
LD Viewer - Linked Data Presentation Framework

Denis Lukovnikov
University of Leipzig

lukovnikov@informatik.uni-
leipzig.de

Claus Stadler
University of Leipzig

cstadler@informatik.uni-
leipzig.de

Jens Lehmann
University of Leipzig

lehmann@informatik.uni-
leipzig.de

ABSTRACT
With the growing interest in publishing data according to
the Linked Data principles, it becomes more important to
provide intuitive tools for users to view and interact with
those resources. The characteristics of Linked Data pose
several challenges for user-friendly presentation of informa-
tion. In this work, we present the LD Viewer as a customiz-
able framework that can easily be fitted for different datasets
while addressing Linked Data presentation challenges. With
this framework, we aim to provide dataset maintainers with
easy means to expose their RDF resources. Moreover, we
aim to make the interface intuitive and engaging for both
expert users and lay users.

1. INTRODUCTION
The Linked Data principles provide guidelines for publishing
structured data in order to make it easily accessible to both
machines and humans. In contrast to the common natural
language representation of information on the Web, derefer-
encing Linked Data resources in many cases does not provide
an intuitive view for humans. The fine granularity of triple-
based data representation standardized by the RDF format
may often require significant mental effort to find and inte-
grate useful information about an entity. Moreover, some
entities have a significant amount of information associated
with them and users trying to access such entities may be
overwhelmed by the number of shown facts.

This work presents LD Viewer, a customizable framework
and resource browser for Linked Data. The LD Viewer
framework aims to make it easier to address Linked Data
presentation problems mentioned above by providing a pow-
erful feature set to endpoint maintainers and requiring mini-
mal effort to adapt the default interface for another dataset.

LD Viewer is based on the DBpedia Viewer interface [10] fur-
ther generalizing it by striving for higher architectural con-
sistency. The DBpedia Viewer interface was originally only
capable of presenting data from the DBpedia [8] dataset.

As the DBpedia Viewer, the LD Viewer aims to present in-
formation in an engaging way while showcasing the Linked
Data philosophy. LD Viewer further improves upon the
Triple Action Framework (TAF) from DBpedia Viewer. The
TAF allows for both easy high-level interface customization
and adding interactivity to the presented triples.

The LD Viewer has been tested on several DBpedia datasets
and related projects, such as LinkedGeoData. Throughout
this paper, we use DBpedia and LinkedGeoData as example
datasets.

The remainder of the article is structured as follows: Sec-
tion 2 provides an overview of the example datasets DBpe-
dia and LinkedGeoData. The LD Viewer user interface is
described in Section 3 and the system architecture is pre-
sented in Section 4. In Section 5, we describe configuration
and extensions of the system. Implementation concerns are
covered in Section 6. Section 7 elaborates on related work.
Some preliminary evaluation results are given in Section 8
and we conclude with Section 9.

2. DBPEDIA AND LINKEDGEODATA
DBpedia is a pioneer project in Linked Data publishing. It
was one of the first Linked Open Data datasets available in
2007 and is a hub in the Linked Open Data cloud1. The data
in DBpedia originates from Wikipedia and is extracted us-
ing the DBpedia extraction framework. The latest DBpedia
release provides data for 4.0 million entities out of which 3.2
millions are classified according to the DBpedia ontology.2

DBpedia provides different kinds of information about enti-
ties. Entities typically have types, labels, links, Linked Data
links and textual descriptions associated with them. DBpe-
dia contains links to equivalent entities in other datasets
(such as YAGO) and links to the same entities in DBpedia
datasets for other languages (such as nl.dbpedia.org). In ad-
dition to the general information about entities, e.g. types
and categories, DBpedia contains properties and classes spe-
cific for particular domains. For example, the entity (of type
Person) dbpedia:Barack_Obama has a property dbo:spouse

which refers to the entity dbpedia:Michelle_Obama.

