
Knowledge Base Shipping to the Linked Open Data Cloud

Natanael Arndt
Universität Leipzig
Augustusplatz 10

04109 Leipzig, Germany
arndt@informatik.uni-leipzig.de

Markus Ackermann
Universität Leipzig
Augustusplatz 10

04109 Leipzig, Germany
ackermann@informatik.uni-

leipzig.de

Martin Brümmer
Universität Leipzig
Augustusplatz 10

04109 Leipzig, Germany
bruemmer@informatik.uni-

leipzig.de

Thomas Riechert
Hochschule für Technik,

Wirtschaft und Kultur Leipzig
Gustav-Freytag-Str. 42A
04277 Leipzig, Germany

thomas.riechert@htwk-leipzig.de

ABSTRACT
Popular knowledge bases that provide SPARQL endpoints
for the web are usually experiencing a high number of re-
quests, which often results in low availability of their in-
terfaces. A common approach to counter the availability
issue is to run a local mirror of the knowledge base. Run-
ning a SPARQL endpoint is currently a complex task which
requires a lot of effort and technical support for domain ex-
perts who just want to use the SPARQL interface. With
our approach of containerised knowledge base shipping we
are introducing a simple to setup methodology for running a
local mirror of an RDF knowledge base and SPARQL end-
point with interchangeable exploration components. The
flexibility of the presented approach further helps main-
taining the publication infrastructure for dataset projects.
We are demonstrating and evaluating the presented meth-
odology at the example of the dataset projects DBpedia,
Catalogus Professorum Lipsiensium and Sächsisches Pfar-
rerbuch.

Keywords
Docker, Knowledge Base, Linked Open Data, Web of Data,
Semantic Web, SPARQL Service, Container-based Virtual-
isation

1. INTRODUCTION
Modelling and representing knowledge using RDF has be-

come an established tool throughout diverse domains. How-
ever, the process of publishing and maintaining RDF know-
ledge bases on the World Wide Web in general and on the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant-
age and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistrib-
ute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SEMANTiCS ’15, September 15 - 17, 2015, Vienna, Austria

© 2015 Copyright held by the owner/author(s). Publication rights
licensed to ACM. ISBN 978-1-4503-3462-4/15/09…$15.00
DOI: http://dx.doi.org/10.1145/2814864.2814885

Linked Open Data cloud (LOD cloud) in particular requires
technical expertise. While allocating resources to know-
ledge engineers who model the domain of interest and cre-
ate the knowledge bases is easy to justify, making these
datasets available as Linked Data is equally important. Al-
though this should be a mere technicality to Linked Data
experts, setup and maintenance of knowledge bases pub-
lished as Linked Data are time consuming tasks that are
often overlooked. These complications become clearer by
looking at evaluations of LOD cloud datasets, such as by
Schmachtenberg et al. [13], where only 19.47% of propriet-
ary vocabularies were fully dereferenceable and only 9.96%
of datasets provided SPARQL endpoints.

Another facet of this issue is reproducibility of experi-
ments performed on RDF knowledge bases. Properly com-
paring own approaches to prior research entails working with
the same data. However, knowledge bases evolve and public
endpoints may either stop serving the data that was ori-
ginally used in experiments, or they might not be powerful
enough to provide the data in reasonable time spans. Find-
ing the data, loading it into a local triple store and using
this local mirror to perform the experiments is the usual way
to counter this problem. Publication of knowledge bases to
the LOD cloud usually comprises the following steps:

1. Installation of a triple store
2. Loading the data to be published into the triple store
3. Setting up a (publicly available) SPARQL endpoint
4. Providing a presentation application to support the

exploration of the knowledge base
5. Ensuring de-referencability of IRIs occurring in the

published knowledge base
6. Maintain the setup and ensure its availability

Performing these steps requires a certain level of tech-
nical knowledge and understanding of the individual server
components. This often requires a knowledge engineer resp.
domain expert to either consult a system administrator or
to invest a significant amount of time to selectively acquire
DevOp-competences that often diverge far from the original
domain and core research interests of the knowledge engin-
eer.

To alleviate these issues, we propose the methodology
of Dockerizing Linked Data (DLD, http://dld.aksw.org/):
an approach of a containerised Linked Data publication in-
frastructure. By using Docker container virtualisation, it
provides benefits regarding the maintainability and ease of
setup, through modularisation of individual components fol-
lowing the principle of micro services1. In addition, it en-
ables easy mirroring of a setup on other computer systems.
Apart from the pure presentation of the knowledge base we
are also taking a look at use cases where write access is
needed. A detailed description of the overall architecture is
given in section 3. In section 3.1 we specify a way of con-
tainerising a triple store together with the used access and
management interfaces. Different ways for loading the ac-
tual data into a containerised triple store and how to backup
the data are presented in section 3.2. In section 3.3 we show
how to create and attach containers for a HTML represent-
ation of the data, in addition to the SPARQL endpoint. We
are using the presented approach to provide a ready-to-run
DBpedia SPARQL endpoint setup to create a local mirror as
replacement for the highly demanded central endpoint (sec-
tion 4.1). The approach is also used to run and maintain
the two prosopographical knowledge bases Catalogus Pro-
fessorum Lipsiensium (section 4.2) and Sächsisches Pfar-
rerbuch (section 4.3) which both share many requirements
to the software setup and thus can benefit from a modular
reusable software stack.

