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Abstract. The purpose of this paper is twofold: First, it offers an overview of
challenges encountered by unsupervised, knowledge free methods when analysing
language data (with focus on morphology). Second, it presents a system for un-
supervised morphological segmentation comprising two complementary methods
that can handle a broad range of morphological processes. The first method col-
lects words which share distributional and form similarity and applies Multiple
Sequence Alignment to derive segmentation of these words. The second method
then analyses less frequent words utilizing the segmentation results of the first
method. The challenges presented in the theoretical part are demonstrated exem-
plarily on the workings and output of the introduced unsupervised system and
accompanied by suggestions how to address them in future works.

1 Introduction

Unsupervised, knowledge free approaches analyse raw, unannotated data without any
previous knowledge about the language they are applied on. In the context of morphol-
ogy, which is at the focus of the present study, this can comprise various tasks like
paradigm extraction, detection of related sets of words, or morphological segmentation.
In the last half of a century of research, several dozens of algorithms addressing these
tasks have been developed (see [15] for an overview), with the result that “high accu-
racy by ULM systems is presently only achievable if the language has small amounts
of one-slot concatenative morphology” [15, p.335].

In this paper, we introduce a two-method system performing morphological seg-
mentation, i.e. splitting word forms of a given language into their basic units carry-
ing meaning - the morphemes. The first method utilizes Multiple Sequence Alignment
(MSA). The approach has its origin in bioinformatics, where it is used to align se-
quences of DNA, RNA, proteins, etc. MSA is used to identify conserved regions that
play functional or structural roles in collections of biosequences that are assumed to be
related. The most common way to align multiple sequences is progressive alignment. In
this approach, the most similar pair of sequences is aligned first, and then more distant
sequences are added progressively .[23]. The method has the important characteristics
that it can detect discontinuous patterns which equips it with the potential to success-
fully handle more complex structures with non-concatenative properties.



2 Theoretical Considerations

In this section we briefly survey the challenges that unsupervised morphological seg-
mentation methods face when coping (a) with the subject of the task, the language;
(b) with the methodological issues and implementations; and (c) with the evaluation of
the segmentation results. The issues discussed in this section are then instantiated in the
empirical part in Section 3.

2.1 Language challenges

The utmost aim of unsupervised, knowledge-free algorithms is to analyse any given
language. However, world languages display a variety of morphological processes and
phenomena, so that designing one system that can successfully handle them is a very
ambitious challenge. Depending on the predominance of particular morphological pro-
cess, a language can be classified as agglutinative, inflectional (with the subclass of
introflectional), isolative, or polysynthetic. In general, languages are of mixed morpho-
logical types, so that only a method that can principally handle any language type can
also handle any morphological process that might occur in a language.

Each morphological process poses a different challenge to unsupervised segmenta-
tion. Whereas in polysynthetic languages the task of morphological segmentation over-
laps to a great deal with word segmentation, strictly isolative languages like Chinese
are not relevant for morphological segmentation, since they do not contain any mor-
phemes that could be split. Especially agglutination and inflection thus challenge the
unsupervised language analysis, each of them having properties that either complicate,
or alleviate the morphological segmentation task.

Agglutinative languages exhibit clear boundaries between morphemes which may
be advantageous for unsupervised segmentation. On the other hand, several affixes are
often agglutinated to one stem, which lowers the frequency of occurrence of the same
word forms in the corpus, and thus has negative implications for finding contextually
similar words. As stated earlier, present unsupervised methods perform best on one slot
linear morphology.

Inflectional languages have typically smaller number of affixes which can be added
to a root, due to accumulation of several functions on one affix and frequent syncretism
among inflected forms. However, stem alternants and affix allomorphy are also more
frequent phenomenon in these languages, which makes it more difficult to determine
where the segmentation point should be and whether formally similar word forms are
also close morphologically. A special case are introflective languages with so called
non-concatenative morphology like e.g. Hebrew or Arabic, which often contain discon-
tinouos morphemes both as stems (e.g. root consonants) and inflections (introflection).