1Linking Open Data cloud diagram, by Richard Cyganiak
and Anja Jentzsch. http://lod-cloud.net/
2http://blog.dbpedia.org/2013/09/17/
dbpedia-39-released-including-wider-infobox-coverage\
-additional-type-statements-and-new-yago-and-wikidata\
-links/

http://lod-cloud.net/
http://blog.dbpedia.org/2013/09/17/dbpedia-39-released-including-wider-infobox-coverage\ -additional-type-statements-and-new-yago-and-wikidata\ -links/
http://blog.dbpedia.org/2013/09/17/dbpedia-39-released-including-wider-infobox-coverage\ -additional-type-statements-and-new-yago-and-wikidata\ -links/
http://blog.dbpedia.org/2013/09/17/dbpedia-39-released-including-wider-infobox-coverage\ -additional-type-statements-and-new-yago-and-wikidata\ -links/
http://blog.dbpedia.org/2013/09/17/dbpedia-39-released-including-wider-infobox-coverage\ -additional-type-statements-and-new-yago-and-wikidata\ -links/

Since the start of the DBpedia project, several tools and
services were developed around DBpedia. DBpedia Spot-
light [11] performs Entity Linking (or Named Entity Reso-
lution and Disambiguation, NERD) in text by linking en-
tity mentions to DBpedia entities. DBpedia Lookup3 is an
additional service which allows to search for DBpedia en-
tities using either strings or prefixes (for auto-completion).
The DBpedia mappings wiki4 is an effort to crowdsource the
mappings between the Wikipedia infoboxes and the DBpe-
dia ontology. Apart from DBpedia specific tools, external
vizualization tools have been developed that use DBpedia,
such as RelFinder [6] and LodLive [4]. RelFinder explores
the knowledge graph to find paths between two entities.
LodLive provides a visually appealing way to explore in-
formation associated with an entity.

Such tools and services exist independently, but together
form an eco system, which provides added value for the DB-
pedia datasets. Our new interface integrates several tools
in a generic manner – partly to increase user-friendliness
and partly to showcase the achievements in the Linked Data
space obtained so far.

LinkedGeoData5 (LGD) is an effort to add a spatial dimen-
sion to the Web of Data [14]. In this project, tools for RD-
Fizing open spatial datasets are created. These datasets are
then interlinked and published as Linked Data, via SPARQL
endpoints and as downloads. The flagship dataset is the
RDF version of the data from the OpenStreetMap (OSM)
project6, which acts as the linking hub for additional datasets,
similar to DBpedia. At present, interlinking with DBpedia
and GeoNames7 is provided, as well as an integration of
the datasets from Global Administrative Area8 and Natu-
ral Earth9. So far, LGD’s Linked Data view only offered
the basic HTML pages provided by Pubby (see Section 7).
With this work, users of LGD will now find a modern user
interface with new features, such as a view which depicts
the locations and areas of resources on a map.

3. LD VIEWER USER INTERFACE
We first present the features built into the default LD Viewer
user interface. The most prominent interface element is the
property table (right under the map in Figure 1), which
displays all the available properties of the viewed resource,
as is common among Linked Data browsers. The property
table displays both forward and reverse properties and pro-
vides pagination support for reverse properties with a large
number of values.

We attempt to improve the readability of the property table
by fetching and displaying labels instead of resource URI’s.
This is similar to the use of Fresnel lenses [12] in some other
browsers (such as [1]). Label fetching is optional as it can
increase the load on the triple store. In the following sub-

3http://wiki.dbpedia.org/lookup/
4http://mappings.dbpedia.org
5http://linkedgeodata.org
6http://openstreetmap.org
7http://www.geonames.org/ontology/documentation.
html
8http://www.gadm.org/
9http://www.naturalearthdata.com/

sections, we discuss other features of the interface. The first
eight subsections (Section 3.1 - Section 3.8) correspond to
the eight features indicated in Figure 1.

3.1 Pretty Box
The pretty box (part one of Figure 1) displays important
properties of the viewed entity. There is a predefined set
of facts we provide, namely: (1) a picture, (2) the title,
(3) the types, (4) a short description and (5) links to other
resources. Additionally, a list of important properties of the
viewed resource can be displayed. These data are generated
from the set of triples describing the viewed resource using
predefined mappings. The DBpedia datasets provide most
of this general information for all entities.

The LD Viewer does not perform automatic selection of rel-
evant properties to display. This is out of the scope of this
project as we solely focus on customizable presentation of
information.

3.2 Search Bar
The basic search functionality provided is based on SPARQL
queries that use the label properties of resources to retrieve
a list of search results. However, this basic search can easily
be replaced by using external search services based on the
dataset. For example, the DBpedia Lookup service is used
with the DBpedia dataset for fast resource retrieval.

3.3 Language Filtering
The language filtering system allows the user to choose a pre-
ferred display language. This filters all literal values based
on the user preferences and displays only the relevant val-
ues. In the case a literal does not exist in the preferred
language, a fallback language (usually English) is chosen by
default. This feature is helpful on multilingual datasets such
as DBpedia where labels and abstracts exist in 12 different
languages.