2. BACKGROUND AND TOOLING
Container-based operating system virtualisation is a tech-

nology used to provide an isolated execution environment
for multiple individual applications sharing the complete
hardware and the host’s core operating system components
while each container has its own filesystem [12]. In contrast,
with full- and para-virtualisation technologies each virtual
machine brings its own operating system kernel which in-
creases the resource footprint on the host system. Examples
of container-based operating system virtualisation technolo-
gies are e. g. FreeBSD jail2, Linux Containers (LXC)3 and
Docker4.

Docker, albeit a comparatively young project started in
2013, experienced a very rapid increase in its popularity and
community uptake [10]. Initially, the main contribution of
Docker was not advancing operating system or virtualisation
technology itself, but rather providing a feature-rich and
straightforward way to use APIs and interfaces by combing
pre-existing and maturing open-source virtualisation tech-
nologies. At its inception, Docker utilised LXC to create
kernel-level process namespaces and control groups for each
container to establish an isolated process tree with holistic
facilities to control and modify its resource consumption and
network traffic. Current releases of Docker now use a pro-

1We understand micro services as small independently de-
ployable services, each responsible for a well defined sub-task
of the whole setup; cf. http://martinfowler.com/articles/
microservices.html
2FreeBSD jails in the FreeBSD handbook: http:
//www.freebsd.org/doc/en_US.ISO8859-1/books/
handbook/jails.html
3LinuxContainers.org project webpage: http:
//linuxcontainers.org/
4The Docker project webpage: http://docker.io/

cess container library called libcontainer, a sub-project of
the original Docker initiative.

Another important Docker feature is the manner in which
filesystems for the isolated processes are managed. On boot-
strapping, each container has its own replica of a root filesys-
tem defined by a Docker image. Harnessing layered and ver-
sioning copy-on-write filesystems (AuFS or btrfs), changed
parts of the filesystem (diffs) are stored alongside a copy of
the corresponding filesystem parts before destructive oper-
ations, allowing to restore any filesystem state during the
lifecycle of a container and to trace the history of write op-
erations. Each of these states of the filesystem can be tagged
and reused as a new image, allowing new containers to start
their lifecycle with that exact filesystem state.

In addition to the aforementioned prototypical filesystem
tree, a Docker image groups information about which root
process resp. entry point to invoke, potentially required ad-
justment to the execution environment of the process (i. e.
the working directory and environment variables) and which
resource limits must be respected. The preferred way to cre-
ate an image is defining aforementioned details in a Docker-
file5. This Dockerfile also allows to declare process invoca-
tions and to add additional files to the base image to adjust
aspects of the configuration in the base image. Dockerfiles
also have the advantage of an even more transparent formal
description of steps to obtain a desired initial configuration
environment for processes to be run in containers.

With volumes Docker provides the possibility to mount
directories of the host filesystem or other containers into
the filesystem of a container6, exempt from the versioning
by the copy-on-write filesystem in favour of increased I/O
performance. Each container receives its own virtual net-
work interface, allowing it to connect to other nodes on the
internal virtual network and to the Internet through a host
bridge. With the EXPOSE keyword a container can select
which ports are available to the host system. To provide
services via network connections from within a container
to other containers, Docker offers a linking mechanism7.
Using links, stable host names and ports can be achieved
for inter-container network communication, further environ-
ment variables from upstream containers are made available
as well. It provides a simple but effective way to interchange
small pieces of information required for successful orchestra-
tion.

Container-based operating system virtualisation has the
advantage of keeping all dependencies necessary to run an
application together while major parts (hardware and op-
erating system kernel) are shared between instances. We
expect that the main technical setup for users of this pro-
ject will be commodity hardware with moderate perform-
ance characteristics. In such a context, the desired orches-
tration of numerous micro services in isolated environments
with a complete full- or para-virtualised system for each ser-
vice would be prohibitively taxing on limited computation
power. However, recent comparative research also indicates
significant performance advantages in using container-based

5Reference documentation about the syntax of a Dockerfile:
http://docs.docker.com/reference/builder/
6Docker documentation about volumes: https://docs.
docker.com/en/latest/use/working_with_volumes/
7Docker documentation about the linking sys-
tem: http://docs.docker.com/userguide/dockerlinks/
#connect-with-the-linking-system

virtualisation on server hardware [6], incentivising this ap-
proach also for scenarios when a DLD setup is deployed to
cater services for a broader user audience. Docker in par-
ticular provides tooling which allows simple setup of new
images and containers and provides means for portable and
reproducible image creation with Dockerfiles. Furthermore,
Docker can be installed on the three mayor operating sys-
tems Linux, MacOSX and Windows and can be deployed
to mayor cloud platforms as well8.

