark and compared state-of-the-art systems
against these queries. Our evaluation clearly indicates that while cur-
rent systems can deal with simple and complex queries, they are
currently not up to the challenge of dealing with real large result
set queries. Alarmingly, the systems return partly incomplete results
without making the user aware of this incompleteness. In the future,
triple stores such as Virtuoso, Sesame etc. that supports SPARQL 1.1
federated queries will be tested with this benchmark.

LargeRDFBench will further be extended to deal with data parti-
tioning, network traffic, and dynamic data updates etc.

11.7 feasible

Finally, we presented FEASIBLE, a customizable SPARQL benchmark
generation framework. We compared existing SPARQL benchmarks
by presenting the detail query statistics of each of the benchmark. Our
evaluation showed that existing benchmarks range from very simple
(e.g., BSBM) to very complex (e.g., SP2Bench). Some of them (e.g.,
WatDiv and LUBM) only focus on SELECT and conjunctive queries. We
then showed that it is very difficult for artificial SPARQL benchmark
generation frameworks to reflect the characteristics of real query logs.
We compared FEASIBLE with DBPSB and showed that our approach
is able to produce high-quality (in terms of small composite error)
benchmarks. In addition, our framework allows users to generate cus-
tomized benchmarks suited for a particular use case, which is of ut-
most importance when aiming to gather valid insights into the real
performance of different triple stores for a given application. This is
demonstrated by our triple stores evaluation, which shows that the
ranking of triple stores varies greatly across different types of queries
as well as across datasets. Our results thus suggest that all of the four
query forms should be included in the future SPARQL benchmarks.

For the sake of future work, FEASIBLE will be extended to attach
many of the SPARQL 1.1 features to each of the query, thus allow
user to generate customized SPARQL 1.1 benchmarks.
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As future vision of federated SPARQL queries, running federated
queries over large datasets, e.g., the Linked TCGA SPARQL endpoints3

may result in millions of results with queries runtimes in hours. In
such cases, it is possible that a user may not be interested in the com-
plete results. Rather, a subset of results in a reasonable amount of
query runtime might be more important for the query executor. Ex-
isting SPARQL query federation engines focused on the problem of
generating optimized query execution plans. None, to the best of our
knowledge, has taken in to account the time efficient Top-K results re-
trieval which might be important for a particular use case. Similarly,
Top-K results retrieval and query personalization based on user pro-
file and location is interesting research direction in federated SPARQL
query processing. Optimization based on query tuning has a great po-
tential to improve state-of-the-art work. Collecting provenance infor-
mation (e.g., how many results are contributed by each data source)
and estimating the query runtime before execution might be useful in-
formation for the end users. Data distribution-aware federated, non to
the best of our knowledge, query engines have the great potential to
outperform state-of-the-art engines. Data de-duplication at runtime
from federated data sources is interested topic that can be investi-
gated.

3 Linked TCGA SPARQL endpoints: http://tcga.deri.ie/
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