3.4 Triple Filtering
Part four of Figure 1 highlights the triple filtering feature.
Triples can be filtered on the labels of both properties and
values. This is useful for the users who quickly want to
find specific properties and values. The filtering is based
on string matching and supports all literal values as well as
URIs.

3.5 Shortcut box
The shortcut box (part 5 in Figure 1) provides anchor links
to some important properties of entities. However, the list
of properties is currently hardcoded and contains links to
categories, types, external links, etc...

3.6 Live Previews
When the user hovers over a link (URI, ontology property or
class) a concise, language-filtered preview is displayed. For
entities, this preview contains a picture (if available), the
title and a short description. Part 6 of Figure 1 shows a
preview of the French Gothic architecture entity.

3.7 Maps

http://wiki.dbpedia.org/lookup/
http://mappings.dbpedia.org
http://linkedgeodata.org
http://openstreetmap.org
http://www.geonames.org/ontology/documentation.html
http://www.geonames.org/ontology/documentation.html
http://www.gadm.org/
http://www.naturalearthdata.com/

Figure 1: Screenshot of the new interface. The transparent red areas highlight new features, with the
associated number in the red circle corresponding to its subsection number within Section 3. A quick
overview: (1) pretty box, (2) search bar, (3) language switcher, (4) triple filter, (5) shortcuts, (6) preview
box, (7) map and (8) triple actions.

For entities having location information (latitude and longi-
tude), a map is shown with its coordinates. OpenStreetMap
is used for the map display.

3.8 Triple Actions
As displayed in part 8 of (Figure 1), next to each triple, dif-
ferent icons exist, each representing a different triple action.
Triple actions are enabled using conditions on the triple.
Thus, the set of available actions for different triples may
be different. When the conditions are met, the action icon
is displayed next to the triple. When the user clicks on the
triple action icon, the action is executed. An elaborate dis-
cussion of triple actions and TAF as well as their use beyond
adding interactivity is given later (Section 4.3).

Below is an overview of the currently implemented user ac-
tions for the DBpedia dataset:

• Annotation – uses DBpedia Spotlight to annotate text.
Only applicable to texts of certain length.

• RelFinder – links to RelFinder, where the connections
(including indirect ones) between the viewed entity
and the value entity can be explored. Only applica-
ble to DBpedia resources.

• LodLive – opens the value entity with the LodLive
browser. Only applicable to DBpedia resources.

• OpenLink Faceted Browser – view the value entity us-
ing OpenLink Faceted Browser. Only applicable to
DBpedia resources.

• Wikipedia – opens the Wikipedia page associated with
the value entity. Only applicable to DBpedia resources.

• DBpedia template mapping – links to the DBpedia
mapping associated with the DBpedia template. Only
applicable to DBpedia resources under the Wikipedia
template namespace.

Additionally, the triple action framework (TAF) allows to
define action groups. Action groups allow action developers
to group sets of related actions. Common action applicabil-
ity checking logic (bind semantics) shared by all group mem-
bers can be put in the action group applicability checking
logic. When used wisely, this can reduce page building time
by reducing the number of applicability checks executed.

3.9 Faceted browsing of class instances
Ontology pages for classes offer widgets for faceted browsing
of the corresponding instances, as shown in Figure 2. These
widgets are provided by the jassa-ui-angular10 project. The

10https://github.com/GeoKnow/Jassa-UI-Angular

https://github.com/GeoKnow/Jassa-UI-Angular

Figure 2: Screenshot showing the faceted browsing
facilities for the class Pub at LinkedGeoData. A
constraint has been set which restricts the pubs to
those that are additionally typed as Hotel.

faceted browser offers a user-friendly way to define con-
straints on the set of instances of a class, both by imme-
diate and indirectly related properties. In online analytical
processing (OLAP) terms, these widgets enable browsing of
snowflake schemas. Originally, the faceted browsing com-
ponents have been developed for the spatial Linked Data
browser Facete [15], and have recently been turned into a
highly re-usable library.

3.10 Notifications and status updates
Not shown on the screenshots are the notification and status
elements, which provide a means to communicate to the user
what the system is currently doing (status) and bring certain
messages under the user’s attention (notification).

4. SYSTEM OVERVIEW
In this section we discuss the architecture of the presented
framework as well as the customizability possibilities. First,
the general architectural choices are discussed. This is fol-
lowed by a discussion how Linked Data gives rise to a higher-
level MVC pattern which we exploit to create a framework.
Finally, we specify the Triple Action Framework and explain
how it implements the higher-level MVC pattern.

