
Facilitating the Exploration and Visualization
of Linked Data

Christian Mader1, Michael Martin2(B), and Claus Stadler2

1 Semantic Web Company, Vienna, Austria
christian.mader@semantic-web.at

2 University of Leipzig, Leipzig, Germany
{martin,cstadler}@informatik.uni-leipzig.de

Abstract. The creation and the improvement of tools that cover
exploratory and visualization tasks for Linked Data were one of the major
goals focused in the LOD2 project. Tools that support those tasks are
regarded as essential for the Web of Data, since they can act as a user-
oriented starting point for data customers. During the project, several
development efforts were made, whose results either facilitate the explo-
ration and visualization directly (such as OntoWiki, the Pivot Browser)
or can be used to support such tasks. In this chapter we present the three
selected solutions rsine, CubeViz and Facete.

1 Introduction

The increasing number of datasets that are available as Linked Data on the Web
makes it difficult for dataset curators to review additions, removals or updates
of assertions involving resources they authored. Existing approaches like central
registries do not scale with the fast-changing nature of the Web, thus being
outdated or incomplete. In this chapter we propose a set of approaches that
deal with the exploration and visualization of Linked Data. First we present the
Resource SubscrIption and Notification sErvice (rsine) in Sect. 2 which enables
subscribers to register for notifications whenever changes to RDF datasets occur.
Thereby, we outline our approach based on a controlled vocabulary development
scenario and integrate it into two exemplary LOD2 stack components to show
its applicability. Based on requirements that come from practical experience in
thesaurus development at Wolters Kluwer Germany, we describe how rsine can
be used to check and avoid introduction of potential thesaurus quality problems.

Secondly, we showcase in Sect. 3 CubeViz, a flexible exploration and visu-
alization platform for statistical data represented adhering to the RDF Data
Cube vocabulary. If statistical data is represented according to that vocabu-
lary, CubeViz exhibits a faceted browsing widget allowing to interactively filter
observations to be visualized in charts. Based on the selected structural part,
CubeViz offers suitable chart types and options for configuring the visualization
by users. We present the CubeViz visualization architecture and components,
sketch its underlying API and the libraries used to generate the desired output.

c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 90–107, 2014.
DOI: 10.1007/978-3-319-09846-3 5

Facilitating the Exploration and Visualization of Linked Data 91

By employing advanced introspection, analysis and visualization bootstrapping
techniques CubeViz hides the schema complexity of the encoded data in order
to support a user-friendly exploration experience.

Lastly, we present Facete in Sect. 4, which is an application tailored for the
exploration of SPARQL-accessible spatial data. Facete is built from a set of
newly developed, highly modular and re-usable components, which power the
following features:

• advanced faceted search with support of inverse properties and nested prop-
erties;

• automatic detection of property paths that connect the resources that matches
the facet selection with those resources that can be shown on the map; and

• a map component that operates directly on a SPARQL endpoint and auto-
matically adopts its data retrieval strategy based on the amount of available
spatial information.

2 Rsine - Getting Notified on Linked Data Changes

With the growing amount of content available on the Web of Data it becomes
increasingly difficult for human users to track changes of resources they are
interested in. This even holds true for “local” use cases where, e.g., contributors
are working on a dataset in a collaborative way, linking and annotating each
other’s resources.

For example, contributors who develop controlled vocabularies, typically want
to know whenever the meaning of a concept is fundamentally changed. This is
because the concept might have been used for indexing documents and the changed
meaning impairs search precision. However, with increasing frequency of change
and size of the curated information resources, pull-based approaches do not scale
anymore.

In this section we introduce the Resource SubscrIption and Notification
sErvice (rsine), a framework that notifies subscribers whenever assertions to
resources they are interested in are created, updated or removed. It is based on
the W3C standards RDF and SPARQL and designed to be used alongside with
existing triple storage solutions supporting these technologies. Multiple instances
of the framework can communicate dataset changes also among each other. This
allows to subscribe for changes of resources that are created or modified in other
datasets on the Web that are managed by rsine.

An application of rsine is for instance the support of integrated quality man-
agement in controlled vocabulary development. We have shown in our previous
work [8,9] that potential quality problems in controlled Web vocabularies can
be detected from patterns (“quality issues”) in the underlying RDF graph. We
believe that immediate notification of the responsible contributors after such
quality issues have been introduced will lead to faster development and higher
quality of the created vocabularies.