Docker Compose9 (formerly known as fig10; in this pa-
per just Compose) is a command line tool for configuring
and managing complex setups of Docker containers. These
setups are declared in YAML11 configuration files that de-
clare a set of images for which containers should be spawned.
They also specify desired links, shared volumes and other
parameters for image instantiation. These additional config-
uration options would otherwise always needed to be manu-
ally (re-)specified on the command line interface for the
Docker process. Compose coordinates simultaneous start-
ing and stopping of all containers belonging to a Compose-
configuration as a group and offers helpful aggregation of
the log outputs from member containers.

3. ARCHITECTURE
In our architecture we are dividing the components needed

for shipping a knowledge base in a number of general types
of containers: store, load & back-up and presentation & edit
components as depicted in fig. 1. Each of those components
is exchangeable by containers implementing the necessary
tasks resp. interfaces. The triple store component can be
considered the core of the setup while all other components
are reading from it or writing to it. It contains an RDF
graph database, is responsible for persisting the knowledge
base and provides interfaces for querying and optionally al-
tering the contained data. A load component is responsible
for loading the knowledge base into the triple store if it is
not shipped with preloaded data. Back-up components are
responsible for frequently saving the contained data in a se-
cure place to avoid data loss, if writing access is implemented
in the setup. The presentation & edit components can be
any service which provides means for browsing and explor-
ing the data of the knowledge base. In an authoring use
case, these components also provide services for updating
the knowledge base.

When designing the architecture we were following the
following principles: Convention-over-configuration: to de-
crease the amount of configuration items required for a DLD
setup. We introduce conventions (especially naming con-
ventions) that the configuration tool expects to be fulfilled.
Docker images as component boundaries (resp. micro ser-
vices): whenever possible, create the individual component
images self-sufficient, with little or no assumptions of the
modes of operation of accompanying components in a DLD
8Docker installation instructions for Linux, MacOSX, Win-
dows, various cloud computing platforms and other operat-
ing systems: https://docs.docker.com/installation/
9Docker Compose in the Docker Documentation: http://
docs.docker.com/compose/

10Project webpage of the Docker Compose predecessor fig:
http://www.fig.sh/

11The YAML specification in the current version 1.2: http:
//www.yaml.org/spec/1.2/spec.html; YAML is a superset
of JSON

Triple Store
(Virtuoso,
Open RDF,
Fuseki, …)

Presentation,
Exploration

& Edit
Components

Database
Files

Git Repository/
Local Filesystem

ODBC/HTTP/
SPARQL

HTTP

HTTP

HTTP/
SPARQL

ODBC/
SPARQL

W
W

W

Host System

Load

Back-Up

Figure 1: Architecture and data-flow of the contain-
erized micro services for publishing knowledge bases

setups. Agnostic to the choice of a programming language:
specifications are formulated and data formats were chosen
so that a broad choice of programming languages provide the
capabilities and libraries to allow implementation of com-
ponent configuration and supervision for additional com-
ponent submissions by third parties. Another simplifying
convention in the current state of the project is allowing
for at most one load, backup and store component each per
setup, that will be referenced by exactly that name in the
Compose-configuration. (However, an arbitrary number of
present & edit components is possible.)

3.1 Triple Storage
A triple store is a graph database management system

capable of storing the RDF triples of RDF knowledge bases.
It usually provides a SPARQL Query [14] interface which
can also be used with SPARQL Update for adding and re-
moving triples. Containers for the store component typically
consist of the store binaries and their dependencies together
with its configuration files and a script-based management
process. This process, if necessary, adjusts the configuration
files prior to store initialisation and supervises the store pro-
cess, possibly also restarts the store process on (unexpected)
termination for basic failover. To ensure the persistent stor-
age of saved triples independent of the lifetime of the store
container, data directories for the provided store are kept in
a volumes (depending on configuration either a filesystem
location of the host system or a Docker-managed volume).

For the proof of concept we started with component im-
ages for the triple store implementations Open Link Vir-
tuoso12, Apache Jena Fuseki13 and Sesame Native Store14.
Other DLD-compliant store images can also be provided by
third parties if they can be set up in a Linux environment
and configured to work according to a small set of conven-
tions detailed in section 3.4.

