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ABSTRACT
Quantifying the coherence of a set of statements is a long
standing problem with many potential applications that has
attracted researchers from different sciences. The special
case of measuring coherence of topics has been recently stud-
ied to remedy the problem that topic models give no guar-
anty on the interpretablity of their output. Several bench-
mark datasets were produced that record human judgements
of the interpretability of topics. We are the first to propose
a framework that allows to construct existing word based
coherence measures as well as new ones by combining ele-
mentary components. We conduct a systematic search of the
space of coherence measures using all publicly available topic
relevance data for the evaluation. Our results show that new
combinations of components outperform existing measures
with respect to correlation to human ratings. Finally, we
outline how our results can be transferred to further appli-
cations in the context of text mining, information retrieval
and the world wide web.

Categories and Subject Descriptors
[Document representation]: Document topic models

General Terms
Measurement

Keywords
topic evaluation; topic coherence; topic model

1. INTRODUCTION
A set of statements or facts is said to be coherent, if they

support each other. Thus, a coherent fact set can be inter-
preted in a context that covers all or most of the facts. An
example of a coherent fact set is “the game is a team sport”,
“the game is played with a ball”, “the game demands great
physical efforts”. A long standing open question is how to
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quantify the coherence of a fact set [5]. Approaches proposed
in scientific philosophy have formalized such measures as
functions of joint and marginal probabilities associated with
the facts. Bovens and Hartmann [5] discuss many examples
that lead to a demanding set of complex properties such a
measure needs to fulfill. An example is the non-monotonic
behavior of coherence in case of growing fact sets. The co-
herence of the two fact sets “the animal is a bird” and “the
animal cannot fly” can be increased by adding the fact “the
animal is a penguin”. The non-monotonicity becomes ap-
parent when the coherence is lowered again by adding non-
related facts [5]. The discussion of coherence measures in
that community deals mainly with schemes that estimate
the hanging and fitting together of the individual facts of
a larger set. Examples of such schemes are (i) to compare
each fact against the rest of all other fact, (ii) compare all
pairs against each other, and (iii) compare disjoints subsets
of facts against each other. Such theoretical work on coher-
ence from scientific philosophy—see [7] for an overview— has
potential to be adapted in computer science, e.g., coherence
of word sets.

Interest into coherence measures has arisen in text min-
ing, as unsupervised learning methods like topic models give
no guarantees on the interpreteability of their output. Topic
models learn topics—typically represented as sets of impor-
tant words—automatically from unlabeled documents in an
unsupervised way. This is an attractive method to bring
structure to otherwise unstructured text data. The sem-
inal work of [13] proposed automatic coherence measures
that rate topics regarding to their understandability. The
proposed measures treat words as facts. This important re-
striction will apply to all analyses presented in this paper.
An example of such set is {game, sport, ball, team}, which
we will use throughout the paper to illustrate the methods.
Furthermore, [13] restricts coherence to be always based on
comparing word pairs. Our analyses will go beyond this
point.

Evaluations in [13] based on human generated topic rank-
ings showed that measures based on word co-occurrence
statistics estimated on Wikipedia outperform measures based
on WordNet and similar semantic resources. Subsequent
empirical works on topic coherence [12, 18, 10] proposed a
number of measures based on word statistics that differ in
several details: definition, normalization and aggregation of
word statistics and reference corpus. In addition, a new
method based on word context vectors has been proposed
recently [1].



Looking at the two lines of research on coherence, scientific
philosophy and topic modelling, we note that the contribu-
tions are mainly complementary. While the former proposed
a good number of schemes for comparing facts or words, the
latter proposed useful methods for estimating word prob-
abilities and normalizing numeric comparisons. However,
a systematic, empirical evaluation of the methods of both
worlds and their yet unexplored combinations is still miss-
ing.

Human topic rankings serve as the gold standard for co-
herence evaluation. However, they are expensive to produce.
There are three publicly available sources of such rankings:
first, Chang et al. [6] that have been prepared by Lau et
al. [10] for topic coherence evaluation, second, Aletras and
Stevenson [1] and third, Rosner et al. [16]. A systematic,
empirical evaluation should take all these sources into ac-
count. For this reason, we choose the concept of a framework
providing an objective platform for comparing the different
approaches. Following our research agenda, this will lead
to completely new insights of the behavior of different al-
gorithms with regard to the available benchmarks. Hence,
it will be possible to finally evaluate the reasons for specific
behavior of topic coherences on a comparable basis.

Our contributions are these: First, we propose a unifying
framework that spans a configuration space of coherence def-
initions. Second, we exhaustively search this space for the
coherence definition with the best overall correlation with re-
spect to all available human topic ranking data. This search
empirically evaluates published coherence measures as well
as unpublished ones based on combinations of known ap-
proaches. Our results reveal a coherence measure based on
a new combination of known approaches that approximates
human ratings better than the state of the art.1 Finally, we
note that coherence measures are useful beyond topic mod-
elling. We discuss applications to search, advertising and
automatic translation.

The rest of the paper is structured as follows: In section
2, we briefly review related work. Our unifying framework is
introduced in section 3. Section 4 describes data preparation
and evaluation results and section 5 discusses our findings.
In section 6 the runtimes of the measures ar analyzed. Sec-
tion 7 explains how coherence measures can be applied be-
yond topic modelling. Our conclusions are stated in section
8.