As mentioned above, phenomena that characterize one language type are typically
present also in languages assigned to another predominate type. For example, German,
the languages on which we demonstrate our method and the challenges to the unsuper-
vised segmentation, is usually classified as a an inflectional language. In addition to the
inflection ,however, German features other morphological processes. Similarly to En-
glish, grammatical relations between words can be expressed both through inflectional
suffixes, e.g., Werthers Leiden ‘Werther’s suffering’, or through prepositions, which is



typical for isolative languages, das Leiden von Werther ‘the suffering of Werther’. There
are also agglutinative phenomena like in the word Kind-er-n child-PL-DAT, where each
affix carries only one grammatical function; -er: plural -n: dative. Moreover, German
compounding that can result in very complex words is a property that links German with
polysynthetic languages. German irregular verbs (e.g. singen - sangen , sing.PRS-PL-
sing.PST-PL) represent an example of introflection in this language, since grammatical
category (here tense) changes depending on the vowel inserted into the discontinuous
stem morpheme. Circumfixation, another non-concatenative phenomenon, is present in
German as well, e.g. in ge-lauf-en PTCP-run-PTCP, where the circumfix ge-en marks
the participle form.

Methods that aim at an adequate and complete analysis of any given language
should handle successfully all morphological structures. However, as stated also by
[15, p. 310, p.332], unsupervised methods tend to exhibit an implicit or explicit bias
towards a certain kind of languages. Many unsupervised algorithms for morphological
analysis assume concatenative morphology, and design their methods and data struc-
tures in ways that are suited to describe such phenomena (e.g. [25, 26, 10, 4]).

In the empirical part of this paper we present a method that tries to avoid such bias
by applying MSA that had been shown to be able to deal with both concatenative and
non-concatenative morphology. The method differs from the previous approaches in
that it thrives to be language independent (cf. [24] with strong language specific bias
for Arabic, or [8] for stem variation in German) and that it focuses on morphologi-
cal segmentation (cf. [3] who addresses morphology induction with very low F-scores
(below 0.10) for the non-concatenative Arabic). Our approach is similar to features-
and-classes method of [7] in its attempt to design a general system that can address the
whole range of morphological phenomena in any given language.

In addition to the typological division of languages and morphological processes
outlined above, another relevant distinction is between inflectional and derivational
morphology. Inflection modifies a word to create new word forms that express different
grammatical categories (e.g. number, case, tense, etc.). Regular inflection is typically
very productive and therefore easier to detect automatically. Derivation, on the other
hand, is a less productive process that creates new lexemes out of existing bases. It
involves change in the core meaning and often also change in the word class. Lower
productivity and the involved change of meaning are two aspects of derivational mor-
phemes that make them more difficult to detect in an unsupervised manner. Some meth-
ods therefore resign on this aim completely, for example [25, 26]. [13, 14], on the other
hand, decompose word forms into stems and suffixes, using the Minimum Description
Length (MDL) principle, and groups them into signatures, each is a structure that denote
a set of stems that can co-occur with a set of affixes. This method handles inflectional
and derivational morphology without making a clear distinction between them. How-
ever, it is, again, restricted to concatenative morphology. The qualitative analysis of the
data produced by the system described below shows that our approach can segment
more complex inflectional and derivational morphemes (see also Table 3).



2.2 Algorithmical and resources challenges

Morpheme is the smallest unit of language that carries meaning, i.e. it is a particular
form bound to a particular meaning or function. The mapping between them is not al-
ways one-to-one (cf. allomorphy) and the form does not need to be linear (see above).
However, given this twofold nature of a morpheme it is obvious that unsupervised meth-
ods ignoring the meaning/function aspect of morphemes are doomed to fail: Languages
abound of strings that formally overlap but do not have the status of a morpheme.

A particular challenge related to unsupervised, knowledge free morphological anal-
ysis thus is how to approximate the meaning. One possibility that is exploited also by
the method presented in this paper is to use context. In line with the Distributional Hy-
pothesis [16] words that appear in the same context are semantically similar. However,
in order to compute distributional similarity reliably, a sufficient amount of contexts in
which the word forms occur is needed. Consequently, most current unsupervised meth-
ods are very resource intensive, in that they require corpora of a very large size. The
need for huge corpora is so acute that even a corpus of 500000 running forms is con-
sidered small by some methods [9]. For resource rich languages, large corpora and pos-
sibly also training sets for supervised algorithms are not a problematic issue. However,
a field that could profit substantially from unsupervised language analysis are resource
poor and/or endangered languages for which sometimes only small, unannotated cor-
pora are available. Clearly, such settings do not provide enough input for context based
methods to reliably detect distributionally and thus semantically similar words.