3.2 Load and Back-Up
A load component is responsible for pre-loading a triple

store with an RDF knowledge base when initialising a con-
tainer setup. The actual RDF knowledge base file can either
be provided as a file on the host system, can be fetched

12Open Link Virtuoso product webpage: http://virtuoso.
openlinksw.com/

13Apache Fuseki documentation:http://jena.apache.org/
documentation/serving_data/

14Sesame alias RDF4J project webpage: http://rdf4j.org/

from an online source or can come from some backup loc-
ation. During the data loading phase, right after the con-
figuration phase, a loading container starts to connect to
the configured triple store and injects the necessary data,
which is then available at the triple store during the service
phase (cf. section 3.4). A load container can either connect
to the triple store via the standard SPARQL interface or use
proprietary side-loading mechanisms.

Back-up containers provide a service for querying the data
of a triple store and storing it in a safe location. They have
the same lifecycle as the triple store to backup. This is
usually done by configuring a cron job which is executed
in fixed intervals to dump all data from the triple store.
Components responsible for synchronising different setups
also belong to this category of images.

3.3 Presentation and Publication
Presentation and publication images are meant to provide

exploration interfaces to the knowledge base. This can be
any application capable of fetching data from a triple store
to provide the user with some generic or special view to
the data. In this proof of concept we are providing the
generic exploration interfaces pubby [5], snorql15 and On-
toWiki [7]. OntoWiki also provides the possibility to create
very specific exploration and publication interfaces with its
site extension16. The capability of providing domain spe-
cific views and editing components is used in the Catalogus
Professorum Lipsiensium (cf. section 4.2) and Sächsisches
Pfarrerbuch (cf. section 4.3) use cases. A limitation of On-
toWiki is that it currently only supports the Virtuoso triple
store.

A presentation container is linked to the triple store and
connects to the database with the credentials given in the
environment variables from the triple store container. It
is available throughout the whole service phase (cf. sec-
tion 3.4). Communication with the triple store is imple-
mented in SPARQL or any custom interfaces available. The
presentation interface finally is usually exposed as HTTP
interface (at port 80) which than can be made available to
the WWW through the host network bridge.

3.4 Container Design and Conventions
DLD-compatible images expose a set of required meta-

data items using the Docker LABEL17 declarations. Labels
are arbitrary key/value-pairs that can be attached to docker
images and containers. The DLD labels are used for defining
the type, special requirements and configuration options of
an image. Special configuration options can be for example
expected environment variables or volumes required to be
provided.

Label values for DLD keys are JSON strings, which also
allow to define Compose configuration fragments to be de-
clared. Table 1 exemplifies the usage of labels in DLD.

Settings adjusting the behaviour of component containers
during their execution are defined by declaring environment

15The original SNORQL source code: http://d2rq-map.
cvs.sourceforge.net/viewvc/d2rq-map/d2r-server/webapp/
snorql/ and the currently active source code fork at GitHub:
https://github.com/kurtjx/SNORQL

16OntoWiki Site Extension at GithHub: https://github.
com/AKSW/site.ontowiki

17Labels on images were introduced in Docker 1.6: https:
//docs.docker.com/userguide/labels-custom-metadata/

Label Key

Component Label Value
Description of Semantics

org.aksw.dld.type

VOS 7 "store"
Virtuoso Open Source 7 is a triple store.

OntoWiki "present"
OntoWiki is for authoring (implies presenta-
tion).

org.aksw.dld.subtype

VOS 7 "vos7"
This store is specifically Virtuoso Open Source
7.

org.aksw.dld.component-constraints

VOS 7 {"load": "vos"}
VOS should be filled with suitable load compon-
ent using it’s bulk laoding facilities.

Ontowiki {"store": "vos[67]"}
OntoWiki is only compatible with recent VOS
versions (value interpreted as regular expres-
sion).

org.aksw.dld.volumes-from

VOS load ["store"]
VOS load needs to copy data into the filesystem
of the store, thus mount volumes from the store
to obtain a shared part of the store filesystem.

Table 1: Examples for the usage of Docker labels for
meta-information on component images for Virtuoso
Open Source (VOS) and OntoWiki

variables. This implicitly allows component containers to in-
spect settings of components that it is linked to. This allows
for instance load components to be informed about creden-
tials that have been set for the store to gain additional priv-
ileges for side-loading operations18. Some environment vari-
ables like SPARQL_ENDPOINT_URL and DEFAULT_GRAPH are ex-
pected by convention for all components and can be defined
universally in the DLD configuration file.

