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Universität Leipzig, Postfach 100920, 04009 Leipzig, Germany
{unbehauen,cstadler,auer}@informatik.uni-leipzig.de

http://aksw.org

Abstract. The vast majority of the structured data of our age is stored
in relational databases. In order to link and integrate this data on the
Web, it is of paramount importance to make relational data available
according to the RDF data model and associated serializations. In this
article we present SparqlMap, a SPARQL-to-SQL rewriter based on the
specifications of the W3C R2RML working group. The rationale is to
enable SPARQL querying on existing relational databases by rewrit-
ing a SPARQL query to exactly one corresponding SQL query based
on mapping definitions expressed in R2RML. The SparqlMap process
of rewriting a query on a mapping comprises the three steps (1) map-
ping candidate selection, (2) query translation, and (3) query execution.
We showcase our SparqlMap implementation and benchmark data that
demonstrates that SparqlMap outperforms the current state-of-the-art.
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1 Introduction

The vast majority of the structured data of our age is stored in relational
databases. In order to link and integrate this data on the Web, it is of paramount
importance to make relational data available according to the RDF data model
and associated serializations.

Also, for several reasons, a complete transition from relational data to RDF
may not be feasible: Relational databases commonly provide rich functionality,
such as integrity constraints; data management according to the relational data
model often requires less space and may be simpler than with RDF, such as
in cases which would require reification or n-ary relations; the cost of porting
existing applications or maintaining actual datasets in both formats may be
prohibitive; and RDBs are still a magnitude faster than RDF stores. As it can
not be expected that these gaps will close soon, relational data management
will be prevalent in the next years. Hence, for facilitating data exchange and
integration it is crucial to provide RDF and SPARQL interfaces to RDBMS.

http://aksw.org
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Fig. 1: Two models for mapping relational data to RDF: query rewriting and RDF
extraction.

In this article we present SparqlMap1, a SPARQL-to-SQL rewriter based on
the specifications of the W3C R2RML working group2. The rationale is to en-
able SPARQL querying on existing relational databases by rewriting a SPARQL
query to exactly one corresponding SQL query based on mapping definitions
expressed in R2RML. The R2RML standard defines a language for expressing
how a relational database can be transformed into RDF data by means of term
maps and triple maps. In essence, implementations of the standard may use
two process models, which are depicted in Figure 1: Either, the resulting RDF
knowledge base is materialized in a triple store (1) and subsequently queried us-
ing SPARQL (2), or the materialization step is avoided by dynamically mapping
an input SPAQRL query into a corresponding SQL query, which renders exactly
the same results as the SPARQL query being executed against the materialized
RDF dump (3).

SparqlMap is in terms of functionality comparable with D2R [3] or Virtuoso
RDF Views [1] with the focus on performing all query operators in the rela-
tional database in a single unified query. This strategy ensures scalability since
expensive round trips between the RDBMS and the mapper are reduced and
the query optimization and execution of the RDBMS are leveraged. SparqlMap
is designed as a standalone application facilitating light-weight integration into
existing enterprise data landscapes.

In the following we give a short overview over our approach. The prequisite
for rewriting SPARQL queries to SQL is a set of mapping definitions over which
queries should be answered. In Section 3 we formalize the mapping and query
syntax. The process of rewriting a query on a mapping is performed in the
following three steps:
Mapping candidate selection. The initial step, described in Section 4.1, iden-

tifies candidate mappings. These are mappings that potentially contribute
to the query’s result set: Informally, this is the set of mappings that yield
triples that could match the triple patterns of the query, as shown in Fig-
ure 4. The relation between the candidate mappings and the triple patterns
is called a binding.

1
http://aksw.org/Projects/SparqlMap

2
http://www.w3.org/TR/r2rml/

http://aksw.org/Projects/SparqlMap
http://www.w3.org/TR/r2rml/
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Query translation. The identified candidate mappings and the obtained bind-
ings enable us to rewrite a SPARQL query to an SQL query. This process is
described in Section 4.2.

Query execution. Finally, we show in Section 4.3 how the SPARQL result set
is constructed from the SQL result set of the executed SQL query.

We finally evaluate our approach using the BSBM benchmark in Section 5 and
show that SparqlMap is on average an order of magnitude faster than state-of-
the-art techniques.

The contributions of our work described in this article include in particular
(1) the formal description of mapping candidate selection, (2) an approach for
efficient query translation and (3) showcasing the implementation and demon-
strate its efficiency.