In parallel to the typological problem described in the previous section, where a
failure of a method to deal with a particular language type also means a failure to deal
with some morphological features in a given language (since language types are mixed),
the data sparseness problem described above does not affect the performance of the
algorithms only on small corpora, but also on corpus low frequent word forms in a large
corpus. The system presented in this paper attempts to find an solution that delivers
adequate analysis also for corpus low frequent words.

2.3 Evaluation challenges

The most widely used evaluation method is the automatic comparison of the computed
results against adequate linguistic reference, i.e. the gold standard. The alternative, a di-
rect manual evaluation by the language expert(s) is both time and work consuming and
unrealistic in many settings. Depending on the task (and also the available gold stan-
dard), various evaluation methods have been proposed. Their overview can be found
in [28]. In the area of morphological segmentation, the most straightforward evalua-
tion is the calculation of how well the automatically detected segmentation boundaries
correspond to the morpheme boundaries in the gold standard (e.g., [6, 20]).

The first challenge to the automatic segmentation evaluation is the availability of
adequate reference analyses, the gold standard, which typically exist only for resource
rich languages. The MorphoChallenge competition (since 2005) provided gold-standard
evaluation data for English, German, Finnish, Arabic, and Turkish and for task-based
Information Retrieval evaluation data for English, German, and Finnish. Though the
MorphoChallenge series without doubt greatly supported the research in unsupervised



morphological analysis and contributed to the evaluation standardization and compara-
bility, it is also evident that given the diversity of world languages, the offered sample
cannot be viewed as representative (see also [15, p.335]). It has been acknowledged
(see e.g. [28]) that unsupervised methods cannot come with results that exactly cor-
respond to those designed by linguists. However, it is not only the limitations of the
unsupervised methods but also of the gold standards quality that challenges the evalua-
tion. Their reference analyses often do not correspond to complete linguistic analyses.
One typical problem are derivational affixes. Whereas most gold standards for morpho-
logical segmentation contain all or close to all boundaries separating inflectional af-
fixes, segmentation of derivational affixes can be missing or incomplete. Consequently,
a method that is able to detect boundaries also between roots and derivational affixes
can be disadvantaged compared to a method focusing solely on inflection when com-
pared to such a gold standard. Even more intriguing is the problem of introflection.
Changes on stems are typically not grasped by the gold standards. In German, word
forms like singen and sangen are analysed only with respect to their inflectional suffix,
i.e. sing-en and sang-en. A method that correctly identifies the vowel change within a
discontinouos stem and performs the analysis as s-i-ng-en and s-a-ng-en is penalized
because the additional splits are scored as incorrect (cf. Table 3).

In addition to the challenges related directly to the gold standards, there are chal-
lenges related to how the evaluation is performed by individual authors. Low frequent
word forms (which can mean up to ten occurrences in this context, cf. [26], or all other
words except the most frequent ones, cf. [10, 8], are often excluded from either the
analysis itself, or from the evaluation, or from both. Moreover, the unsupervised algo-
rithms often perform poorly on the most frequent words. As an example, the algorithm
presented in [2] delivers worse results without the trimming of the word forms with a
corpus frequency above 0.01% of the total token count. The authors argue that these
tend to be function words that are of little interest for morphological analysis. The eval-
uation of the algorithms thus often differs not only with respect to which gold standard
is used and what its properties are, but also with respect to the corpus portion that had
been analysed and reported.

3 Empirical Instantiations

When designing the unsupervised segmentation system described below, we carefully
considered the challenges outlined in the theoretical part. Given the two-sided nature of
a morpheme, we decide for a system that takes into account not only morpheme’s formal
aspects, but also its meaning/function. In order to approximate meaning, we decided to
exploit the distributional hypothesis following the thesis that words that occur in similar
contexts have also similar meaning/function. Since such approach can be successfully
applied only on word forms with sufficient corpus frequency, we designed a system
comprising of two methods: One is using context similarity directly, the other indirectly
through utilizing the results of the first method.