92 C. Mader et al.

2.1 Related Work

SparqlPuSH [13] is a subscription/notification framework that allows for “proac-
tive notification of data updates in RDF stores”. Users express the resources they
are interested in as SPARQL queries which are used by the service to create RSS
or Atom feeds. These feeds are published on “hubs” using the PubSubHubbub
protocol which handles the dissemination of notifications. Our approach is closely
related to SparqlPuSH but is designed to operate on a more general level. In par-
ticular, creation and subscription to feeds, as proposed in SparqlPuSH, is only
one of the possible options for notifying subscribers in rsine. Furthermore, Spar-
qlPuSH only relies on the extensiveness of the data contained in the underlying
RDF store. Thus, it is not possible to, e.g., find out about all resources deleted
in a certain period of time. Rsine supports these scenarios by using a standard
ontology for storing changeset metadata.

SDShare1 is a protocol for the distribution of changes to resources that are
represented in RDF. A server that exposes data provides four different Atom
feeds that provide information about the state of the data and update informa-
tion. The protocol is designed to support replications of linked data sources and
relies on clients actively monitoring the provided feeds. Furthermore, clients only
get information about the updated resource URIs and are expected to fetch the
actual changes of resources themselves.

In the course of the REWERSE [10] project, a “general framework for evo-
lution and reactivity in the Semantic Web” has been proposed that is based on
Event-Condition-Action (ECA) rules. The framework is designed to be indepen-
dent from the languages used to specify define events, conditions and actions. We
stick to this approach but utilize a custom RDF ontology to express the ECA
rules. Additionally we decided to use SPARQL for definitions of both events
and conditions because of its wide acceptance and our focus on RDF data. This
results in a light-weight approach, eliminating the need for custom event match-
ers and detection engines in favour of SPARQL endpoints and incremental RDF
changesets. Actions are represented in our rsine ECA rules by specifying one or
multiple notifiers.

2.2 Approach

Figure 1 describes the proposed architecture of the rsine service (Notification
Service frame). The service on the left side of the figure is intended to give
an overview on the components interacting internally, whereas the notification
service on the right side is a second instance of the framework installed on a
remote location on the Web.

Our approach uses a Change Handler that mediates between the Managed
RDF store and the rsine service. In our implementation we provide a Change
Handler (rsineVad2) that can be used for Virtuoso Servers. However, in environ-
ments that rely on different RDF storage backends such as openRDF Sesame,
1 Final Draft:http://www.sdshare.org/spec/sdshare-20120710.html
2 https://github.com/rsine/rsineVad

http://www.sdshare.org/spec/sdshare-20120710.html
https://github.com/rsine/rsineVad

Facilitating the Exploration and Visualization of Linked Data 93

Fig. 1. Conceptual overview

a custom Change Handler that fits to the internals of the used storage solution
must be implemented.

The rsine service continuously observes changes to the data held by a Man-
aged RDF Store on the triple level, i.e., every time a triple is added, updated or
removed the framework is triggered. The triple change events are then passed to
the Changeset Service which converts the received triple changes to changesets
expressed in the Changeset3 ontology and persists them to an internal Changeset
Store.

A subscriber who is interested in receiving notifications can subscribe by
sending a subscription document to the service that contains SPARQL queries
and information about the preferred notification channel (e.g., email, Twitter).
The queries from the subscription document select resources the subscriber is
interested in and access both the data contained in the Managed RDF Store
as well as in the Changeset Store. The results of these queries, can then be
disseminated through the desired channels. Before dissemination, the Results
Formatter formats the query results into human-readable form by using the
template provided in the subscription document.

Rsine can also send (“forward”) local dataset changes to remote rsine instances
on the Web (small Notification Service box). This feature is useful to get notifi-
cations whenever resources in datasets on different servers reference each other.
Due to space limitations we refer to deliverable D5.3.1 for a detailed coverage of
the workflows for both local and forwarded dataset changes.
3 http://vocab.org/changeset/schema.html

http://vocab.org/changeset/schema.html

94 C. Mader et al.

2.2.1 Subscribing for Notifications
Subscriptions are RDF documents that are sent to the rsine service by HTTP
POST. They consist of two mandatory parts: (i) a query which specifies the
resources the subscriber is interested to get notifications about and (ii) at least
one notifier that defines the way notification messages should be disseminated. A
basic example is provided in Listing 1 (prefixes omitted, for an in-depth coverage
we refer to the online documentation4).

1 [] a rsine:Subscription;
2 rsine:query [
3 spin:text"SELECT * WHERE {
4 ?cs a cs:ChangeSet .
5 ?cs cs:addition ?addition .
6 ?addition rdf:subject ?concept .
7 ?addition rdf:predicate skos:prefLabel .
8 ?addition rdf:object ?newLabel }";];
9

10 rsine:notifier [
11 a rsine:emailNotifier;
12 foaf:mbox <mailto:me@myoffice.com >].

Listing 1. Rsine Subscription.

2.3 Stack Integration

In order to showcase the capabilities of rsine, we integrated it with two exemplary
components of the LOD2 stack: The PoolParty Thesaurus Server (PPT) and
Pebbles. PPT is a tool for taxonomy experts to develop thesauri and publish
them as Linked Data using SKOS. Pebbles is a Web application that provides a
GUI to manage RDF metadata for XML documents. For testing the integration
we used the stack installation operated by Wolters Kluwer Germany (WKD).