2. RELATED WORK
The evaluation of topic models needs next to holdout per-

plexity an additional measure that can rate topics with re-
spect to understandability and interpretability by humans
[6]. Measures based on evaluation of topic model distribu-
tions can produce useful results [2, 11]. However, they are
difficult to link with human generated gold standards.

Newman et al. [13] represented topics by sets of top words
and asked humans to rate these sets as good, neutral or bad.
Several automatic topic ranking methods that measure topic
coherence are evaluated by comparison to these human rat-
ings. The evaluated topic coherence measures take the set
of N top words of a topic and sum a confirmation measure
over all word pairs. A confirmation measure depends on a
single pair of top words. Several confirmation measures were

1Data and tools for replicating our coherence calculations
are available at https://github.com/AKSW/Palmetto .

evaluated. The coherence based on pointwise mutual infor-
mation (PMI) gave largest correlations with human ratings.
UCI coherence is calculated by2:

CUCI =
2

N · (N − 1)

N−1∑
i=1

N∑
j=i+1

PMI(wi, wj) (1)

PMI(wi, wj) = log
P (wi, wj) + ε

P (wi) · P (wj)
(2)

Probabilities are estimated based on word co-occurrence counts.
Those counts are derived from documents that are con-
structed by a sliding window that moves over the Wikipedia,
which is used as external reference corpus. Each window po-
sition defines such a document. For our example topic from
section 1 we would calculate:

CUCI =
1

6
·
(
PMI(game, sport) + PMI(game, ball)

+ PMI(game, team) + PMI(sport , ball)

+ PMI(sport , team) + PMI(ball , team)
) (3)

Mimno et al. [12] proposed to use an asymmetrical con-
firmation measure between top word pairs (smoothed con-
ditional probability). The summation of UMass coherence
accounts for the ordering among the top words of a topic.2

CUMass =
2

N · (N − 1)

N∑
i=2

i−1∑
j=1

log
P (wi, wj) + ε

P (wj)
(4)

Word probabilities are estimated based on document fre-
quencies of the original documents used for learning the top-
ics. The calculation for our example would be:

CUMass =
1

6

(
log(P (sport |game)) + log(P (ball |game))

+ log(P (ball |sport)) + log(P (team|game))

+ log(P (team|sport)) + log(P (team|ball))
) (5)

Stevens et al. [18] found that both—UCI and UMass cohe-
rence—perform better if parameter ε is chosen to be rather
small instead of ε = 1 as in respective original publications.

Aletras and Stevenson [1] introduced topic coherence based
on context vectors for every topic top word. A context vec-
tor of a word w is created using word co-occurrence counts
determined using context windows that contain all words
located ±5 tokens around the ocurrences of the word w.
Largest correlation to human topic coherence ratings were
found when defining the elements of these vectors as nor-
malized PMI (NPMI) [4]. Additionally, they showed that
restricting the word co-occurrences to those words that are
part of the same topic performs best (top word space). Thus,
the j-th element of the context vector ~vi of word wi has
NPMI:

vij = NPMI(wi, wj)
γ =

 log
P (wi,wj)+ε

P (wi)·P (wj)

− log(P (wi, wj) + ε)

γ

(6)

2ε is added to avoid logarithm of zero.
CUCI as well as CUMass can be used with the arithmetic
mean or only with the sum of the single elements, because
the mean calculation doesn’t influence the order of evaluated
topics that have the same number of top words.

https://github.com/AKSW/Palmetto


For our example topic, the vector of its top word game would
be calculated as:

~vgame =
{

NPMI(game, game)γ ,NPMI(game, sport)γ ,

NPMI(game, ball)γ ,NPMI(game, team)γ
} (7)

An increase of γ gives higher NPMI values more weight.
Confirmation measures between pairs of context vectors are
vector similarities like cosine, Dice or Jaccard that are aver-
aged over all pairs of a topics top words like in [13].

Ccos =
1

6
·
(
cos(~vgame , ~vsport) + cos(~vgame , ~vball)

+ cos(~vgame , ~vteam) + cos(~vsport , ~vball)

+ cos(~vsport , ~vteam) + cos(~vball , ~vteam)
) (8)

Alternatively, topic coherence is computed as average simi-
larity between top word context vectors and their centroid
~vc.

~vc = ~vgame + ~vsport + ~vball + ~vteam (9)

Ccen =
1

4
·
(
cos(~vgame , ~vc) + cos(~vsport , ~vc)

+ cos(~vball , ~vc) + cos(~vteam , ~vc)
) (10)

Additionally, [1] showed that the UCI coherence performs
better if the PMI is replaced by the NPMI.

Lau et al. [10] structured the topic evaluation in two dif-
ferent tasks—word intrusion and observed coherence. In the
first task, an intruder word has to be identified among the
top words of a topic. For the second task, topics have to be
rated regarding their coherence, while ratings are compared
to human ratings. Both tasks can be done for single top-
ics or the whole topic model. [10] confirmed that the UCI
coherence performs better with the NPMI.