As already mentioned, various morphological processes are involved in word form
construction. In order to capture this morphological variance, we based the system on
MSA that has the potential to address any of the morphological processes. There are



only few biologically inspired methods reported for the task unsupervised of morpho-
logical segmentation: [11, 18] employ genetic algorithm to obtain the optimal solution
within the space of all possible word segmentation into stems and suffixes. These meth-
ods use fitness functions which can be viewed as simplified forms of MDL: They seek
the absolute minimum of characters [18] or elements [11] in the sets of stems and suf-
fixes, that describe the language, rather than using the information-theoretic criterion,
which is based on conditional probabilities, as in [13]. [12] enhance the above idea to
detect derivational paradigms, with a strategy that takes into account a property of the
language, i.e., the fact that different stems may be combined with the same set of suf-
fixes. The method first generate hypothesized stems and suffixes from a list of words;
for each stem all possible paradigms are detected, i.e., the sets of suffixes repeated for
that stem. Binary chromosomes represent solutions, where each gene (index in the chro-
mosome) encodes a hypothesized stem or suffix. The genetic algorithm is then applied
to an initial population of randomly generated chromosomes. As can be observed also
here, these methods focus their efforts on analyzing concatenative morphology, iden-
tifying suffixation patterns. Previous work utilized MSA for morphological segmenta-
tion, but handled this task differently. [27] aligns orthographically similar words, and
uses third-party analysis [21] as a guide, to search for a set of segmentation columns.
It determines its segmentation decisions by maximizing the F-score against the analy-
sis of the third-party system. A more closely related work is presented in [19], where
semantically related words are used to identify patterns which are assumed to be mor-
phemes. However, similarly to other approaches relying on contextual information, also
this approach analyses only those word forms in the corpus that appear with sufficient
frequency.

4 The First Method M,

M, is based on the idea that morphologically related words are both formally and se-
mantically similar. We assume that recurring patterns within such words correspond to
the morphological relations among them. We identify overlapping patterns within such
word with the assistance of MSA, and insert predicted morpheme boundaries in those
words accordingly.

In the first step, distributionally and othographically similar word forms are ex-
tracted and clustered into sets of presumably morphologically related word forms ac-
cording to a method described in [19]. In the second step, patterns are extracted from
the sets using MSA. Word forms in these sets are aligned using progressive alignment:
First, the two most similar sequences are aligned and then less similar ones are added
in a cumulative way to construct the final alignment. In the context of morphological
segmentation, selected sets of distributionally and orthographically similar words are
treated as sequences that are to be aligned. The first sequence of the alignment is the
input word, and the similarity criterion means, in this case, similarity of a related word
to the input word. The alignment method is based on the one appears in the BioJava
package [17], modified for our purpose. Table 1 demonstrates the alignment set for the
word umgedreht. The "-" signs indicate gaps which are inserted during the alignment
process to unify the lengths of the sequences.



Table 1. An example for an alignment of the word form umgedreht and its related word forms.

umgedreht——-—
abgedreht——-
um-—-dreht-—-
um-—-drehte——

umzudrehe-—-n
umgesied-elt
um--drehe-—-n

Next, M; compares the aligned sequences to find a pattern which matches the align-
ment best: Identical fragments are extracted from pairs of aligned sequences, and are
considered as candidate patterns for this alignment. Each candidate pattern is stored
with the number of corresponding sequences with which it matches. In the example
above the pair of aligned sequences constructed from the word forms umgedreht and
abgedreht generates the candidate pattern —~gedreht, whereas the pair of aligned se-
quences consisting of the word forms umgedreht and umdrehen generates the candidate
pattern um-dreh that contributes to the correct and complete analysis of the word
form um-ge-dreh-t. Each candidate pattern pattern;, of the alignment set is given
a score which balances between the relative frequency of the pattern in the given align-
ment and the length of the pattern, and is calculated as follows:

2
log(size)

score(pattern;) = ()

count(pattern;)
>_; count(pattern;)

+ Tengttpattern)

Here, count(pattern;) is the number of aligned sequences which match this can-
didate pattern, size is the number of sequences participating in this alignment and
length(pattern;) is the number of characters which pattern; consists of. Patterns are
ranked based on their scores, and the pattern that got the highest score is selected as the
one that describes best the members of the alignment set, and the word forms which
formed that alignment set are segmented accordingly. This candidate segmentation for
each word from is recorded along with the respective score. A word form may be a
member of several alignment sets since it can match the condition of both distributional
and form similarity for more than one input word form, and it can be an input word
form itself. Therefore a word form can have several candidate segmentations from the
different alignments, some of which can be identical. To select the best segmentation
for each word form, the scores recorded for each candidate segmentation are tallied,
and a ranked list of possible segmentations for each word form is constructed based on
those scores.

The method was applied on a corpus of three million German sentences obtained
from the Wortschatz collection' at the University of Leipzig (Germany).> Overall, out

"http://corpora.inforamtik.uni-leipzig.de
2 These sentences were used in MorphoChallenge comptetions.



of 1294071 M; was able to analyse 196852 (15.2%) word forms, of which 58213 were
found in CELEX [1] which is used as a gold standard.

Since M returns a ranked list of segmentation options for each word, we report the
top-1, -2 and -5 results. The results are summarized in Table 2 and show the precision
(P), recall (R), and F-measure (F) values for each of these cases.

Table 2. Results for M;

Topn P R F

1 0.48 0.46 0.47
2 0.570.560.56
5  0.600.59 0.59

Baseline 0.22 0.49 0.30
Morf. 0.60 0.43 0.50

The results were compared to a baseline which assigns segmentation points to
the input word forms randomly. Our method performs well above the baseline which
achieved F-score of 0.30. The results were also compared to Morfessor [5] which rep-
resents the current state of the art. The comparison shows that the presented method
achieves good results that for top-1 are close to the state of the art with a potential for
further improvement as indicated by the top-2 and top-5 results. It should be pointed
out that the top-2 and top-5 analyses hypotheses do not present mutually exclusive so-
lutions. Instead, they typically comprise several solutions that differ in how close they
are to the complete linguistic analysis.

A qualitative analysis of the data confirms that the method can deal with different
morphological processes that are sometimes not grasped by Morfessor, or by the gold
standard, or by both. Table 3 gives overview of such examples.

Table 3. Examples of morphological processes analysed by M; with their corresponding F-scores
when compared to the gold standard: D - derivation, I - inflection, /Intr/ - introflection, Cfix -
circumfixation, Aggl - agglutination, P/C - polysynthesis/compunding.

complete analysis‘ Process ‘ My ‘ Morfessor ‘ gold standard
alban-isch D alban-isch (1.0) albanisch (0.0) alban-isch
hebri-isch D hebri-isch (0.0) hebriisch (1.0) hebriisch
Raps-61 P/C Raps-61(1.0) Rapsol (0.0) Raps-61
ge-wihl-t Cfix ge-wihl-t (1.0) gewihlt (0.0) ge-wihl-t
k/a/nn /Intr/ k-a-nn (0.0) kann (1.0) kann
zu-ge-ruf-en | D+Cfix | zu-ge-ruf-en (1.0) | zu-gerufen (0.3) | zu-ge-ruf-en
Stief-kind-er-n |D+Aggl|Stiefkind-er-n (0.5)|Stiefkind-er-n (0.5)|Stief-kind-ern




5 The Second Method M,

M, analyses word forms for which both distributionally and formally similar word
forms could be retrieved. This approach requires enough characteristic contexts to cre-
ate a reliable contextual representation of a word from. Words forms with low frequency
can therefore achieve only inaccurate representations and the degree of semantic relat-
edness among them is typically rather weak. Consequently, the probability that a mor-
phologically related words would be among them is also lower.

Method M> presented in this section was designed to handle the word forms with
such context constraints. In order to avoid an approach that would take into account
solely the form aspects of morphemes, the meaning/function based segmentation results
from the first method were utilized to compute the segmentation of the so far unanalysed
words.