PPT builds on OpenRDF Sesame infrastructure for persisting RDF data.
In order to provide interoperability between PPT and rsine, we implemented a
subclass of RepositoryConnectionListenerAdapter. It intercepts the triple
changes and, before handing them down to the triple store for persistence,
announces them to rsine’s HTTP interface.

Pebbles uses Virtuoso as storage backend. The only task for integrating rsine
with Pebbles was thus to deploy the rsineVad package from the rsine repository
to the Virtuoso instance. RsineVad is an extension to Virtuoso that configures
database triggers and stored procedures so that all triple changes Pebbles per-
forms to are communicated to rsine.

2.4 Notification Scenarios

WKD specified in total 13 scenarios for notifications that are described in detail
in deliverable D7.3. They are divided into scenarios that are important in a
thesaurus development process (e.g., to “follow all changes such as deletion,

4 https://github.com/rsine/rsine#subscriptions

https://github.com/rsine/rsine#subscriptions

Facilitating the Exploration and Visualization of Linked Data 95

linking or editing of concepts”) and scenarios from metadata editing with Peb-
bles (e.g., “Follow all changes of the document metadata”). We were able to
support all but one requirements from the thesaurus development scenario and
implemented one metadata editing scenario as a proof-of-concept. Furthermore,
we adapted 9 checks for potential controlled vocabulary quality problems from
our earlier work5 and converted them for use with rsine. Among them are, e.g.,
checks for cyclic hierarchical relations or concepts with conflicting (i.e., identical)
preferred labels.

3 CubeViz – Exploration and Visualization of Statistical
Linked Data

A vast part of the existing Linked Data Web consists of statistics (cf. LOD-
Stats6 [3]) being represented according to the RDF Data Cube Vocabulary [2].
To hide the inherently complex, multidimensional statistical data structures and
to offer a user-friendly exploration the RDF Data Cube Explorer CubeViz7 has
been developed. In this chapter we showcase how large data cubes comprising
statistical data from different domains can be analysed, explored and visualized.
CubeViz is based on the OntoWiki Framework [7] and consists of the following
OntoWiki extensions:

• The Integrity Analysis Component (cf. Sect. 3.2) evaluates the existence and
the quality of selected RDF graphs according to given integrity constraints.

• The Facetted Data Selection Component (cf. Sect. 3.3) is retrieving the struc-
ture of the selected Data Cube using SPARQL [5] in order to generate filter
forms. Those forms allow to slice the data cube according to user interests.

• The Chart Visualization Component (cf. Sect. 3.4) receives all observation as
input, that correspond to the given filter conditions, in order to generate a
chart visualization.

All components support the comprehensive CubeViz GUI shown in Fig. 2.
Before we introduce the three components in more detail, we give a brief intro-
duction of the RDF Data Cube Vocabulary in the next section. We conclude the
paper with links to publicly available deployments and a list of some upcoming
features planned for the next release. Further information about CubeViz can
be obtained in the repository wiki8 or via a recorded webinar9 comprising a
comprehensive screencast.

3.1 The RDF Data Cube Vocabulary

The RDF Data Cube vocabulary is a W3C recommendation for representing sta-
tistical data in RDF. The vocabulary is compatible with the Statistical Data and
5 qSKOS controlled vocabulary quality checker, https://github.com/cmader/qSKOS
6 http://stats.lod2.eu/rdf classes?search=Observation
7 http://aksw.org/Projects/CubeViz
8 https://github.com/AKSW/cubeviz.ontowiki/wiki
9 http://www.youtube.com/watch?v=ZQc5lk1ug3M#t=1510

https://github.com/cmader/qSKOS
http://stats.lod2.eu/rdf_classes?search=Observation
http://aksw.org/Projects/CubeViz
https://github.com/AKSW/cubeviz.ontowiki/wiki
http://www.youtube.com/watch?v=ZQc5lk1ug3M#t=1510

96 C. Mader et al.

Fig. 2. The CubeViz GUI visualizing a slice of a 2-dimensional RDF DataCube in a
combined polar-column chart.

Medadata eXchange XML format (SDMX) [4], which is defined by an initiative
chartered in 2001 to support the exchange of statistical data. Sponsoring insti-
tutions10 of SDMX are among others the Bank for International Settlements,
the European Central Bank, Eurostat, the International Monetary Fund, the
Organisation for Economic Co-operation and Development (OECD), the United
Nations Statistics Division and the World Bank. Experiences while publishing
statistical data on the Web using SDMX were summarized by the United Nations
in [11] and by the OECD in [12].