4.1 General architecture
LD Viewer follows the widely used Model-View-Controller
(MVC) design pattern as provisioned e.g. by the AngularJS
framework. The triples associated with some resource form
the Model layer in the MVC architecture. Different UI ele-
ments presented in previous sections (such as the map) be-
long to the View layer of the MVC architecture. Finally,
the Controller layer takes care of creating and populating
the View elements based on data (triples) in the Model layer
and responding to user-generated events. The Triple Action
Framework (TAF) provides a means to customize the Con-
troller layer while leaving the boilerplate MVC logic (fetch-
ing and parsing data, binding events to DOM, ...) for the
framework to handle.

4.2 Adapting to datasets
The heterogeneity in ontology usage of different datasets
complicates the creation of generic interfaces, resulting in
the need for frameworks that can easily be adapted to a cer-
tain dataset. With our framework, the primary means of
customization is the Triple Action Framework, which allows
the deployer to easily define custom logic without any spe-
cific knowledge on the underlying frameworks. The custom
logic can be used to relay information from the triple-based
model to the right interface elements, but also to define user
actions. The Triple Action Framework is discussed in more
detail in the next section.

4.3 Triple Action Framework
The Triple Action Framework (TAF) aims to make the inte-
gration of external tools easier and provides an easy means
for adapting the framework for a certain dataset. The inter-
face maintainer can easily add new actions or adapt existing
ones for a particular deployment. TAF allows to define a
triple action with the following core semantics, (1) bind and
(2) execute where only the bind method is necessary.

Upon page load, for each triple, the bind method of each
action is called to determine whether this action is applica-
ble for this triple. The bind method may use any informa-
tion available from the triple to decide whether the action
is applicable or not. For example, the DBpedia Spotlight
annotation action should only be made available for annota-
tion of textual resources, so the bind method of this action
checks whether the object of the triple is a string literal
and whether it exceeds a configurable minimum length. Ad-
ditionally, the bind method may also contain logic beyond
applicability checking.

The execute method of an action is called when the user
triggers its execution. For the DBpedia Spotlight annotation
action, this method uses the text in the object of the triple,
sends it to the DBpedia Spotlight API for annotation and
waits for a response. When the API responds, the Spotlight
action changes the display value of the object of the triple
to show the annotations.

However, it is not necessary to define an execute method. An
action is only bound to a triple if (1) it has a bind method
that indicates the action is applicable for this triple, (2)
it has an execute method. Actions fulfilling these criteria
are called user actions because their execution depends on

them being triggered by users. User actions are represented
by icons next to the triple to which they are bound.

The other kind of action is the system action. The execution
of such actions is triggered immediately if the action is ap-
plicable to the triple. Moreover, since system actions are not
available to users, they do not require an execute method.
The execution logic of system actions should be defined in
the bind method. The logic of system actions is executed
only once and system actions are not bound to triples. An
example of a system action is the selection of properties to
display in the Pretty Box. This system action is called for
every triple and checks whether the predicate of the triple is
contained in the list of mappings defined in the action. If it
encounters a match, it calls the Pretty Box element to add
the property. However, the action could also make a request
to some external service to dynamically determine whether
the triple should be displayed in the Pretty Box.

In the actual implementation, TAF provides additional hooks,
providing more functionality to define new actions with ease.
Moreover, the Triple Action Framework allows to define lo-
cally/globally stateful actions.

5. CUSTOMIZATION
In interface customization, we distinguish two tasks: con-
figuration and extension. Configuration is concerned with
adapting the basic interface to some dataset. Providing ad-
ditional functionality to the basic interface is the topic of
extensions.

5.1 Configuration
The framework settings and the triple action framework
(TAF) are the primary means of configuration of the frame-
work. In framework settings, the datasource (endpoint, graph,
...) and global setting variables are defined. Most of these
settings are used to fetch information. Using TAF, how-
ever, the dataset maintainer can quickly define new actions
or change existing ones in order to customize the framework
for the dataset. The system actions described above allow to
populate any entity-dependent interface element. Moreover,
system actions can be used to define automatically triggered
events, such as redirection.