For each unanalysed input word (focus word), M first collects a list {wy } of previ-
ously analysed words that are formally similar to it. Form similarity between the focus
word and wy, is calculated as 1 — dj,, where dj, is Needlman-Wunsch distance [22] with
affine gap penalties, normalized to the range [0,1]. {segkl}lszl is formed by retrieving
the top-5 analyses for each wy. The focus word form is then compared to each segy; to
find matching segments and M, generates segmentation hypotheses hy; for the focus
word.

In our experiments with this method we considered several parameters. The imple-
mentation with the so far best results included (a) the degree of form similarity between
the focus word and each of the words in {wy}, as described above; (b) the coverage of
segments found in the focus word with respect of to segments in segy;, that is, the ratio
of the segments found in the focus word and the segments of segy;. Let {s,,} be the
set of segments of a given segmentation hypothesis segy; of wyg, and let {s,,} C {s;m}
be the set of segments discovered in the focus word, then the ratio between the sizes
of these two sets is used as a measure of segments coverage. The score for a single
segmentation hypothesis of a focus word then is:

score(hy) = ||{{§::L}];| X (1 —dyg) . )

The results of this experiment are presented in Table 4.

Table 4. Results for M>

Topn P R F

1 0.49 0.44 0.46
2 0.620.56 0.59
5  0.680.63 0.65

Baseline 0.21 0.50 0.29
Morf. 0.74 0.52 0.61




In our future work, we want to include other parameters in our experiments and
investigate the potentials of various parameter combinations to optimize both the top-1
and top-n results. One possibility would be including a “segment validity parameter”
that can be computed as a function of segment frequency among different segg;s.

6 Opverall Results and Evaluation

The evaluation of the whole corpus including words analyzed by both M; and M5 is
presented in Table 5.

Table 5. Results for the whole corpus

Topn P R F

1 048 0.46 047
2 0.590.56 0.57
5 0.640.61 0.63

Morf. 0.67 0.48 0.56

The results show that the system delivers useful results when applied on data with
different degree of sparseness. Though top-1 analyses are still subject to improvement,
the top-5 results show that the method can achieve promising results. The qualitative
analysis of the results confirms (see also Table 3) that the evaluation is negatively af-
fected by some properties inherent to the gold standard. Introflective aspects of German
that include e.g. stem vowel changes in the conjugation of irregular or auxiliary verbs or
in pluralization of nouns are not captured by the gold standard but are often analysed by
our system. Consequently, segmentation boundaries that are actually correct are scored
as false positives due to their absence in the gold standard. Similarly, not all derivation
morphemes are segmented in the gold standard either (see the examples Hebréisch and
Albanisch in Table 3). Due to these deficits in the gold standard, the qualities of the pre-
sented system that distinguish it from other approaches sometimes fall short compared
to methods that deliver results more conform to the (imperfect) gold standard. It can be
however assumed that its actual performance is higher than the evaluation reveals.

It would be probably unrealistic to expect that any existing gold standard of suf-
ficient size for the evaluation of unsupervised methods could contain a complete and
perfect annotation. The more important it then seems for the comparability of the re-
sults that the specifics of the gold standard used for evaluation would be at least partly
as well described as the evaluation method itself. It would be further useful if the quan-
titative analysis was accompanied by at least a brief qualitative analysis of the method’s
output, so that the reader can get insights into its scope. As an example, compared to
methods that are biased or designed to perform (only) the segmentation of inflectional
affixes, systems such as the one presented in this paper may not achieve equally high
results on the regular and frequent inflectional phenomena, but might be able to address
a larger scope of morphologically different processes.
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Conclusions

In the first part, the paper surveyed the theoretical context and challenges of unsuper-
vised, knowledge free morphological segmentation. In the second part it described a
system grounded in the theoretical considerations and presented its result on German.
The method utilizes MSA to analyse formally and distributionally similar words, and
uses these context based results to assist the analysis of less frequent words. The re-
sults show that the method can handle a broad range of morphological processes in
a quality close to the present state of the art approaches and has potential for further
improvement.
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