The core concept of the Data Cube vocabulary is the class qb:Observation11,
that is used to type all statistical observations being part of a Data Cube.
Every observation has to follow a specific structure that is defined using the
class qb:DataStructureDefinition (DSD) and referenced by a dataset resource
(DS) of type qb:DataSet. Since every observation should refer to one spe-
cific DS (which again refers to the corresponding DSD) the structure of the
observation is fully specified. DSD components are defined as set of dimensions
(qb:DimensionProperty), attributes (qb:AttributeProperty) and measures
(qb:MeasureProperty) to encode the semantics of observations. Those com-
ponent properties are used to link the corresponding elements of dimensions,
measure values and units with the respective observation resource. Furthermore,
it is possible to materialize groups and slices of observations as well as hierar-
chical orders of dimension elements using respective concepts.
10 http://sdmx.org/?page id=6
11 Prefix qb:http://purl.org/linked-data/cube#

http://sdmx.org/?page_id=6
http://purl.org/linked-data/cube

Facilitating the Exploration and Visualization of Linked Data 97

3.2 Integrity Analysis

As described in the W3C RDF Data Cube Recommendation document data cubes
are structurallywell-formed if they comply to specific integrity constraints12.Those
constraints can be used to validate and if necessary to improve the quality of a data
cube. For CubeViz, we translated those constraints into SPARQL queries using an
ASK-clause returning boolean values. The queries were integrated into the Integrity
AnalysisComponent ofCubeViz,whoseGUI is depicted inFig. 3. If a query returns
false, the corresponding constraint is marked in the GUI in red and can be selected
in order to reuse and modify them with a configured query editor. This function-
ality supports the discovery of potential modelling or conversion flaws.

Additionally, this component is used to introspect the selected RDF model for
all included data cubes. If the introspection query (given in Listing ??) returns a
positive result, the Faceted Data Selection and Chart Visualization components
are activated.

1 PREFIX qb:<http :// purl.org/linked -data/cube#>
2 ASK FROM <http :// example.org/> {
3 ?observation a qb:Observation .
4 ?observation qb:dataSet ?dataset .
5 ?observation ?dimension ?dimelement .
6 ?observation ?measure ?value .
7 ?dataset a qb:DataSet .
8 ?dataset qb:structure ?dsd .
9 ?dsd a qb:DataStructureDefinition .

10 ?dsd qb:component ?dimspec .
11 ?dsd qb:component ?measurespec .
12 ?dimspec a qb:ComponentSpecification .
13 ?dimspec qb:dimension ?dimension .
14 ?measurespec a qb:ComponentSpecification .
15 ?measurespec qb:measure ?measure}

Listing 2. Data cube introspection query.

3.3 Faceted Exploration

Given that the introspection was successful, specific structural parts of the iden-
tified data cube are queried in order to create a faceted search interface. All
components of a DSD have to be integrated into any observation of the respec-
tive DS. In order to discover those observations the user has to select values that
are referenced by those components. First the user needs to select a DS of a data
cube in order to analyse the DSD that is the basis for all further facets. Second
the user has to select the measure and attribute property used to identify the
representation of values. The last mandatory facet is used to offer the selection
of dimensions and its respective elements of interest. CubeViz is processing and
visualizing values exactly as they are represented in the data cube and does not
support aggregate functions such as SUM, AVG, MIN and MAX. As a consequence,
users have to select at least one element of each dimension. Furthermore, if
materialized slices are aggregated within the selected DS an optional facet will
be generated to offer a selection from the retrieved slices.
12 http://www.w3.org/TR/vocab-data-cube/#wf-rules

http://www.w3.org/TR/vocab-data-cube/#wf-rules

98 C. Mader et al.

Fig. 3. GUI presenting results of the statistical and integrity analysis.

3.3.1 Generation of Dialogues
The detected facets and their generated GUI representations are integrated into
a filter form. To select/deselect elements of facets for extracting subsets of the
DS, respective interface elements are dynamically created. According to the type
of facet (mandatory/optional) a configurable amount of elements (min/max) is
selectable. Additionally, the label and textual description of components are
retrieved using SPARQL queries and added to the interface. As illustrated in
Fig. 4 the selected amount of facet elements is displayed after confirmation.
Already discovered RDF resources are cached on the client-side and will be
re-used in the Chart Visualization component.

One of the major advantages of faceted exploration is the avoidance of pos-
sibly empty result sets. To avoid empty sets of observations after facet selec-
tion, the set of selectable elements of all further facets in combination with its
respective count of observations is being calculated using respective SPARQL
queries. Every selected combination of a component and its respective element
is represented by a triple pattern that is conditionally used to retrieve the set of
observations and all facet elements.