Usually the lifecycle of component containers is split into
a short configuration phase immediately after their instan-
tiation, which is followed by an optional data loading phase
before each container starts serving their encapsulated ser-
vice in the service phase. The configuration phase allows
for adjustments of the service setup, e. g. desired authentic-
ation details for a triple store, which named graph should
be presented by default by a presentation component or the
host name under which such a component is exposed to the
WWW (e. g. to ensure correct minting of de-referenceable
Linked Data descriptions for resources).

In addition to aforementioned conventions applicable to
all components, DLD also builds on some conventions for
specific component types. For instance RDF data dumps to
be processed by load components are expected to be placed
in a mounted volume named /import inside the container.

18A PASSWORD environment variable from the store e.g. is
provided as STORE_ENV_PASSWORD in the linking load con-
tainer.

3.5 Provisioning of a Container Setup
The requirements for the presented architecture are the

Dockerizing Linked Data (DLD) tools as described at our
project webpage (http://dld.aksw.org), including a running
Docker engine installation as well as the Docker Compose19

tool.

datasets:
dbpedia -2015-endpoint:

graph_name: "http://dbpedia.org"
location_list: "dbp -2015-download. ¬

list"

components:
store:

image: aksw/dld-store -virtuoso7
ports: ["8891:8890"]
environment:

PWDDBA: tercesrepus
mem_limit: 8G

load: aksw/dld-load-virtuoso
present:

ontowiki:
image: aksw/dld-present - ¬

ontowiki
ports: ["8088:80"]

environment_global:
DEFAULT_GRAPH: "http://dbpedia.org"
SPARQL_ENDPOINT_URL: "http://store ¬

:8890/sparql"

Listing 1: A DLD configuration file for a setup
with the Virtuoso Open Source triple store,
a suitable load component and OntoWiki for
presentation/edits, retrieving DBpedia data via
downloads listed in a separate file

in-lined in
config file

listed in
external file

local file(s) file: file_list:
download(s) location: location_list

Table 2: Options for specifiying RDF data dumps to
be imported

Listing 1 shows an example of a DLD configuration file. In
addition to specifications for desired components, data to be
served by the store can be specified in the datasets-section.
In this case, a separate file is referenced that lists URLs
of dataset dumps to be retrieved and loaded (Table 2 also
enumerates other alternative directives for specifying RDF
data to import). The DLD configuration tool, provided with
this configuration, will perform several tasks to prepare the
setup:

1. A working directory is created that will contain the
compiled Compose configuration and (if specified) data
dumps to load.

2. Referenced images will be pulled.
19Installation instructions for Docker Compose: http://docs.
docker.com/compose/install/

3. The DLD-specific LABEL meta-data of the images will
be extracted, checks for declared and implicit setup
constraints will be performed, and entailed additional
Compose configuration items are incorporated to the
final setup. E. g. the image for the store compon-
ent must carry the org.aksw.dld.type label with the
value store.

4. Specified Linked Data dumps are downloaded and ag-
gregated into the models directory inside the working
directory, augmented with files specifying the named
graph URIs according to the conventions of the Virtu-
osos bulk loader20.

The procedure of creating, fetching and configuring the indi-
vidual components of a container setup is depicted in fig. 2.

Docker
Compose

Configuration

Docker Registry
(http://registry.hub.docker.com/)

DLD
Setup

Configuration

Docker Images

LOD-Cloud
RDF Knowledge Bases

Volumes

Container Setup

LABEL
image meta information

Docker
Daemon

Figure 2: Workflow for creating a container setup

load:
environment: {DEFAULT_GRAPH: 'http:// ¬

dbpedia.org', SPARQL_ENDPOINT_URL: '¬
http://store:8890/sparql '}

image: aksw/dld-load-virtuoso
links: [store]
volumes: ['/opt/dld/wd-dbp2015 -ontowiki ¬

/models:/import ']
volumes_from: [store]

presentontowiki:
environment: {DEFAULT_GRAPH: 'http:// ¬

dbpedia.org', SPARQL_ENDPOINT_URL: '¬
http://store:8890/sparql '}

image: aksw/dld-present -ontowiki
links: [store]
ports: ['8088:80']

store:
environment: {MEM_LIMIT: '8G', ¬

DEFAULT_GRAPH: 'http://dbpedia.org', ¬
SPARQL_ENDPOINT_URL: 'http://store ¬
:8890/sparql ', PWDDBA: 'tercesrepus '}

image: aksw/dld-store -virtuoso7
mem_limit: 8G
ports: ['8891:8890']

Listing 2: Compose configuration file compiled by
the DLD config tool based on the configuration in
listing 1

20Description of the Virtuosos bulk loader: http:
//virtuoso.openlinksw.com/dataspace/doc/dav/wiki/
Main/VirtBulkRDFLoader

Listing 2 shows a resulting Compose configuration, which
can either be submitted directly by the configuration tools
to Compose to start the configured services or checked and
revised by the user before a subsequent manual start by
invoking docker-compose up. The apparent close corres-
pondences between fragments of the DLD configuration and
the resulting Compose is intended as this lowers the entry
barrier for new users of DLD harbouring prior experience
with Compose and allows to develop an intuition how the
final configuration is created more easily. In the example
presented, the user can (after completion of initialisation
and import processes) reach OntoWiki at port 8088 and the
SPARQL interface of Virtuoso at port 8891 of the host sys-
tem.