For example, consider the task of populating the list of types
displayed in the pretty box. In the action definition, one can
bind to specific properties of the viewed entity that define
the types of that entity. and declare to set the content of the
types display element to the types retrieved from properties
matching the bind criteria. As an example, a simplified im-
plementation of the type action for populating the type list
in the pretty box using rdf:type on DBpedia data is given
below (wrapping code omitted for brevity).

mapfrom : ”rd f : type ”
bind : func t i on (about , pred i cate , va lue){

i f (p r e d i c a t e . u r i == t h i s . mapfrom)
LDViewer . addPrettyType (value) }

Action-based configuration provides more freedom than con-
figuration based on lists or mappings since with the former,
less assumptions are made about the kind of logic dataset
maintainers require. In our case, purely declarative means

of configuration (lists) would impose restrictions or require
the generation of some domain-specific declarative language
for advanced functionality. In contrast, imperative (action-
based) configuration relieves framework developers from try-
ing to foresee and support all possibilities while leaving the
maintainer the freedom to do whatever he/she desires. For
example, one could also use the types present in the descrip-
tion of the viewed entity to fetch additional information in
order to populate other interface elements. This would be
impossible with declarative configuration without clogging
declaration specifications.

However, action-based configuration requires at least basic
programming knowledge from the maintainer. To make the
standard configuration task as easy as possible, different UI
elements provide interfaces so that the action developer does
not need to know the implementation details of our frame-
work nor of any of its dependencies.

5.2 Extension
TAF lightens adding new functionality for users by provid-
ing a useful abstraction with easy access to the triple that
already takes care of displaying the actions. To create a new
action, one simply needs to implement the hooks with the
desired action logic. However, TAF only provides means to
add triple-enabled functionality that can be communicated
to the user by providing action icons next to the triple.

Adding or modifying interface elements or making changes
to the core behavior of the interface requires understanding
of our framework and some of its dependencies. However,
since the LD Viewer was implemented using recent front-
end technology (AngularJS11), front-end developers familiar
with JavaScript and MV* frameworks can easily get started
and easily add their own (Angular) modules (containing cus-
tom interface elements defined through Angular directives).
However, we aim to minimize the need for such changes by
providing a rich set of powerful features that encompasses
most deployment needs.

6. SYSTEM IMPLEMENTATION
The LD Viewer is implemented as a client-side single-page
web application aimed at the latest versions of Internet browsers.
Since it is a client-side JavaScript application, it is only us-
able by user agents that support JavaScript. For user agents
without such support, any backend library for displaying
triples can be used and integrated with our framework. Our
framework is built using the open-source AngularJS MVC
framework for JavaScript and reuses components from the
Jassa library. AngularJS provides a powerful implementa-
tion of the Model-View-Controller pattern for browser ap-
plications and is widely known in the front end developer
community. The Jassa library provides Jena-like services
for JavaScript, allowing for easy manipulation of SPARQL
queries and RDF, thus increasing maintainability of the in-
terface. Additionally, Jassa provides Facete tools, which
provide faceted browsing functionality.

The framework is not bound to any specific backend or triple
store. However, we implemented some optional optimiza-
tions specific for Virtuoso triple stores.

11http://angularjs.org/

http://angularjs.org/

Conceptually, there are three levels when the framework is
deployed for a certain dataset.
The base level is the triple store, which is accessible using
the SPARQL query language. Any triple store supporting
the SPARQL standard can be used by our framework.
The web server and server-side code can built on top of the
database. The server simply has to serve the JavaScript ap-
plication.
The third level is the client-side code. Our framework is a
pure JavaScript application that runs on the user’s browser.
Once the application is loaded, the client-side code takes
care of querying the triple store and building the page. This
moves the page construction load from the server to the
client while providing a more seamless experience to the
user.

7. RELATED WORK
First, we discuss different tools that are integrated in the
new interface. This is followed by an overview of some
Linked Data browsers.

Integrated tools
RelFinder [6] allows users to explore connections between
multiple entities in a intuitive and interactive way. Given
two entities, RelFinder shows paths in the underlying RDF
graph connecting the two entities. The relationship discov-
ery algorithm used in [6] is based on the original DBpedia
Relationship Finder algorithm [9]. The search algorithm is
essentially a breadth-first search algorithm with several op-
timizations for the problem.

DBpedia Spotlight [11] is an Entity Linking (EL) system.
Given a text, the purpose of EL is to find which parts of
text refer to which entities. DBpedia Spotlight performs
EL with DBpedia entities. The linking approach of DBpe-
dia Spotlight consists of three steps: (1) the spotting stage
where the phrases in the text are recognized that might refer
to entities, (2) the candidate selection stage where possible
”meanings” of spotted phrases are generated and (3) the dis-
ambiguation stage where the best candidate entity is chosen
as the meaning of the phrase.