Theoretical work on coherence of sets of statements in
a broader sense are reviewed in [7]. We follow their nota-
tion but adapt presentation of measures to word coherence.
Shogenji’s [17] and Olsson’s [14] coherences are defined as:

CS =
P (w1, . . . , wN )∏N

i=1 P (wi)
(11)

CO =
P (w1, . . . , wN )

P (w1 ∨ . . . ∨ wN )
(12)

The usage of these coherences for our example is straight
forward:

CS =
P (game, sport , ball , team)

P (game) · P (sport) · P (ball) · P (team)
(13)

CO =
P (game, sport , ball , team)

P (game ∨ sport ∨ ball ∨ team)
(14)

Fitelson [8] evaluated a single word in the context of all
subsets that can be constructed from the remaining words.
The set of all subsets without word wi is denoted by S(i).
Fitelson’s coherence is defined by comparing the probability
of the i-th word with every single set in S(i):

CF =

∑N
i=1

∑2N−1−1
j=1 mf (wi, S(i)j)

N · (2N−1 − 1)
(15)

mf (wi, S(i)j) =
P (Wi|S(i)j)− P (Wi|¬S(i)j)

P (Wi|S(i)j) + P (Wi|¬S(i)j)
(16)

Note that this approach takes relationships between word
sets into account and goes beyond averaging confirmations
between word pairs.3

Douven and Meijs [7] took this approach further by cre-
ating pairs of word subsets Si = (W ′,W ∗). These pairs are
tested whether the existence of the subset W ∗ supports the
occurrence of the subset W ′. This is done using several con-
firmation measures and has been adapted to the evaluation
of topics by Rosner et al. [16]. The authors found that us-
ing larger subsets W ′ and W ∗ can lead to better performing
coherence measures.

3. FRAMEWORK OF COHERENCE MEA-
SURES

Our new unifying framework represents a coherence mea-
sure as composition of parts that can be freely combined.
Hence, existing measures as well as yet unexplored measures
can be constructed. The parts are grouped into dimensions
that span the configuration space of coherence measures.
Each dimension is characterized by a set of exchangeable
components.

Coherence of a set of words measures the hanging and
fitting together of single words or subsets of them. Thus,
the first dimension is the kind of segmentation that is used
to divide a word set into smaller pieces. These pieces are
compared against each other, e.g., segmentation into word
pairs. The set of different kinds of segmentation is S. The
second dimension is the confirmation measure that scores
the agreement of a given pair, e.g., NPMI of two words. The
set of confirmation measures is M. Confirmation measures
use word probabilities that can be computed in different
ways, which forms the third dimension of the configuration
space. The set of methods to estimate word probabilities
is P. Last, the methods of how to aggregate scalar val-
ues computed by the confirmation measure forms the fourth
dimension. The set of aggregation functions is Σ.

The workflow of our framework as shown in figure 1 com-
prises four steps. First, the word set t is segmentated into a
set of pairs of word subsets S. Second, word probabilities P
are computed based on a given reference corpus. Both, the
set of word subsets S as well as the computed probabilities
P are consumed by the confirmation measure to calculate
the agreements ϕ of pairs of S. Last, those values are ag-
gregated to a single coherence value c.

In summary, the framework defines a configurations space
that is the cross product of the four sets C = S ×M×P ×
Σ. In the following subsections, these four dimensions are
explained in more detail.

3.1 Segmentation of word subsets
Following [7], coherence of a word set measures the degree

that a subset is supported by another subset. The result of
the segmentation of a given word set W is a set of pairs of
subsets of W . The definition of a subset pair consists of two
parts that are differently used by the following confirmation
mearsures. The first part of a pair is the subset for which the
support by the second part of the pair is determined. Most
proposed coherence measures for topic evaluation compare
pairs of single words, e.g., the UCI coherence. Every single

3In section 3.1, we will give an example for Soneany which is the
equivalent to the (wi, S(i)j) pairs of Fitelson’s coherence.
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Figure 1: Overview over the unifying coherence framework—its four parts and their intermediate results.

word is paired with every other single word. Those sege-
mentations are called one-one and are defined as follows:

Soneone =
{

(W ′,W ∗)|W ′ = {wi};

W ∗ = {wj};wi, wj ∈W ; i 6= j
} (17)

Sonepre =
{

(W ′,W ∗)|W ′ = {wi};

W ∗ = {wj};wi, wj ∈W ; i > j
} (18)

Sonesuc =
{

(W ′,W ∗)|W ′ = {wi};

W ∗ = {wj};wi, wj ∈W ; i < j
} (19)

The latter two are variations of the first one that require
an ordered word set. They compare a word only to the
preceding and succeeding words respectively, as done by the
UMass coherence.

Douven and Meijs [7] proposed several other segmenta-
tions that have been adapted to topic evaluation by [16].
These definitions allow one or both subsets to contain more
than one single word.

Soneall =
{

(W ′,W ∗)|W ′ = {wi};

wi ∈W ;W ∗ = W \ {wi}
} (20)

Soneany =
{

(W ′,W ∗)|W ′ = {wi};

wi ∈W ;W ∗ ⊆W \ {wi}
} (21)

Sanyany =
{

(W ′,W ∗)|W ′,W ∗ ⊂W ;W ′ ∩W ∗ = ∅
}

(22)

Soneall compares every single word to all other words of the
word set. Soneany extends Soneall by using every subset as condi-
tion. Sanyany is another extension that compares every subset
with every other disjoint subset. Figure 2 shows the differ-
ent sets of subset pairs produced by applying the different
segmentations to the running example.

The approach in [1] compares words to the total word
set W using words context vectors. Therefore, we define
another segmentation

Soneset =
{

(W ′,W ∗)|W ′ = {wi};wi ∈W ;W ∗ = W
}

(23)

Note that this segmentation does not obey the requirement
W ′∩W ∗ = ∅ stated in [7]. Therefore, it is only used together
with coherence measures based on the ideas in [1].