3.3.2 Initial Pre-selection
To lower the barrier of exploring a data cube from scratch, an initial pre-selection
algorithm is started after a positive introspection. As described in Sect. 3.4 it is
possible to integrate and configure charts visualizing one or multiple dimensions.
The determined maximum amount of dimensions respectively chart axis is used

Facilitating the Exploration and Visualization of Linked Data 99

Fig. 4. Facets and dialogues.

as input for the pre-selection algorithm. After extracting all obligatory facets
exactly one element per facet is pre-selected. According to the number of dis-
covered dimensions and the maximum amount of processable chart axis, dimen-
sions are randomly selected for which more than one element can be selected. To
avoid confusing visualizations the amount of pre-selected elements is limited to
10 respectively 30% of the set of elements. During manual selection these limits
are not relevant.

3.4 Chart Visualisation

In order to extract observations according to user interests, filter criteria from the
facet selection component are translated into a corresponding SPARQL query.
The resulting set of observation resources is serialized in JSON and sent back to
the client. On the client-side the result set will be analysed according the amount
of disjunctive dimensions and the respective amount of elements in order to select
suitable charts. After identifying suitable chart implementations the first one is
launched and renders the visualization using the received set of observations. All
further suitable charts can be selected using a respective GUI element without
querying the observations again.

APIs

CubeViz comprises an abstraction layer to mediate between the retrieval of
observations and the APIs used to generate and visualize charts. Currently,
charts such as pie, bar, column, line and polar chart are implemented using the

100 C. Mader et al.

APIs Data Driven Documents13 (D3js) and HighCharts14. Every chart is imple-
mented using a defined interface and comprises a mechanism to convert the set
of observations in combination with the meta data about dimension properties
into the chart-specific input format.

Chart Options

Most of the implemented chart visualizations can be adjusted using preconfig-
ured chart options. Hence, it is possible to enable the display of measure values
in addition to its graphical representation, to switch axis / dimensions, to switch
the value scale between linear and logarithmic or to enable a normal or percent-
age stacking. Additionally it is possible to combine charts such as a polar chart
with a column chart (see Fig. 2).

Element Recognition

On the Linked Data Web, URIs are used to identify resources. In a domain-
agnostic tool such as CubeViz, it is not feasible to integrate static mappings
between data items and their graphical representations. Most of the chart APIs
have a limited amount of pre-defined colors used for colouring dimension ele-
ments or select colors completely arbitrarily. In order to display dimension
elements in a deterministic manner and to support users to quickly recover
selected elements in different charts we integrated a colouring algorithm that
uniquely assigns URIs of each dimension element corresponding RGB color
codes15.

Interactive Legend

Below the generated charts an additional tabular representations of the selected
data items is given (cf. Fig. 5). On the one hand they can be used as legend
containing additional meta data. On the other hand this view offers support for
resolving data inaccuracies with functionality for editing values, that automati-
cally updates the chart representation.

Sharing Views

After exploring, configuring and possible adaption of values users are able to
share the created output. Sharing functionality is implemented via a button,
which triggers the gathering of all information necessary to reproduce the created
output, storing them server-side and returning a shareable link containing an
identifying hash code for the particular view configuration. Furthermore, it is
possible to export selected data as CSV and RDF in Turtle notation.
13 http://d3js.org/
14 http://www.highcharts.com/
15 http://cold.aksw.org/

http://d3js.org/
http://www.highcharts.com/
http://cold.aksw.org/

Facilitating the Exploration and Visualization of Linked Data 101

Fig. 5. Interactive CubeViz legend.

4 Facete - A Generic Spatial Facetted Browser for RDF

Facete is a web application for the exploration of SPARQL-accessible spatial
data, which offers several distinguishing features. First, there is the advanced
faceted search component which enables users to filter the data by inverse
properties and nested properties. Counts are provided for both facets and facet
values. Second, the system will always attempt to detect (possible indirectly)
related geometric information for the set of resources matched by the faceted
search. For example, if a user filters by the class Person, then the system could
detect that birthPlace and deathPlace provide geo-coordinates and appropriate
suggestions about what to display on the map would be shown to the user.
Third, Facete provides a map display capable of dealing with large amounts of
geometric information. Finally, users are able to customize a tabular view for
the data related to their facet selection. Information about Facete is available
on its project site16. All of Facete’s user interface components are based on the
popular AngularJS17 framework, and are published as a separate library called
JAvascript Suite for Sparql Access (Jassa)18. In the remainder of this section,
we give an overview of Facete’s components, which we partly published in [14].