Another tool integrated as a triple action is LodLive [4].
LodLive is an exploratory tool that allows users to browse
Linked Data in an interactive way, using a dynamic visual
graph. Moreover, it integrates information available across
different SPARQL endpoints. This way, it aims to showcase
the principles behind Linked Data.

Linked Data browsers and integrators
Dadzie and Rowe [5] performed a survey of tools for Linked
Data consumption. In their review, the authors make a
distinction between visualization (e.g. RelFinder[6]) and
presentation (e.g. Marbles). A wide range of tools is dis-
cussed and a comparative study of their features is per-
formed. They also make a distinction between three kinds of
users: (1) tech-users, (2) domain experts and (3) lay users.
One of the conclusions of their survey is that the reviewed
Linked Data consumption tools are mostly oriented at tech
users. Some of the tools discussed by Dadzie and Rowe [5]
are also discussed in this section.

The Marbles Linked Data browser 12 is a server-side applica-
tion that generates HTML from Semantic Web content using
Fresnel [12] vocabularies. Marbles is used in DBpedia Mo-
bile [2], a location-based Linked Data browser which shows
locations available from DBpedia on a map with information
about the location.

Pubby 13 is a server-side Java application that can be con-
figured to use a SPARQL endpoint and publish the data
behind it as Linked Data. It also provides a simple (static)
HTML user interface. The Graphity project 14 provides a
framework for publishing RDF data or building applications
around it. LDIF [13] is a framework aiming to integrate in-
formation about entities from different datasets but does not
focus on displaying data.

Tabulator [3] is a generic Linked Data browser that addi-
tionally provides analytical functionality mostly aimed at
tech users. For example, it is possible to display the results
of different queries on one map to compare them. Other no-
table features are the Timeline and Calendar views. For ex-
ploring the data, Tabulator employs the Outliner paradigm
which allows for intuitive tree-oriented exploration. The ex-
ploration of Tabulator can thus be seen as the table-based
equivalent of LodLive.

In contrast to existing approaches, the aim of LD Viewer is
to provide a feature-rich and interactive interface that can
easily be customized for different datasets. Customization
in LD Viewer is imperative (TAF system actions), which
gives ultimate flexibility to the developers and requires only
knowledge of JavaScript. This contrasts other approaches
such as X3S[?] and LESS[?] that provide mostly declar-
ative means of customization and might rely on their own
templating language (such as LeTL in LESS). In contrast to
most other presentation approaches, LD Viewer also focuses
on interactivity and integration of other tools through TAF
user actions.

8. PRELIMINARY EVALUATION
To evaluate the presented framework, we conducted a user
survey. The survey targeted users of the framework on one
of its deployments (a link to it was shown while browsing
Linked Data resources). With this survey, we wish to find
out whether the users like our interface, how intuitive they
experience it.

The user survey follow a task-based paradigm.
The first part of the survey contains questions to build a pro-
file of the user. We only build a very limited profile that says
what the current occupation of the user is (bachelor studen-
t/master student/researcher or industrial professional) and
their level of acquaintance with the Linked Data standards.

The second part of the surveys defines tasks to be completed.
We ask the visitor to retrieve answers for several questions
using the DBpedia deployment of the interface. The ques-
tions are:

12http://mes.github.io/marbles
13http://wifo5-03.informatik.uni-mannheim.de/pubby/
14https://github.com/Graphity/graphity-browser

http://mes.github.io/marbles
http://wifo5-03.informatik.uni-mannheim.de/pubby/
https://github.com/Graphity/graphity-browser

q1. In which country was the spouse of Albert II of Bel-
gium born?

q2. How many inhabitants does Maribor have?

q3. Who wrote Isaac Asimov’s Utopia?

q4. How many employees does Unilever have?

q5. Does Lake Baikal have a higher surface area (m2) than
Belgium?

The third part of the survey contains questions in the form of
statements assessing experiences from carrying out the task
from the previous part. The statements are listed below.

s1. The look and feel is user-friendly and properly presents
the information.

s2. The presentation of the information is intuitive, easy
to grasp.

s3. The interface is responsive.

s4. The answers to the questions were easy to find using
the interface.

s5. The entity summary (pretty box) at the top of the
page contains the most important information about
the viewed entity.

s6. Property and value filters in the property table (under
the pretty box) are useful. (If you did not use the
filters, choose ”no opinion”)

s7. The features of the interface are presented well, easy
to find and to understand.