Figure 2: Soneone , S
one
all , S

one
any and Sanyany segmentations of

the word set {game, ball, sport, team} and their
hierarchy.

3.2 Probability Estimation
The method of probability estimation defines the way

how the probabilities are derived from the underlying data
source. Boolean document (Pbd) estimates the probability
of a single word as the number of documents in which the
word occurs divided by the total number of documents. In
the same way, the joint probability of two words is estimated
by the number of documents containing both words divided
by the total number of documents. This estimation method
is called boolean as the number of occurrences of words in
a single document as well as distances between the occur-
rences are not considered. UMass coherence is based on
an equivalent kind of estimation [12]. Text documents with
some formatting allow simple variations, namely the boolean
paragraph (Pbp) and boolean sentence (Pbs). These estima-
tion methods are similar to boolean document except instead
of documents paragraphs or sentences are used respectively.

Boolean sliding window (Psw) determines word counts us-
ing a sliding window.4 The window moves over the docu-
ments one word token per step. Each step defines a new
virtual document by copying the window content. Boolean
document is applied to these virtual documents to compute

4The window size is added to the name, e.g., Psw(10) for a
sliding window of size s = 10.



word probabilities. Note that boolean sliding window cap-
tures to some degree proximity between word tokens.

3.3 Confirmation Measure
A confirmation measure takes a single pair Si = (W ′,W ∗)

of words or word subsets as well as the corresponding proba-
bilities to compute how strong the conditioning word set W ∗

supports W ′. This could be done either directly as proposed
in [7, 12, 13] or indirectly as done in [1].

3.3.1 Direct confirmation measures
Measures to directly compute the confirmation of a single

pair Si of words or word subsets are:

md(Si) = P (W ′|W ∗)− P (W ′) (24)

mr(Si) =
P (W ′,W ∗)

P (W ′) ∗ P (W ∗)
(25)

mlr(Si) = log
P (W ′,W ∗) + ε

P (W ′) ∗ P (W ∗)
(26)

mnlr(Si) =
mlr(Si)

− log (P (W ′,W ∗) + ε)
(27)

ml(Si) =
P (W ′|W ∗)

P (W ′|¬W ∗) + ε
(28)

mll(Si) = log
P (W ′|W ∗) + ε

P (W ′|¬W ∗) + ε
(29)

mc(Si) =
P (W ′,W ∗)

P (W ∗)
(30)

mlc(Si) = log
P (W ′,W ∗) + ε

P (W ∗)
(31)

mj(Si) =
P (W ′,W ∗)

P (W ′ ∨W ∗) (32)

mlj(Si) = log
P (W ′,W ∗) + ε

P (W ′ ∨W ∗) (33)

In [7], the confirmation measures md, mr and ml are called
difference-, ratio- and likelihood-measure. There, log-likeli-
hood (mll) and log-ratio measure (mlr) are also defined—
the last is the PMI, the central element of the UCI coher-
ence. Normalized log-ratio measure (mnlr) is the NPMI.
The log-conditional-probability measure (mlc) is equivalent
to the calculation used by UMass coherence [12]. The last
two confirmation measures are the Jaccard and log-Jaccard
measures.

A small constant ε is added to prevent logarithm of zero.
Following [18], we set it to a small value (ε = 10−12).5 Ols-
son’s and Fitelson’s coherences as well as a logarithmic vari-
ant of Shogenji’s coherence (formulas 12, 16 and 11) are
denoted by mo, mf and mls.

3.3.2 Indirect confirmation measures
Instead of directly computing the confirmation of Si =

(W ′,W ∗), indirect computation of confirmation assumes that
given some word of W , direct confirmations of words in W ′

are close to direct confirmations of words in W ∗ with respect
to this given word. Thus, indirect confirmation computes
similarity of words in W ′ and W ∗ with respect to direct
confirmations to all words.

5Additionally ε is used in ml and mll for preventing division
by 0.

Why is this an advantage? For example, assume word x
semantically supports word z but they do not appear fre-
quently together in the reference corpus and have therefore
low joint probability. Thus, their direct confirmation would
be low as well. However, the confirmations of x and z corre-
late with respect to many other words y in W. An example
is that x and z are both competing brands of cars, which
semantically support each other. However, both brands are
seldom mentioned together in documents in the reference
corpus. But their confirmations to other words like “road”
or “speed” do strongly correlate. This would be reflected
by an indirect confirmation measure. Thus, indirect confir-
mation measures may capture semantic support that direct
measures would miss.

This idea can be formalized by representing the word sets
W ′ and W ∗ as vectors with dimension of the total size of
the word set W . Such vector can be computed with respect
to any direct confirmation measure m. In case W ′ and W ∗

consist of single words, the vector elements are just the direct
confirmations as suggested in [1]. In case W ′ and W ∗ are
sets of more than one word, the vector elements are the sum
of the direct confirmations of the single words. Following
[1], the vector elements can be non-linearly distorted.