Although not presented in detail in this paper, it should be
mentioned that setups without load and backup components
are possible as well. A prime example is the usage of a store
component that links in a volume with database files that
contain a selection of RDF datasets already pre-loaded.

4. USE CASES
We have evaluated this architecture in three use cases.

The best-known scenario we investigate is setting up a local
mirror of the DBpedia dataset. As the availability of the DB-
pedia SPARQL endpoint is limited and not all DBpedia data
is served by it, running a mirror is the only way to effect-
ively access all knowledge it contains. Our other use cases
are the prosopographical knowledge bases Catalogus Pro-
fessorum Lipsiensium and Sächsisches Pfarrerbuch. These
knowledge bases, used by digital humanities researchers, are
exemplary for many smaller knowledge modelling and rep-
resentation projects throughout diverse domains, that do
not have the resources necessary to employ Linked Data ex-
perts. These projects can benefit significantly from an easy
to deploy Linked Data publication infrastructure.

4.1 DBpedia
DBpedia21 [9] is one of the most widely used Linked Data

sources on the Web of Data, a large scale knowledge base
reflecting content and structure of 125 Wikipedia language
editions, Wikimedia Commons and Wikidata. Major long-
standing contributions of the project include a general know-
ledge OWL ontology for all kinds of entities described in
Wikipedia and thus being reflected in DBpedia and a frame-
work for extracting machine-actionable fact statements from
Wikipedia info boxes (guided by community curated map-
ping definitions) as well as additional structural features of
Wikipedia pages. Although the English version of DBpedia
is most widely used and was designated with special ca-
nonicalisation status, the facts are extracted analogously in
internationalised DBpedia versions for 124 other Wikipedia
editions as well. The DBpedia project provides supplement-
ary datasets for each language version containing structural
information (e. g. redirecting structures between the Wiki-
pedia pages, Wikipedia categories or disambiguation links)
and dataset aggregation text data for NLP purposes.

DBpedia publishes major releases of holistic extraction
results based on complete Wikipedia dumps at least once a
year. The big volume of information to be found in the
totality of a major release called for a selective decision
for a subset that can still be catered by the official DBpe-

21The DBpedia project webpage: http://dbpedia.org/

dia SPARQL endpoints with some performance guarantees,
based on frequency of requests for certain types of facts by
users of the official endpoint and Linked Data services. A
user of DBpedia with the intent of achieving higher avail-
ability and better performance for their queries with a local
endpoint thus is facing the non-trivial and onerous task of
finding the applicable subset out of hundreds of RDF dump
files provided by the DBpedia download server, depending
on language, release version and relevant information cat-
egories to achieve. To mitigate this problem, ready-to-use
descriptions of relevant DBpedia data compilations will be
provided in the context of this project to be automatically
consumed and loaded into the provided triple store compon-
ents, harnessing information from DataID.

DataID [3] descriptions provide machine-readable dataset
level meta-data and can thus help increase the discoverab-
ility of datasets. Because DataID descriptions mandatorily
contain direct links to data files used to distribute the data-
sets as well as additional information about these files, such
as file format and modification dates, they provide a con-
venient way to select the files to be loaded into the Docker
containers. At the same time, DataID can be used to ship
the container setup configurations, allowing to distribute de-
ployment meta-data with the data itself. We will further
explain this future work in section 6.

4.2 Catalogus Professorum Lipsiensium
The Catalogus Professorum Lipsiensium (CPL) [11] is

a prosopographical knowledge base of professors who have
taught at Leipzig University from its foundation in 1409 to
the presence. It comprises more than 14, 000 entities and
is tightly interlinked with other nodes in the LOD cloud.
The knowledge base is curated by researchers as well as his-
torically interested citizen scientists. The container-based
infrastructure is used to run the CPL curation infrastruc-
ture which is constantly improved by software engineers to
meet the requirements of the contributors and editors. Since
the first release of CPL the software stack was improved and
other universities are as well interested in reusing the soft-
ware system setup.