2 Related Work

We identified two related areas of research. First, as many native triple stores
are based on relational databases there is considerable research on efficiently
storing RDF data in relational schema. Exemplary are both [7] and [5], dis-
cussing the translation of a SPARQL into a single SQL query. The translations
presented there are however targeted towards database backed triple stores and
need to be extended and adopted for usage in a database mapping scenario.
Also notable is [8], describing SQL structures to represent facets of RDF data
in relational databases. Second, the mapping of relational databases into RDF
is a way of leveraging existing data into the Semantic Web. We can differentiate
between tools that either expose their data as RDF, Linked Data or expose a
SPARQL endpoint for interactive querying of the data. An example for RDF
and Linked Data exposition is Triplify [2]. Exposing data via a SPARQL end-
points either requires loading transformed data into a SPARQL-enabled triple
store or rewriting SPARQL queries into SQL. The answering of SPARQL queries
over relational data is the goal of several concepts and implementations. D2R
Server [3] is a standalone web application, answering SPARQL queries by query-
ing the mapped database. D2R mixes in-database and out-of-database opera-
tions. Operators of an incoming SPARQL queries like joins and some filters are
performed in the mapped database directly. Other operators are then later ex-
ecuted on the intermediate results directly by D2R. OpenLink’s Virtuoso RDF
Views [1] allows the mapping of relational data into RDF. RDF Views are inte-
grated into the Virtuoso query execution engine, consequently allowing SPARQL
query over native RDF and relational data. A further SPARQL-to-SQL tool is
Ultrawrap [11], which integrates closely with the database and utilizes views
for answering SPARQL queries over relational data. However, to the best of our
knowledge, there is no approach describing in detail the mapping and translation
process for generating a single, unified SQL query.
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3 Definitions

In this section we define the syntax of RDF, SPARQL and the mapping. The
RDF and SPARQL formalization is closely following [9].

Definition 1 (RDF definition). Assume there are pairwise disjoint infinite
sets I, B, and L (IRIs, blank nodes, and RDF literals, respectively). A triple
(vs, vp, vo) ∈ (I ∪B)× I × (I ∪B ∪ L) is called an RDF triple. In this tuple, vs
is the subject, vp the predicate and vp the object. We denote the union I ∪B ∪L
as by T called RDF terms.

Using the notion t.i for i ∈ {s, p, o} we refer to the RDF term in the respective
position. In the following, the same notion is applied to triple patterns and triple
maps. An RDF graph is a set of RDF triples (also called RDF dataset, or simply
a dataset). Additionally, we assume the existence of an infinite set V of variables
which is disjoint from the above sets. The W3C recommendation SPARQL3 is a
query language for RDF. By using graph patterns, information can be retrieved
from SPARQL-enabled RDF stores. This retrieved information can be further
modified by a query’s solution modifiers, such as sorting or ordering of the query
result. Finally the presentation of the query result is determined by the query
type, return either a set of triples, a table or a boolean value. The graph pattern
of a query is the base concept of SPARQL and as it defines the part of the RDF
graph used for generating the query result, therefore graph patterns are the focus
of this discussion. We use the same graph pattern syntax definition as [9].

Definition 2 (SPARQL graph pattern syntax). The syntax of a SPARQL
graph pattern expression is defined recursively as follows:
1. A tuple from (I ∪L∪ V )× (I ∪ V )× (I ∪L∪ V ) is a graph pattern (a triple

pattern).
2. The expressions (P1 AND P2), (P1 OPT P2) and (P1 UNION P2) are graph

patterns, if P1 and P2 are graph patterns.
3. The expression (P FILTER R) is a graph pattern, if P is a graph pattern

and R is a SPARQL constraint.

Further the function var(P ) returns the set of variables used in the graph pattern
P . SPARQL constraints are composed of functions and logical expressions, and
are supposed to evaluate to boolean values. Additionally, we assume that the
query pattern is well-defined according to [9].

We now define the terms and concepts used to describe the SPARQL-to-SQL
rewriting process. The basic concepts are the relational database schema denoted
s and a mapping for this schema m. The schema s has a set of relations R and
each relation is composed of attributes, denoted as Ar = (r.a0, r.a1, ..., r.al). A
mapping m defines how the data contained in tables or views in the relational
database schema s is mapped into an RDF graph g. Our mapping definitions are
loosely based on R2RML. An example of such a mapping is depicted in Figure 2
and used further in this section to illustrate the translation process.