~vm,γ(W ′) =

 ∑
wi∈W ′

m(wi, wj)
γ


j=1,...,|W |

(34)

Given context vectors ~u = ~v(W ′) and ~w = ~v(W ∗) for the
word sets of a pair Si = (W ′,W ∗), indirect confirmation
is computed as vector similarity. Following [1], we equip
our framework with the vector similarities cosine, dice and
jaccard:

scos(~u, ~w) =

∑|W |
i=1 ui · wi
‖~u‖2 · ‖~w‖2

(35)

sdice(~u, ~w) =

∑|W |
i=1 min(ui, wi)∑|W |
i=1 vi + wi

(36)

sjac(~u, ~w) =

∑|W |
i=1 min(ui, wi)∑|W |
i=1 max(ui, wi)

(37)

Thus, given a similarity measure sim, a direct confirmation
measure m and a value for γ, an indirect confirmation mea-
sure m̃ is

m̃sim(m,γ)(W
′,W ∗) = ssim(~vm,γ(W ′), ~vm,γ(W ∗)) (38)

3.4 Aggregation
Finally, all confirmations ~ϕ = {ϕ1, . . . ϕ|S|} of all subset

pairs Si are aggregated to a single coherence score. Arith-
metic mean (σa) and median (σm) have been used in the
literature. Additionally, we evaluate geometric mean (σg),
harmonic mean (σh), quadratic mean (σq), minimum (σn)
and maximum (σx).

3.5 Representation of existing measures
Now we are ready to describe all coherence measures from

section 2 as instances within the new framework. The co-
herences of [12, 13, 1] can be written as:

CUMass =
(
Pbd, Sonepre ,mlc, σa

)
(39)

CUCI =
(
Psw(10), S

one
one ,mlr, σa

)
(40)

CNPMI =
(
Psw(10), S

one
one ,mnlr, σa

)
(41)



Name 20NG Genomics NYT RTL-NYT RTL-Wiki Movie

Topics 100 100 100 1095 1096 100
Top words 10 10 10 5 5 5

Documents 19 952 29 833 — — 7 838 108 952
Paragraphs 155 429 2 678 088 — — 319 859 2 136 811
Sentences 341 583 9 744 966 — — 1 035 265 6 583 202
Tokens 2 785 319 114 065 923 — — 13 679 052 86 256 415
Vocabulary 109 610 1 640 456 — — 591 957 1 625 124

Table 1: Datasets used for evaluation.

The coherences defined in [7] and transformed in [16] can be
written as:

Cone-all = (Pbd, Soneall ,md, σa) (42)

Cone-any =
(
Pbd, Soneany,md, σa

)
(43)

Cany-any =
(
Pbd, Sanyany ,md, σa

)
(44)

Shogenji’s [17], Olsson’s [14] and Fitelson’s [8] coherences
do not define how the probabilities are computed. There-
fore, these measure definitions can be combined with every
method of probability estimation6:

CS =
(
·, Sallone,mls, σa

)
(45)

CO =
(
·, Ssetset ,mo, σi

)
(46)

CF =
(
·, Soneany,mf , σa

)
(47)

Using the context-window-based probability estimation
Pcw described in section 2, we are able to formulate the
context-vector-based coherences defined in [1] within our
framework7:

Ccos =
(
Pcw(5), S

one
one , m̃cos(nlr,γ), σa

)
(48)

Cdice =
(
Pcw(5), S

one
one , m̃dice(nlr,γ), σa

)
(49)

Cjac =
(
Pcw(5), S

one
one , m̃jac(nlr,γ), σa

)
(50)

Ccen =
(
Pcw(5), S

one
set , m̃cos(nlr,γ), σa

)
(51)

This shows that the framework can cover all existing mea-
sures. However, it allows to construct new measures that
combine the ideas of existing measures.

4. EVALUATION AND DATA SETS
The evaluation follows a common scheme that has already

been used in [1, 10, 13, 16]. Coherence measures are com-
puted for topics given as word sets that have been rated
by humans with respect to understandability. Each mea-
sure produces a ranking of the topics that is compared to
the ranking induced by human ratings. Following [10], both

6Sallone is used to formulate Shogenji’s coherence and is de-
fined like Soneall but with W ′ and W ∗ swapped. Ssetset =
{(W ′,W ∗)|W ′,W ∗ = W} is used for Olsson’s coherence.
Note that Ssetset contains only one single pair. Therefore,
the aggregation function is the identity function σi. These
special segmentation schemas are used only for these two
coherences.
7We added window size to the model name, e.g., Pcw(5) for
the window size s = ±5. The context window is only used
for indirect coherence measures. For represent all measures
mentioned in [1] instead of mnlr the measures mlr or mP =
P (W ′,W ∗) could be used respectively.

rankings are correlated using Pearson’s r. Thus, good qual-
ity of a coherence measure is indicated by a large correlation
to human ratings.

Word counts and probabilities are derived from Wikipedia.
In case the corpus, which was used as training data for topic
learning, was available, we computed coherence measures a
second time using counts derived from that corpus.

During evaluation, we tested a wide range of different pa-
rameter settings. Window sizes varied between [10, 300] for
the sliding and [5, 150] for the context window. The param-
eter γ varied in {1, 2, 3}. Overall, our evaluation comprises a
total of 237 912 different coherences and parameterizations.

In literature, other evaluation methods has been used as
well, e.g., humans were asked to classify word sets using
different given error types [12]. However, since the data is
not freely available, we can not use such methods for our
evaluation.

A dataset comprises a corpus, topics and human ratings.
Topics had been computed using the corpus and are given by
word sets consisting of the topics top words. Human ratings
for topics had been created by presenting these word sets
to human raters. Topics are rated regarding interpretability
and understandability using three categories—good, neutral
or bad [13].