The CPL infrastructure consists of several web applic-
ations that provide specific adapted interfaces for domain
users – the project team members (Content Editors), exper-
ienced users (Researchers) and general web users. Figure 3
depicts the architecture of CPL that is based on a protec-
ted web interface for the project team and two public inter-
faces. According to the specific interfaces, CPL is build on a
stable OntoWiki Framework application, that provides pre-
cise authoring and visioning information, and an up-to-date
experimental version of OntoWiki to provide latest explor-
ation features for researchers that consume data from the
knowledge base. The experiential OntoWiki version is also
using inferred information and is linked to other datasets on
the LOD cloud. The third component is to provide histor-
ical information about Leipzig University integrated in the
university’s website.

The CPL Docker infrastructure22 provides a setup that
supports software engineers in replacing and updating com-
ponents, such as the RDF editing forms and HTML output
without needing to touch the knowledge base store. We can

22Docker infrastructure of the Catalogus Professorum
Lipsiensium at GitHub: https://github.com/AKSW/
dockerinfrastrukturecpl

experienced
web user

content editor
(Project Team)

general
web user

SPARQL
Endpoint

HTML GUI

[stable]

OntoWiki

Persistency Layer

SPARQL
Endpoint

HTML GUI
[experimental]

OntoWiki

Persistency Layer

HTML GUI
[stable]

CPL Frontend

Persistency Layer

SYNC
SYNC

co
nfi

gu
re

co
nfi

gure

query, search

add, edit, maintain

getData

query, search

browse, annotate, discuss

 synchronize
Model Data

 synchronize
 Model Data

browse, search

[protected zone]

[public zone]

Figure 3: Architecture of CPL (cf. [11])

also easily deploy the complete setup with a new knowledge
base for further tenants without a need to adapt it to the
given server environment, while all required components can
be reused independently.

4.3 Sächsisches Pfarrerbuch
The project “Sächsisches Pfarrerbuch” (engl. Saxonian

pastors book)23 is a catalogue of all pastors serving in the
Lutheran church in Saxony since the reformation in 1517.
Currently the dataset is under curation and only a very
small excerpt of the uncurated data is published. All other
data will be released as Linked Open Data after the cura-
tion phase. Due to the similarity in the domains, the setup
of the software system is highly inspired by the Catalogus
Professorum Lipsiensium, while the audience is different. By
using the approach of the containerised Linked Data pub-
lication infrastructure we can reuse most of the containers
among the two projects while still loading different datasets
to the triple stores.

5. RELATED WORK
Linked Data [1] publishing has mainly been tackled in

foundational works. Heath et al. [8] stresses the importance
of publishing Linked Data according to its criteria and ex-
plains basic publishing recipes, such as hosting RDF/XML
files or serving them via custom server-side scripts or, ideally,
using a triple store. However, the technical deployment is-
sues are not stressed further.

On the subject of Docker containers, Merkel [10] details
that Docker containers are a lightweight solution to resolve
dependency and security problems as well as platform differ-
ences. Docker containers have also been explored to enhance
reproducible research (Chamberlain et al. [4] and Boettiger
[2]). Chamberlain et al. [4] detail that software and exper-

23The Pfarrerbuch project webpage: http://pfarrerbuch.de
and the current curation system: http://pfarrerbuch.aksw.
org

imental setups in research are often not well-documented
enough to provide exact information about the systems they
were executed on, hindering reproducibility of experiments.
Computational environments are very complex and contain-
erisation provides a way to isolate experimental setups from
some external variables of the systems they are executed
on. Boettiger [2] further states that many existing solu-
tions, such as virtual machines, workflow software and con-
tinuous integration services provide significant barriers to
adoption by being hard to realise and often not sufficiently
low-level to solve the mentioned problems of dependencies
and documentation. Both works therefore use Docker as
local development environments for reproducible scientific
research.

The web service Dydra (http://dydra.com/) is a graph
database hosting service on the World Wide Web. It of-
fers to the user the possibility to create graphs, load RDF
data and query it using SPARQL. Currently it is in its beta
period. In contrast to our approach the data can not be hos-
ted on a local machine and thus will not give the user control
over the availability of the services or the data. Further a
local service has the advantage of full access-control, while
for a cloud hosting service it is still in doubt whether it is
suitable for sensible data, even though the service provides
an authentication mechanism.

6. DISCUSSION AND CONCLUSION
We have presented a methodology and procedure to sig-

nificantly ease knowledge base deployment and mainten-
ance by using Docker containers and the principle of mi-
cro services. Working with Linked Data one often encoun-
ters knowledge bases that face regular downtimes, signific-
ant load or completely lack Linked Data publication. The
approach together with current proof of concept implement-
ations for pre-configured knowledge base exploration and
authoring setups shows several desirable properties.

The same setup can be reused for different knowledge
bases or under recurring requirements to the software setup,
while only the data to load has to be exchanged. On the
other hand with the presented modular architecture it is also
possible to exchange individual components without major
dependencies to other components. One can select different
triple store implementations with different advantages and
disadvantages in respect to the data to be published and the
associated use case.