In the survey, the user must indicate his level of agreement
with these statements, ranging from not at all to entirely,
with an option stating the user has no opinion.

Results
We were only able to collect 10 results with the survey so
far. 10 visitors provided complete answers in the survey. Of
these 10 visitors, 6 answered all the questions in the second
part correctly, while all 10 answered to three out of five
question in the second part correctly.

The preliminary survey indicates visitors in general like the
interface and have little trouble navigating it. The partici-
pants generally agreed with the statements about the design
and the intuitiveness of information presentation. Property
and value filters were overlooked by some participants while
the ones who used them liked them. More disagreement
between participants was caused by the statement about
the entity summary (s5), for which the majority of par-
ticipants agreed that it presents the most important infor-
mation about the entity while others disagreed completely.
Another significant disagreement between participants con-
cerns the last statement, presentation of features (s7), which
overall was positively rated but with larger deviations. The

statement about the responsiveness (s3) caused most dis-
agreement between participants. However, this may be at-
tributed to the varying availability of the DBpedia endpoint
behind the interface.

In general, these results indicate users like the interface.
However, different features of the interface can still be im-
proved and communicated more explicitly. Also, with the
survey we failed to attract enough non-expert users. Most
participants indicated using Linked Data often and consider
themselves more or less knowledgeable in the underlying
technology. Further feedback will be collected within the
next weeks and the results updated.

The survey results are given in Table 1.

Table 1: Visitor survey assessment results. For each
of the assessment statements, the number of partic-
ipants in some agreement class are given.

Statement total partial partial total no
disagreement agreement opinion

s1. 0 1 3 6 0
s2. 0 3 3 4 0
s3. 2 0 4 4 0
s4. 0 2 3 4 1
s5. 1 1 4 3 1
s6. 0 1 1 3 5
s7. 0 3 4 3 0

9. CONCLUSION AND FUTURE WORK
The LD Viewer is a customizable modular framework for in-
teractive, user-friendly presentation of Linked Data. Start-
ing from the DBpedia Viewer, we further generalized the in-
terface and enforced more modularization as well as stronger
architectural consistency. The Triple Action Framework
proved to be useful for defining system actions, which al-
low for greater and easier customization of the interface.

The interface does not try to conceal the technical philos-
ophy behind Linked Data. Instead, it embraces the philos-
ophy and presents the data as it is in a visually appealing
fashion, highlighting the underlying ideas and demonstrat-
ing the possibilities of the integrated tools.

The LD Viewer framework provides a rich set of features (in-
cluding interface elements), to tackle the need for creating
additional ones. However, web developers can easily add
custom interface elements and other features. The frame-
work is implemented using well-known high-end web devel-
opment technologies, allowing for a great range of powerful
options.

The Triple Action Framework (TAF) introduced with DB-
pedia Viewer and further developed with the Linked Data
Viewer presented here demonstrates a method for adding in-
teractive functionality to Linked Data, going beyond merely
serving RDF facts. Such ideas may not only inspire im-
provements in other Linked Data interfaces but might also
evolve to a standardized framework for human interaction
with data across the Semantic Web in the future.

We plan to add triple actions for the incorporation of triple
validation by the end users [7, 16]. Another triple action
we are investigating is the option to automatically import
DBpedia triples into WikiData.

A potential area of future research is the analysis of user
behavior on the interface to produce novel Entity Summa-
rization and Entity Ranking data and methods. Entity Sum-
marization scores can be useful for Question Answering and
Semantic Relatedness. The scores can also be used to ex-
tend the pretty box with the most important entity-specific
information (e.g.: birth place for persons) and to compute a
better list of properties for the shortcut box.

We did a limited preliminary evaluation of the user experi-
ence on the website, indicating generally positive response
and providing new directions for improvement. Addition-
ally, we aim to collect feedback from action developers and
contributors and work together to improve this framework.

Acknowledgements
This work was supported by grants from the European Union’s
7th Framework Programme provided for the projects LOD2
(GA no. 257943) and GeoKnow (GA no. 318159).

10. REFERENCES
[1] Christian Becker and Chris Bizer. marbles.

http://mes.github.io/marbles/. [Online; accessed
09-Februari-2014].

[2] Christian Becker and Christian Bizer. DBpedia
Mobile: A Location-Enabled Linked Data Browser.
LDOW, 369, 2008.