The generation of such a dataset is expensive due to the
necessary manual work to create human topic ratings. Re-
cently, several datasets have been published [1, 6, 10, 16].
Additionally, the creation of such a dataset is separated
from the topic model used to compute the topics, since the
humans rate just plain word sets without any information
about the topic model [1, 6, 10, 15, 16]. This opens the
possibility to reuse them for evaluation.

The 20NG dataset contains the well known 20 News-
groups corpus that consists of Usenet messages of 20 dif-
ferent groups. The Genomics corpus comprises scientific
articles of 49 MEDLINE journals and is part of the TREC-
Genomics Track8. Aletras and Stevenson [1] published 100
rated topics for both dataset, each represented by a set of
10 top words. Further, they published 100 rated topics that
have been computed using 47 229 New York Times articles
(NYT ). Unfortunately, this corpus is not available to us.

Chang et al. [6] used two corpora, one comprising New
York Times articles (RTL-NYT ) and the other is a Wikipedia
subset (RTL-Wiki). A number of 900 topics were created
for each of these corpora. [10] published human ratings for
these topics. Human raters evaluated word subsets of size
five randomly selected from the top words of each topic. We
aggregated the ratings for each word set. Word sets with

8http://ir.ohsu.edu/genomics
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Name CV CP CUMass Cone-any CUCI CNPMI CA

S Soneset Sonepre Sonepre Soneany Soneone Soneone Soneone

P Psw(110) Psw(70) Pbd Pbd Psw(10) Psw(10) Pcw(5)

M m̃cos(nlr,1) mf mlc md mlr mnlr m̃cos(nlr,1)

Σ σa σa σa σa σa σa σa
u
si

n
g

co
rp

u
s 20NG 0.665 0.756 0.395 0.563 0.312 0.486 0.563

Genomics 0.671 0.652 0.514 0.549 0.624 0.630 0.632
RTL-Wiki 0.627 0.615 0.272 0.545 0.527 0.573 0.542
Movie 0.548 0.549 0.093 0.453 0.473 0.438 0.431

average 0.628 0.643 0.319 0.528 0.484 0.532 0.542

u
si

n
g

th
e

W
ik

ip
ed

ia

N
=

1
0 20NG 0.859 0.825 0.562 0.822 0.696 0.780 0.739

Genomics 0.773 0.721 0.442 0.452 0.478 0.594 0.530
NYT 0.803 0.757 0.543 0.612 0.783 0.806 0.747

average 0.812 0.768 0.516 0.629 0.652 0.727 0.672

N
=

5 RTL-NYT 0.728 0.720 0.106 0.438 0.631 0.678 0.687
RTL-Wiki 0.679 0.645 0.350 0.499 0.558 0.606 0.602
Movie 0.544 0.533 0.143 0.454 0.447 0.452 0.465

average 0.650 0.633 0.200 0.464 0.545 0.579 0.585

average 0.731 0.700 0.358 0.546 0.599 0.653 0.628

Table 2: Coherence measures with strongest correlations with human ratings.

less than three ratings or words with encoding errors are
removed.9

The RTL-Wiki corpus is published in bag-of-words for-
mat that is unsuitable for paragraph-, sentence- or window-
based probability estimations. Therefore, we have retrieved
the articles in version of May 2009 from Wikipedia history
records. Not all articles of the original corpus were available
anymore. Therefore, the recreated corpus is slightly smaller
than the original one.

Rosner et al. [16] published the Movie corpus—a Wikipedia
subset—and 100 rated topics. Topics are given as sets of five
top words. Like the RTL-Wiki corpus this corpus was recre-
ated and is slightly smaller than the original one.

Table 1 shows an overview of sizes of the different datasets
used for evaluation. All corpora as well as the complete
Wikipedia used as reference corpus are preprocessed using
lemmatization and stop word removal. Additionally, we re-
moved portal and category articles, redirection and disam-
biguation pages as well as articles about single years.

5. RESULTS AND DISCUSSION
Table 2 shows the best performing coherence measures

with respect to the different datasets.10

The largest correlations for all datasets (except for the
Movie dataset) were reached, when the coherence measures
relied on probabilities derived from the Wikipedia instead of
the corpus used for topic learning. We focus our discussion
on these calculations.

Most correlations computed for topics with 10 top words
are higher than those of topics with 5 top words. Thus,

9The RTL-Wiki dataset contains 23 word sets with 6 words
and more than 3 ratings that were removed as well to ensure
comparability of ratings

10Further results can be found in the supplementary mate-
rial. Results differing to Aletras and Stevenson [1] might be
caused by a different preprocessing and different versions of
the Wikipedia.
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Figure 3: The influence of the sliding window’s size
on the correlation of variants of different coherences
and human ratings.

evaluation of the topic quality is harder, if the number of
top words N is small.

Looking at already proposed coherence measures (five most
right columns of table 2), our results confirm that on average
UCI coherence performs better with NPMI. Among already
proposed coherence measures, the NPMI showed best overall
performance. Slightly lower correlations are obtained by the
best performing vector-based coherence of those proposed in
[1]. UMass coherence has lower correlations—especially in
cases of small word sets. Shogenji’s (0.034) and Olsson’s
(0.218) coherences (not shown in table 2) have low corre-
lations, while Fitelson’s coherence (0.541) is comparable to
Cone−any proposed in [16].