Portability of knowledge base setups is improved by trans-
ferring a customised DLD specification and optionally the
data to load to collaborators. Even though the collaborators
might be using different platforms, the presented tool allows
them to easily setup a mirror which significantly reduces
collaboration overhead. Shipping knowledge bases together
with the deployment configuration that was used during ex-
periments also increases the reproducibility of research by
eliminating errors in the data setup.

Large, well established and popular Linked Data projects
like DBpedia can benefit also indirectly from the establish-
ment of the presented approach or a similar scheme. It can
incentivise a share of users to reduce load on public end-
points by choosing to setup their private mirror which en-
tails further benefits, like stability and faster access. As a
result the easy distributed deployment of mirrors can reduce
the load on a central infrastructure.

We have also shown that small knowledge bases without
large community backing can gain from dockerised data de-
ployment. In the future, we want to further improve data
deployment by providing a visual front-end for configura-
tion. We also want to further concentrate on reproducibility
by enabling data deployment Docker recipes to be shipped
via DataID. By adding essential configuration properties in a
DataID ontology module, dataset descriptions using DataID
will be able to provide information on how to set up the data
locally. This will make it possible to ship machine readable
descriptions of the complete data backend of experiments
and further improving reproducibility. Introducing a com-
mon light-weight network message bus infrastructure integ-
rated in all provided images to allow for more detailed quer-
ies of configuration and environment parameters for tighter
integration as well as status requests appears worthwhile.

7. ACKNOWLEDGEMENTS
We want to thank the students from Business Informa-

tion Systems practical in summer semester 2015, especially
we want to thank the students Georges Alkhouri and Tom
Neumann for helping us with the preparation and imple-
mentations of the Docker infrastructure. We also want to
thank Konrad Abicht for providing the semicon icons (https:
//github.com/k00ni/semicon) under the terms of CC BY-
SA 3.0 used in fig. 2 and fig. 3. This work was supported by
grants from the EU’s 7th Framework Programme provided
for the projects LIDER (GA no. 610782) and GeoKnow (GA
no. 318159).

8. REFERENCES
[1] T. Berners-Lee. Linked Data. Design issues, W3C,

June 2009.
http://www.w3.org/DesignIssues/LinkedData.html.

[2] C. Boettiger. An introduction to docker for
reproducible research, with examples from the R
environment. CoRR, abs/1410.0846, 2014.

[3] M. Brümmer, C. Baron, I. Ermilov, M. Freudenberg,
D. Kontokostas, and S. Hellmann. DataID: Towards
semantically rich metadata for complex datasets. In
Proceedings of the 10th International Conference on
Semantic Systems, SEM ’14, pages 84–91. ACM, 2014.

[4] R. Chamberlain and J. Schommer. Using Docker to
Support Reproducible Research. 07 2014.

[5] R. Cyganiak and C. Bizer. Pubby - a linked data
frontend for sparql endpoints, 2008.

[6] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio.
An updated performance comparison of virtual
machines and linux containers. pages 171–172, 2015.

[7] P. Frischmuth, M. Martin, S. Tramp, T. Riechert, and
S. Auer. OntoWiki—An Authoring, Publication and
Visualization Interface for the Data Web. Semantic
Web Journal, 2014.

[8] T. Heath and C. Bizer. Linked Data: Evolving the Web
into a Global Data Space. Morgan & Claypool, 2011.

[9] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch,
D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, and C. Bizer.
DBpedia - a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web Journal,
6(2):167–195, 2015.

[10] D. Merkel. Docker: Lightweight linux containers for
consistent development and deployment. Linux J.,
2014(239), Mar. 2014.

[11] T. Riechert, U. Morgenstern, S. Auer, S. Tramp, and
M. Martin. Knowledge engineering for historians on
the example of the catalogus professorum lipsiensis. In
P. F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika,
L. Zhang, J. Z. Pan, I. Horrocks, and B. Glimm,
editors, Proceedings of the 9th International Semantic
Web Conference (ISWC2010), volume 6497 of Lecture
Notes in Computer Science, pages 225–240, Shanghai
/ China, 2010. Springer.

[12] M. J. Scheepers. Virtualization and containerization of
application infrastructure: A comparison. 2014.

[13] M. Schmachtenberg, C. Bizer, and H. Paulheim.
Adoption of the linked data best practices in different
topical domains. In The Semantic Web - ISWC 2014 -
13th International Semantic Web Conference, Riva del
Garda, Italy, October 19-23, 2014. Proceedings, Part
I, pages 245–260, 2014.

[14] The W3C SPARQL Working Group. SPARQL 1.1
Overview. Technical report, Mar. 2013.
http://www.w3.org/TR/sparql11-overview/.