3
http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/
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Fig. 2: Exemplary mapping of parts of two relations using three triple maps. R2RML’s
construct logicalTable specifies the source relation of a triple map.

Definition 3 (Term map). A term map is a tuple tm = (A, ve) consisting of
a set of relational attributes A from a single relation r and a value expression ve
that describes the translation of A into RDF terms (e.g. R2RML templates for
generating IRIs). We denote by the range range(tm) the set of all possible RDF
terms that can be generated using this term map.

Term maps are the base element of a mapping. In Figure 2 an example for
such a term map is (1). With ve being the template http://comp.com/emp{id}

and A = {Employee.id} it is possible to produce resource IRIs for employees.
The RDF term (2) in Figure 2 creates a constant value, in this case a property.
Consequently, for this RDF term A = ∅ holds.

Definition 4 (Triple map). A triple map trm is the triple (tmS , tmP , tmO)
of three term maps for generating the subject (position s), predicate (position p)
and object (position o) of a triple. All attributes of the three term maps must
originate from the same relation r.

A triple map defines how triples are actually generated from the attributes of
a relation (i.e. rows of a table). This definition differs slightly from the R2RML
specification, as R2RML allows multiple predicate-object pairs for a subject.
These two notions, however, are convertible into each other without loss of gen-
erality. In Figure 2 the triple map comp:EmpMap1 defines how triples describing
the name of an employee resource can be created for the relation Employee.

A mapping definition m = (R,TRM ) is a tuple consisting of a set of relations
R and a set of triple maps TRM . It holds all information necessary for the
translation of a SPARQL query into a corresponding SQL query. We assume in
this context that all data is stored according to the schema s is mapped into a
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Fig. 3: Mapping candidate selection overview. The patterns of a query parsed into a
tree. The bind function recurses over that tree.

single RDF graph and likewise that all queries and operations are performed on
this graph 4.

4 The SparqlMap Approach

The SparqlMap approach is based on the three steps of mapping candidate se-
lection, query translation and query execution that are discussed in this section.

4.1 Mapping candidate selection

Mapping selection is the process of identifying the parts of a mapped graph that
can contribute to the solution of a query q. This selection process is executed for
every query and forms the basis for the following step – the translation into SQL.
The parts of a query that are used for matching the parts of a graph examined
are the graph patterns. The graph of a mapped database is the set of triples
defined by the triple maps. Consequently, we propose the selection of candidate
triple maps to match the graph pattern. The general approach described here
aims at first binding each triple pattern of q to a set of candidate triple maps,
and then to reduce the amount of bindings by determining the unsatisfiability of
constraints (e.g join conditions) based on the structure of the SPARQL query.

Before we formally introduce the operators used, we give a brief overview
of the process in Figure 3. The simple query q depicted here represents a tree-
like structure according to Definition 2. In a bottom-up traversal we first search
for mapping candidates for the triple patterns P1 and P2. In the next step,
indicated by the bind() function, these mapping candidates are examined on the
next higher level of the tree. Based on the semantics of P3 the bind() function
reduces the mapping candidates for P1 and P2. Before we formally describe this
process we define the notion of a binding.

Definition 5 (Triple Pattern Binding). Let q be a query, with TPq being
its set of triple patterns. Let m be the mapping of a database, with TRM m being

4 Note, that support for named graphs can be easily added by slightly extending the
notion of triple map with an additional term map denoting the named graph.
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its set of all triple maps. A triple pattern binding tpb is the tuple (tp,TRM ),
where tp ∈ TPq and TRM ⊆ TRMm. We further denote by the set QPBq for a
query q the set of triple pattern bindings TPB, such that there exists for every
tp ∈ TPq exactly one tpb.

In this context we assume that in case q contains a triple pattern more than
once, for each occurrence there exists in QPBq a separate tpb. The set TRM for
a triple pattern tp is also called the set of mapping candidates for tp. We now
define successively the basic terms and functions on the triple pattern bindings
and illustrate them using the sample query introduced in Figure 3. In Figure 4
the result of the process is depicted. The dotted squares indicate the triple
pattern bindings tpb with their patterns and triple maps.

Definition 6 (Term map compatibility). We consider two term maps tm1

and tm2 to be compatible, if range(tm1) ∩ range(tm2) 6= ∅. We further consider
a term map tm compatible with an RDF term t, if the term t ∈ range(tm). A
variable v is always considered compatible with a term map.