[3] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan
Connolly, Ruth Dhanaraj, James Hollenbach, Adam
Lerer, and David Sheets. Tabulator: Exploring and
analyzing linked data on the semantic web. In
Proceedings of the 3rd International Semantic Web
User Interaction Workshop, volume 2006, 2006.

[4] Diego Valerio Camarda, Silvia Mazzini, and
Alessandro Antonuccio. LodLive, exploring the Web of
Data. In Proceedings of the 8th International
Conference on Semantic Systems, pages 197–200.
ACM, 2012.

[5] Aba-Sah Dadzie and Matthew Rowe. Approaches to
visualising linked data: A survey. Semantic Web,
2(2):89–124, 2011.

[6] Philipp Heim, Steffen Lohmann, and Timo Stegemann.
Interactive Relationship Discovery via the Semantic
Web. In Proceedings of the 7th Extended Semantic
Web Conference (ESWC 2010), volume 6088 of LNCS,
pages 303–317, Berlin/Heidelberg, 2010. Springer.

[7] Dimitris Kontokostas, Amrapali Zaveri, Sören Auer,
and Jens Lehmann. Triplecheckmate: A tool for
crowdsourcing the quality assessment of linked data.
In Proceedings of the 4th Conference on Knowledge
Engineering and Semantic Web, 2013.

[8] Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N. Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick van
Kleef, Sören Auer, and Christian Bizer. DBpedia - a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web Journal, 2014.

[9] Jens Lehmann, Jörg Schüppel, and Sören Auer.
Discovering Unknown Connections - the DBpedia
Relationship Finder. In Proceedings of the 1st
Conference on Social Semantic Web (CSSW 2007),
volume 113 of LNI, pages 99–110. GI, 2007.

[10] Denis Lukovnikov, Claus Stadler, Dimitris
Kontokostas, Sebastian Hellmann, and Jens Lehmann.
Dbpedia viewer-an integrative interface for dbpedia
leveraging the dbpedia service eco system. In
Proceedings of the 7th Workshop on Linked Data on
the Web, 2014.

[11] Pablo N Mendes, Max Jakob, Andrés Garćıa-Silva,
and Christian Bizer. DBpedia Spotlight: shedding
light on the Web of Documents. In Proceedings of the
7th International Conference on Semantic Systems,
pages 1–8. ACM, 2011.

[12] Emmanuel Pietriga, Christian Bizer, David Karger,
and Ryan Lee. Fresnel: A browser-independent
presentation vocabulary for rdf. In Isabel Cruz, Stefan
Decker, Dean Allemang, Chris Preist, Daniel Schwabe,
Peter Mika, Mike Uschold, and LoraM. Aroyo, editors,
The Semantic Web - ISWC 2006, volume 4273 of
Lecture Notes in Computer Science, pages 158–171.
Springer Berlin Heidelberg, 2006.

[13] Andreas Schultz, Andrea Matteini, Robert Isele,
Pablo N Mendes, Christian Bizer, and Christian
Becker. LDIF - A Framework for Large-Scale Linked
Data Integration. In 21st International World Wide
Web Conference (WWW 2012), Developers Track,
Lyon, France, 2012.

[14] Claus Stadler, Jens Lehmann, Konrad Höffner, and
Sören Auer. Linkedgeodata: A core for a web of spatial
open data. Semantic Web Journal, 3(4):333–354, 2012.

[15] Claus Stadler, Michael Martin, and Sören Auer.
Exploring the Web of Spatial Data with Facete. In
Companion proceedings of 23rd International World
Wide Web Conference (WWW), pages 175–178, 2014.

[16] Amrapali Zaveri, Dimitris Kontokostas, Mohamed A.
Sherif, Lorenz Bühmann, Mohamed Morsey, Sören
Auer, and Jens Lehmann. User-driven quality
evaluation of dbpedia. In To appear in Proceedings of
9th International Conference on Semantic Systems,
I-SEMANTICS ’13, Graz, Austria, September 4-6,
2013, pages 97–104. ACM, 2013.

http://mes.github.io/marbles/

	Introduction
	DBpedia and LinkedGeoData
	LD Viewer User Interface
	Pretty Box
	Search Bar
	Language Filtering
	Triple Filtering
	Shortcut box
	Live Previews
	Maps
	Triple Actions
	Faceted browsing of class instances
	Notifications and status updates

	System Overview
	General architecture
	Adapting to datasets
	Triple Action Framework

	Customization
	Configuration
	Extension

	System Implementation
	Related Work
	Preliminary Evaluation
	Conclusion and Future Work
	References