4.1 User Interface

Facete is implemented as a Single Page Application (SPA) whose user interface
comprises several UI components, which are depicted in Fig. 6 and explained in
the following. In the top area, there are elements that enable the user to select a
SPARQL endpoint and chose from one or more of its contained named graphs.
The main panel is divided into three columns containing a set of widgets with
the following functionality:

1. Selection. The first widget, labeled Facet, shows a facet tree that corre-
sponds to the properties of all resources that match the set constraint. If there
16 http://aksw.org/Projects/Facete
17 http://angularjs.org/
18 https://github.com/GeoKnow/Jassa-UI-Angular

http://aksw.org/Projects/Facete
http://angularjs.org/
https://github.com/GeoKnow/Jassa-UI-Angular

102 C. Mader et al.

Fig. 6. Graphical user interface of facete

are no constraints, all resources that appear as a subject in the selected graphs
are matched. Three actions can be performed for node in the facet tree. A click on
the facet’s name lists the facet’s values in the Facet Value widget, where these
values can be used for defining constraints. Clicking the caret symbol toggles
the display of corresponding child facets. These are the properties of the selected
facet’s values. Lastly, a facet can be pinned as a column to the Table View. Note,
that the root of the facet tree is formed by a facet labelled Items. This facet’s
values correspond to the set of resources in subject positions of the selected RDF
graphs. The Facet Values widget enables a user to paginate through a selected
facet’s values and optionally filter these values by a search term. Furthermore,
clicking the checkbox next to a value creates a constraint. The Filters widget
lists all active constraints. Individual constraints can be removed by clicking
their entry, whereas the Clear Filters button purges them all.

2. Data. The middle area contains the Table View, which lists a table whose
content is based on resources that match the active constraints and the facets
that were pinned as columns. Columns can be sorted by clicking the caret icons.
Multiple orders are supported by holding the shift key down while clicking.

3. Geographical. The Geo-Link drop down menu enables the user to choose
from property paths connecting the resources that match the constraints with
those that can be shown on the map. By default, the option automatic is enabled,
which always picks the shortest path among the found ones. The Map widget
displays markers corresponding to the selected resources and the geo-link. Blue
boxes indicate areas that contain too many markers to be shown at once. These
boxes disappear when sufficiently zoomed in. Clicking a marker shows its details
in the Detail View. The Detail View shows the excerpt of the Table View that
corresponds to the selected marker(s).

Facilitating the Exploration and Visualization of Linked Data 103

4.2 Concepts

In this section we briefly outline the key concepts used in Facete, which are
related to faceted search, detection of property paths that connect concepts and
dealing with large amounts of spatial data.

4.2.1 Faceted Search
Facete’s approach to faceted search based on the following concepts.

• A SPARQL concept is a pair comprising a SPARQL graph pattern and a
variable thereof. As such, it intentionally describes a set of resources. For
instance, the pair ({?s a Person}, ?s) could be used to describe a set of
people. SPARQL concepts are a key enabler for indirect faceted search as they
can be used to represent virtually any set of resources (within the expressivity
of SPARQL), such as the set of facets, the set of child facets, the set of facet
values and the set of resources with geometric information.

• Property Steps are used to navigate from a set of resources to a related set
of resources by following a specific property. A direction attribute determines
whether to follow a property in forward or inverse direction. Hence, a destina-
tion SPARQL concept can be obtained from a given origin SPARQL concept
and a property step.

• A Property Path is a sequence of property steps.
• Constraint Specifications express constraints via references to property paths.

Constraint specifications are internally translated to corresponding SPARQL
graph patterns.

4.2.2 Finding Connections between SPARQL Concepts
Depending on how a dataset was modeled, the spatial dimension may not be
directly attached to instances of a certain type. In order to visualize the spatial
dimension of such objects efficiently and intuitively we need an approach to find
connecting property paths between two arbitrary SPARQL concepts efficiently.
These paths can become relatively long, and naive path discovery approaches
are not feasible. For example, in our RDFized version of the FP7 project funding
dataset19, projects are related to geometric information via paths of length 5.

Our approach is outlined as follows: because we are only interested in the
detection of property paths, we pre-compute a property join summary. The basic
SPARQL query for this purpose is:

1 CONSTRUCT
2 { ?p1 :joinsWith ?p2 }
3 {
4 { SELECT DISTINCT ?p1 ?p2 {
5 ?a ?p1 [?p2 ?b]
6 } }
7 }

19 http://fp7-pp.publicdata.eu/sparql

http://fp7-pp.publicdata.eu/sparql

104 C. Mader et al.

Conceptually, we could search for arbitrary complex paths, such as ones that
include cyclic (same property followed multiple times in the same direction) and
zig-zag (forward and backward on the same property traversals. However, for our
use cases the restriction to directed acyclic paths leading from a source concept
to a target concept was sufficient: we query the source concept for all of its
properties ?p, and conceptually add triples (:source :joinsWith ?p) to the join
summary. Thereby :source is a distinguished resource representing the source
concept. From a target concept’s graph pattern, such as (?s geo:long ?x ; geo:lat
?y, ?s), we can infer that we need to search for properties that according to the
join summary are connected to both geo:long and geo:lat. As a consequence, we
can query the joinsummary for a set of candidate target properties using:
1 SELECT DISTINCT ?p { ?p :joinsWith geo:long ; joinsWith geo:lat }

If the extensions of the source and target concepts have resources in common,
this query’s result set includes :source as a candidate.