With the boolean function compatible(t1, t2) we denote the check for compati-
bility. This function allows us to check, if two term maps can potentially produce
the same RDF term and to pre-check constraints of the SPARQL query. Mapping
candidates that cannot fulfill these constraints are removed from the binding.
Further it allows to check, if a triple map is compatible with a triple pattern
of a query. In the example given in Figure 4 term map compatibility is used to
bind triple maps to term maps. At position (1) in Figure 4 the triple pattern P2

is bound to the term map :EmpMap2 because the resource IRI at the predicate
position of P2 is compatible with the constant value term map of :EmpMap2 in
the same position. The notion of term compatibility can be extended towards
checking bindings for compatibility by the functions join and reduce.

Definition 7 (Join of triple pattern bindings). Let tpb1 = (tp1 ,TRM1 )
and tpb2 = (tp2 ,TRM2 ) be triple pattern bindings. Further, let V = var(tp1) ∩
var(tp2) be the set of shared variables.

We define join(tpb1, tpb2) : {(trma, trmb) ∈ TRM 1 × TRM 2| for each vari-
able v ∈ V the union of the corresponding sets of term maps of trma and trmb

is either empty or its elements are pairwise compatible.5 }

Definition 8 (Reduction of triple pattern bindings). The function
reduce(tpb1, tpb2) is defined as proj(join(tpb1, tpb2), 1), i.e. the projection of
the first component of the tuples obtained by the join operation.

Reduction is the base operation for minimizing the set of triple maps as-
sociated with every triple pattern. It rules out all candidate tuples that would
eventually yield unsatisfiable SQL join conditions. In Figure 4 the reduction
process follows the dotted line indicated by (2). The triple patterns P1 and P2

5 Note, that the same variable may occur multiple times in a triple pattern and there-
fore map to multiple term maps.
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Fig. 4: Binding operations on a sample query. In (1) a simple check for compatibility
at the predicate position is performed, in (2) the triples maps are merged between two
triple pattern bindings, checking compatibility at the subject position.

(a) merge(TPB1,TPB2)

TPB ← TPB1 ∪ TPB2

TPB ′ ← ∅
for tpb1inTPB do

for tpb2inTPB do
tpb1 ← reduce(tpb1, tpb2)

end for
TPB ′ ← TPB ′ ∪ {tpb1}

end for
return TPB ′

(b) optmerge(TPB1,TPB2)

TPB ′ ← TPB1

for tpb1inTPB1 do
for tpb2inTPB2 do

tpb2 ← reduce(tpb2, tpb1)
end for
TPB ′ ← TPB ′ ∪ {tpb2}

end for
return TPB ′

Fig. 5: The merge and optmerge algorithms.

share the variable ?s which is in both cases in the subject position of the triple
pattern. Consequently, each triple map in TPB1 is compared at the subject po-
sition with all subject term maps of TPB2 for compatibility. If no compatible
triple map is found, the triple map is removed from the candidate set. The term
map :DepMap1 in Figure 4 is therefore not included in TPB3 , as the subject
of :DepMap1 is not compatible with the subject of :EmpMap2. The reduction
function now allows the definition of two operators that perform a reduction of
mapping candidates along the syntax of a SPARQL query.

For the two sets of triple pattern bindings TPB1 and TPB2 we define two
merge operations for the triple pattern bindings as follows:

Binding merge merge(TPB1,TPB2) reduces all triple pattern bindings with
each other, as illustrated in Figure 5a.

Binding opt merge optmerge(TPB1,TPB2) reduces all triple pattern bind-
ings of TPB2 with the all triple pattern bindings of TPB1, as illustrated
in Figure 5b.

Both merge operations preevaluate the join conditions of the later SQL ex-
ecution. The compatibility check for the shared variables of two triple patterns
rule out unfulfillable join or respectively left join conditions.
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We can use these operators to define the recursive function bindm(P ), which
computes for a mapping m and the graph pattern P the set of triple pattern
bindings TPBp , similar to the recursive evaluation function defined in [9].

Definition 9. Let TRMm be the set of all triple maps in m, P1 and P2 be
graph patterns and tp be a triple pattern of a query. The function bindm(P )
is the recursive binding of the TRMm to the triple patterns of a query for the
following cases:
1. If P is a triple pattern tp, bind(P ) = {(tp,TRM tp)|TRM tp = {trm|trm ∈

TRMm ∧ compatible(trm.s, tp.s) ∧ compatible(trm.p, tp.p)
∧compatible(trm.o, tp.o)}}.