The best performing coherence measure (the most left col-
umn) is a new combination found by systematic study of
the configuration space of coherence measures. This mea-
sure (CV ) combines the indirect cosine measure with the
NPMI and the boolean sliding window. This combination
has been overlooked so far in the literature. Also, the best
direct coherence measure (CP ) found by our study is a new
combination. It combines Fitelson’s confirmation measure



Name direct indirect

Pbd 0.648 0.664
Pbp 0.679 0.698
Pbs 0.664 0.691
Psw(70) 0.700 0.731
Psw(110) 0.668 0.731
Pcw(50) — 0.695

Sanyany 0.617 0.730
Soneall 0.456 0.728
Soneany 0.648 0.730
Soneone 0.699 0.711
Sonepre 0.700 0.711
Sonesuc 0.695 0.711
Soneset — 0.731

σa 0.700 0.731
σg 0.468 0.606
σh 0.457 0.590
σm 0.659 0.730
σn 0.482 0.573
σq 0.648 0.716
σx 0.513 0.670

Table 3: Best correlations for the probability es-
timations, segmentations and aggregations if they
were combined with a direct or indirect confirma-
tion measure.

with the boolean sliding window. This one is still better
than published measures.

Among probability estimation methods, the boolean para-
graph, boolean sentence and context window methods per-
formed better than the boolean document (see table 3). The
boolean sliding window performed best, but the window size
should be larger than proposed in [13]. Figure 3 shows the
correlation to human ratings achieved by variants of CV ,
CP , UCI and NPMI with different window sizes. It shows
that only the CP coherence has a very high correlation with
a small window (s = 10). The correlation of CV and NPMI
remains on a high level, when the window size is larger than
50. The UCI coherence benefits from a larger window size,
too, and reaches its best correlation at s = 70. An explana-
tion for the good performance of the boolean sliding window
is that it implicitly represents distances between word tokens
within large documents. Further, large documents that are
known to have good quality in Wikipedia, are implicitly up
weighted because they contain more windows than smaller
documents.

Among the segmentation methods, if a direct confirmation
measure is used the single-word-based segmentation meth-
ods (Soneone , Sonepre and Sonesuc ) have the highest and Soneall has the
worst correlations. This changes when an indirect confirma-
tion measure is used. While all segmentation methods reach
a very high correlation, the single-word-based segmentations
have slightly lower correlations than those that take larger
subsets into account (Sanyany , Soneany, Soneall , Soneset ).

The arithmetic mean is the aggregation with the highest
correlations. Combined with indirect confirmation measures
the median and the quadratic mean created high correla-
tions, too.

Among the direct confirmation measures, only mf , mnlr,
mlr and md reach higher correlations (see table 4). The last

Name direct
indirect

m̃cos m̃dice m̃jac

mc 0.581 0.619 0.628 0.626
md 0.623 0.675 0.676 0.664
mf 0.700 0.685 0.453 0.539
mj 0.478 0.582 0.592 0.576
ml 0.381 0.388 0.380 0.380
mlc 0.493 0.374 0.238 0.238
mlj 0.574 0.249 0.210 0.205
mll 0.582 0.563 0.472 0.507
mlr 0.632 0.714 0.672 0.670
mls 0.172 0.714 0.672 0.670
mnlr 0.693 0.731 0.689 0.691
mo 0.478 0.582 0.592 0.576
mP — 0.575 0.605 0.590
mr 0.378 0.605 0.577 0.557

Table 4: Best correlations for the confirmation mea-
sures used directly or combined with an inderect
confirmation measure.

corpus coherence average
left out P S M Σ correlation

20NG (Psw110, S
any
any , m̃cos(nlr,1), σm) 0.708

Genomics (Psw70, S
one
set , m̃cos(nlr,1), σa) 0.724

NYT (Psw110, S
one
set , m̃cos(nlr,1), σa) 0.717

RTL-NYT (Psw110, S
one
set , m̃cos(nlr,1), σa) 0.732

RTL-Wiki (Psw110, S
one
set , m̃cos(nlr,1), σa) 0.741

Movie (Psw70, S
one
set , m̃cos(nlr,1), σa) 0.769

Table 5: Coherence measures with the highest aver-
age correlations if one dataset has been left out.

three benefit from a combination with an indirect measure,
while the correlation of mf drops.

The small differences in correlation of coherences with a)
different window sizes and b) segmenation methods that are
very similar to each other, leads to a large number of coher-
ences having a high average correlation that is only slightly
lower than the best performing coherence CV . Thus, there
are many variants of CV that are performing very good as
long as they use

• a sliding window with a window size s ≥ 50,
• a segmentation method that takes larger subsets into

account and
• σa or σm as summarization method.

We confirm this by generating leave one out averages by
calculating the average using only five of the six datasets.
Table 5 shows that independently from the dataset left out,
CV or one of its variants fullfilling the points above achieves
the highest average correlation. For every coherence in table
2, figure 4 shows the six averages. It can be seen that the
set of averages of CV only overlap with the averages of CP
and are clearly higher than those of the other coherences.

6. RUNTIMES
Next to the quality it is important to know the costs of a

certain coherence measure. Therefore, we have analyzed the
runtimes of all coherence measures. For this experiment, we
used the 100 topics of the NYT dataset and the Wikipedia



Figure 4: The leave one out averages of the coher-
ence measures.

Name runtime in s

CV 315.2
CP 317.7
CUMass 13.7
Cone-any 13.7
CUCI 356.1
CNPMI 356.1
CA 301.8

Table 6: Runtimes on the NYT dataset and the
Wikipedia as reference corpus.

as reference corpus. Table 6 shows the overall runtimes of
the coherence measures to compute the results presented in
table 2.