We can now search for candidate paths on the join summary that connect
:source with each of the candidate properties. For each candidate path we then
fire an ASK query to check whether the given dataset contains an instance of it.
Those paths for which actually data exists, are then listed in Facete’s Geo-Link
drop down box.

Note, that this approach is independent of any concrete vocabulary.

4.3 Display of Large Amounts of Geometries

Some spatial RDF datasets, such as DBpedia or Freebase, contain significantly
more spatial information than can be reasonably retrieved and displayed on a
map in a web application considering bandwidth and performance restrictions.
Facete handles such cases using a quad tree data structure:

• Based on the users constraints on the facets and the geo-link, a corresponding
SPARQL concept, named geo-concept, is created. The geo-concept specifies
the set of resources to be shown on the map.

• A count of the number of instances matching the geo-concept is requested. If
the count is below a configured threshold, all instances are retrieved at once
and placed into the root node of the quad tree.

• If this count exceeds the threshold, the extent of the whole map is split recur-
sively into four tiles of equal size. The recursion stops if either a maximum
depth is reached, or if the tiles have reached a certain relative size when com-
pared to the map viewport (e.g. when about 4 × 4 tiles are visible). For each
tile, the geo-concept is then modified to only refer to resources within that
tiles’ bounding box. A tile’s resources are only retrieved, if the new count is
again below a configured threshold.

• Tiles that still contain too many geometries are rendered as boxes on the map.

An example of such display is shown in Fig. 7, which shows a subset of the
approx. 20.000 resources with geo-positions in Germany. For each set of con-
straints, Facete creates a new quad tree that acts as a cache for the user’s
current configuration.

Facilitating the Exploration and Visualization of Linked Data 105

Fig. 7. Display of Freebase instances in Germany.

4.4 Related Work

The RelFinder system [6] is capable of finding property paths connecting a pair
of resources, whereas Facete searches for paths between SPARQL concepts. Over
the past decade, faceted search has become omnipresent, such as in web shop
and content management systems. Apache Solr20 is a popular system that offers
extensive faceted search features, however, it does not offer native SPARQL
support and thus requires pre-processing of RDF data. Rhizomer [1] and the
Virtuoso faceted browser21 support changing the focus from one set of resources
to a related one (known as pivoting). However, with these systems, the user
actually navigates between related list views of resources, whereas in Facete the
user pins facets as new columns to the table view.

5 Conclusions and Future Work

In this chapter, we presented three tools as part of the LOD2 project that aim
at facilitating the exploration of Linked Open Data. Rsine is a tool that sends
notifications about changes in a RDF dataset. CubeViz is a data cube visual-
isation tool for statistical data. Facete is a faceted browser application with a
focus on spartial data.
20 http://lucene.apache.org/solr/
21 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

VirtuosoFacetsWebService

http://lucene.apache.org/solr/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VirtuosoFacetsWebService
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VirtuosoFacetsWebService

106 C. Mader et al.

We presented the design, implementation and integration of rsine, a service
that notifies subscribers on specific changes in an RDF data set. We integrated
the service with two LOD2 stack components and showed its applicability by
supporting requirements for notifications in a thesaurus and metadata editing
scenario at WKD.

Our immediate next steps are to evaluate the implemented thesaurus noti-
fications in the context of a thesaurus development project at WKD. We are
interested in the performance of our approach and the “usefulness” of the notifi-
cations, i.e., if and in what way they influence the quality of the created thesauri.
We furthermore plan to set up multiple rsine instances in this environment to
gain insights about how notifications can help when references between datasets
on distinct servers are created, modified or deleted.

We presented the architecture, analysis components and visualization inter-
faces of CubeViz, a RDF Data Cube browser. In addition to the exploration of
locally stored RDF data cubes it is possible to access remotely published ones
using a combination of the SPARQL backend and the SPARQL services compo-
nent. Such a setup was deployed on the European Commission’s IT infrastructure
as part of the European Data Portal22.

There are further deployments of CubeViz made online such as Linked-
Spending23, which contain government spendings from all over the world repre-
sented and published as Linked Data (more than 2.4 million observations in 247
datasets). Using LinkedSpending, interested users can gather information about
greek spending on police in certain regions in 2012 for instance (jump in using
the button Example Visualization 2 on the start page).

CubeViz is publicly available for download24 and its latest releases can be
evaluated using an online demonstrator25. CubeViz is under active development
and will be further extended with new features such as drill-down functional-
ity, additional interactive and customizable charts, further chart APIs such as
the Google Charts API 26, aggregate functions and mashup features to compare
observations from different domains.

Lastly, we gave an overview about Facete, a tool for browsing Linked Data in
a domain-agnostic way with a focus on spatial data. Its major goal is to ease the
navigation of RDF data in SPARQL endpoints using advanced faceted search
techniques and - in addition - the provision of corresponding visualization wid-
gets. Facete is published under the Apache 2.0, license and its development con-
tinues within the GeoKnow project27. Further information such as new releases,
links to the sources, demos and documentation can be found on the project
page28.
22 https://open-data.europa.eu/cubeviz/
23 http://linkedspending.aksw.org/
24 https://github.com/AKSW/CubeViz/
25 http://cubeviz.aksw.org/
26 https://developers.google.com/chart/
27 http://geoknow.eu
28 http://aksw.org/Projects/Facete

https://open-data.europa.eu/cubeviz/
http://linkedspending.aksw.org/
https://github.com/AKSW/CubeViz/
http://cubeviz.aksw.org/
https://developers.google.com/chart/
http://geoknow.eu
http://aksw.org/Projects/Facete

Facilitating the Exploration and Visualization of Linked Data 107

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

References

1. Brunetti, J.M., Gil, R., Garcia, R.: Facets and pivoting for flexible and usable
linked data exploration. In: Interacting with Linked Data Workshop (ILD) (2012)

2. Cyganiak, R., Reynolds, D., Tennison, J.: The RDF data cube vocabulary. Tech-
nical report, W3C, 2013. http://www.w3.org/TR/vocab-data-cube/

3. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats – an extensible
framework for high-performance dataset analytics. In: ten Teije, A., Völker, J.,
Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles,
N., Hernandez, N. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 353–362.
Springer, Heidelberg (2012)

4. International Organization for Standardization. Statistical data and metadata
exchange (SDMX). Technical report, Standard No. ISO/TS 17369:2005 (2005)

5. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language - W3C Recommendation.
Technical report, World Wide Web Consortium (W3C) (2013). http://www.w3.
org/TR/sparql11-query/

6. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder:
revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris,
Y., Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS,
vol. 5887, pp. 182–187. Springer, Heidelberg (2009)

7. Heino, N., Dietzold, S., Martin, M., Auer, S.: Developing semantic web applica-
tions with the OntoWiki framework. In: Pellegrini, T., Auer, S., Tochtermann, K.,
Schaffert, S. (eds.) Networked Knowledge - Networked Media. SCI, vol. 221, pp.
61–77. Springer, Heidelberg (2009)

8. Mader, C., Haslhofer, B., Isaac, A.: Finding quality issues in SKOS vocabularies.
In: Zaphiris, P., Buchanan, G., Rasmussen, E., Loizides, F. (eds.) TPDL 2012.
LNCS, vol. 7489, pp. 222–233. Springer, Heidelberg (2012)

9. Mader, C., Wartena, C.: Supporting web vocabulary development by automated
quality assessment: results of a case study in a teaching context. In: Workshop on
Human-Semantic Web Interaction (HSWI14), CEUR Workshop Proceedings, May
2014

10. May, W., Alferes, J.J., Amador, R.: An ontology- and resources-based approach
to evolution and reactivity in the semantic web. In: Meersman, R. (ed.) Coop-
IS/DOA/ODBASE 2005. LNCS, vol. 3761, pp. 1553–1570. Springer, Heidelberg
(2005)

11. United Nations: Guidelines for Statistical Metadata on the Internet. Technical
report, Economic Commission for Europe (UNECE) (2000)

12. Management of Statistical Metadata at the OECD (2006)
13. Passant, A., Mendes, P.: sparqlPuSH: Proactive notification of data updates in

RDF stores using PubSubHubbub. In: CEUR Workshop Proceedings ISSN 1613–
0073, February 2011

14. Stadler, C., Martin, M., Auer, S.: Exploring the web of spatial data with facete.
In: Companion proceedings of 23rd International World Wide Web Conference
(WWW), pp. 175–178 (2014)

http://www.w3.org/TR/vocab-data-cube/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

	Facilitating the Exploration and Visualization of Linked Data
	1 Introduction
	2 Rsine - Getting Notified on Linked Data Changes
	2.1 Related Work
	2.2 Approach
	2.3 Stack Integration
	2.4 Notification Scenarios

	3 CubeViz -- Exploration and Visualization of Statistical Linked Data
	3.1 The RDF Data Cube Vocabulary
	3.2 Integrity Analysis
	3.3 Faceted Exploration
	3.4 Chart Visualisation

	4 Facete - A Generic Spatial Facetted Browser for RDF
	4.1 User Interface
	4.2 Concepts
	4.3 Display of Large Amounts of Geometries
	4.4 Related Work

	5 Conclusions and Future Work
	References