For the runtime of a coherence measure, the most impor-
tant component is the probability estimation. The fastest
one is the boolean document that needed only 13.7s to re-
trieve all neccessary probabilities. The boolean paragraph
and the boolean sentence based estimation methods needed
34.4s and 138.8s. Both suffer from the fact that there are
much more paragraphs and sentences than single documents.
But they are still faster than the window based approaches
since the reference corpus can be divided into paragraphs or
sentences while preprocessing the corpus. In contrast, both
window based estimation methods had the highest runtimes.
This is caused by the need of retrieving the single positions
of the words inside the documents to check whether these
positions are inside the same window. As parameters for
the runtime of all probability calculation we can identify a)
the number of topics, b) the number of top words per topic
(N) and c) the size of the reference corpus. On the other
hand, the size of the window does not have an influence on
the runtimes.

Another important component is the segmentation. While
the segmentation of a specific topic is very fast, it controls
the number of confirmation values that have to be calcu-
lated. Thus, it has a high impact on the time needed by the
confirmation measure and the aggregation component. Ta-
ble 7 shows the number of subset pairs Si that the different
segmentations create and two examples of the influence of
this number on the runtime of confirmation measures and
aggregations. It can be seen that Soneany and Sanyany have an
exponential complexity.

7. APPLICATIONS
Coherence measures can be applied to automatically rate

quality of topics computed by topic models. This can be

Name |S| runtimes in s
mcos(mnlr,1) σm

Soneall N 0.002 <0.001

Soneset N 0.002 —

Sonepre
N·(N−1)

2
0.002 <0.001

Sonesuc
N·(N−1)

2
0.002 <0.001

Soneone N · (N − 1) 0.002 0.001

Soneany N · (2(N−1) − 1) 0.140 0.023

Sanyany

N−1∑
i=1

((
N
i

)
· (2i − 1)

)
1.436 0.322

Table 7: Different segmentation schemes, the num-
ber of subset pairs Si they contain (|S|) and exam-
ples of their influence on runtimes of confirmation
measures and aggregations.

used in data exploration systems like TopicExplorer11 [9]
that use word representations of topics to show the user
an overview of large document collections. Topics that can-
not be interpreted are filtered out using coherence measures.
Thus, usability of the system is increased by hiding topics
that would confuse users.

As example table 8 shows the five topics with highest and
lowest coherence respectively of a total of 200 topics that are
computed by Latent Dirichlet Allocation [3] using English
Wikipedia. It clearly shows the difference between the qual-
ity of the topic representations as best topics allow to guess
a general topic while the worst topics are not interpretable.

However, coherence measures have applications beyond
topic models. First, precision of key word search in docu-
ment collections can profit by filtering out documents that
contain the query key words in some proximity but the words
are located in nearby but thematically different passages.
The approach would extract a word set for each document
that covers the query words as well as the main words of
the documents passage that contains the query words. Low
quality hits for the query are filtered out by setting a mini-
mum threshold for the coherence of the extracted word set.

Second, coherence can be used to select advertising links
that fits a web page. The approach is similar as above. A
word set is extracted from a web page that contains the most
describing words of the pages content. Advertising links are
selected that maximize coherence of the union of the web
page’s word set with descriptive words of the respective ad.

Third, coherence can be used to improve automatic trans-
lations of web pages. When using a dictionary to translate
a sentence from a web page into another language, usually
ambiguous translations of single words remain. Coherence
measures can be used select the most coherent combination
among the ambiguous translations.

8. CONCLUSION
We proposed a unifying framework that span the space

of all known coherence measures and allows to combine all
main ideas in the context of coherence quantification. We
evaluated 237 912 coherence measures on six different bench-
marks for topic coherence—to the best of our knowledge,
this is the largest number of benchmarks used for topic co-
herences so far. We introduced coherence measures from

11http://topicexplorer.informatik.uni-halle.de

http://topicexplorer.informatik.uni-halle.de


coherence topic

0.94 company sell corporation own acquire purchase buy business sale owner
0.91 age population household female family census live average median income
0.86 jewish israel jew israeli jerusalem rabbi hebrew palestinian palestine holocaust
0.85 ship navy naval fleet sail vessel crew sink sea submarine
0.83 guitar album track bass drum vocal vocals release personnel list
. . .
0.35 number code type section key table block set example oth
0.34 group official website member site base oth form consist profile
0.34 part form become history change present create merge forme separate
0.29 know call name several refer oth hunter hunt thompson include
0.27 mark paul heart take read harrison follow become know include

Table 8: The five Wikipedia topics with highest and lowest coherences using best preforming measure CV .

scientific philosophy that have been not used in the area of
topic evaluation and—in the case of Fitelson’s coherence—
showed a good performance. Using our framework, we iden-
tified measures that clearly outperform all coherences pro-
posed so far.

In the future, a next step will be a more detailed investiga-
tion on the sliding window and could bring up new probabil-
ity estimation methods. Future work will include transfer of
coherence to other applications beyond topic models, which
can be done in a systematic way using the new unifying
framework. Hence, our research agenda may lead to com-
pletely new insights of the behavior of topic models. Finally,
our open framework enables researchers to measure the im-
pact on a comparable basis for fields of application like text
mining, information retrieval and the world wide web. Ad-
ditionally, it will be possible to finally evaluate the reasons
for specific behavior of statistics-driven models and uncover
distinguishing properties of benchmarks.
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