2. If P is (P1 AND P2), bind(P ) = merge(bindm(P1 ), bindm(P2 ))
3. If P is (P1 OPT P2), bind(P ) = optmerge(bindm(P1 ), bindm(P2 ))
4. If P is (P1 UNION P2), bind(P ) = (bindm(P1 ) ∪ bindm(P2 )
5. If P is (P1 FILTER R), bind(P ) = {tpb|tpb ∈ bindm(P1)∧ if tpb is sharing

variables with R, the constraint is pre-evaluated. If the filter is always false,
the term map is not included.}

The complete binding process can now be illustrated using the example in
Figure 4. Starting from the bottom, bind(P1 ) evaluates to TPB1 = {(P1, {
:empMap1,:depMap1})} and bind(P2 ) to TPB2 = {(P2, {:empMap2})}. For P1

the triple map :empMap2 is not bound, because compatible(P1.p, :empMap2.p)
= false. In the next step of the recursion, the pattern binding merge is evaluated
between the two sets, creating TPB3. The sets of triple maps of TPB1 and of
TPB2 are reduced on the shared variable s. The term map at the subject position
of :depMap1 is not compatible with the subject from another triple map of TPB1

and is not included in TPB3. Here the recursion halts, the set obtained in the
last step represents the full mapping of the query QPB = TPB3. QBP is a set
of two triple pattern bindings, each with one triple map, and is ready to be used
for creating the SQL query in the next step of the process.

The approach described in Definition 9 has some limitations. Variables used
in both sub-patterns of UNIONs are not exploited for reducing the candidate
triple maps. This for example could be overcome by using algebraic equivalence
transformations which are described in [10]. Another limitation is that not all
candidate reductions are applied to triple patterns that are not directly con-
nected by shared variables. The modifications to the query binding strategy
dealing with this limitation are part of the future work on SparqlMap.

4.2 Query translation

Query translation is the process of generating a SQL query from the SPARQL
query using the bindings determined in the previous step. We devise a recursive
approach to query generation, similar to the one presented for mapping selection.
The result of this translation is a nested SQL query reflecting the structure of the
SPARQL query. We first describe the function toCG(tm) that maps a term map
tm into a set of column expressions CG , called a column group. The utilization
of multiple columns is necessary for efficient filter and join processing and data
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Fig. 6: Column group for variable ?s of graph pattern P1

type compatibility of the columns in a SQL union. In a CG the columns can be
classified as:

Type columns The RDF term type, i.e. resource, literal or blank node is en-
coded into these columns using constant value expressions. The column ex-
pression cast(1 as numeric) s_type declares the RDF terms produced
in this column group to be resources.

Resource columns The IRI value expression V E is embedded into multiple
columns. This allows the execution of relational operators directly on the
columns and indexes.

Literal columns Literals are cast into compatible types to allow SQL UNION
over these columns.

In Figure 6 the column group created for the variable ?s of triple pattern P1

is depicted. The following aspects of query translation require the definition of
additional functions.

Align The alignment of of two select statements is a prerequisite for performing
a SQL union as the column count equality and data type compatibility of
the columns are mandatory. The function align(s1 , s2 ) for two SQL select
statements s1 and s2 returns s′1 by adding adding columns to s1 such that
s′1 contains all columns defined in s2. The columns added do not produce
any RDF terms.

Join Filter conditions are performed on column groups, not directly on columns.
As already outlined in [6] this requires embedding the filter statements into
a conditional check using case statements. This check allows the database
to check for data types and consequently to select the correct columns of
a column group for comparison. For two SQL queries s1, s2 the function
joinCond(s1 , s2 ) calculates the join condition as an expression using case

statements, checking the column groups bound to of shared variables.
Filter For R being a filter expression according to Definition 2 (5), the function

filterf (R) translates a filter expression into an equivalent SQL expression on
column groups.

Triple Pattern The RDF literals and resources used in a triple pattern tp are
implicit predicates and need to be made explicit. The function filterp(tp)
maps these triple patterns into a set of SQL predicates, similar to the defi-
nition of filterf (R).
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Fig. 7: Query nesting for a sample query

Alias The renaming of a column group CG is performed by the function alias(
CG, a) that aliases all column expressions of CG, by adding the prefix a. For
the scope of this paper, we assume that proper alias handling is performed
and is not further explicitly mentioned.

Using the previously defined function toCG(tm) and the usage of the SQL
operators JOIN, LEFT JOIN and UNION we can now devise a simple recursive
translation function.

Definition 10 (Query translation). Let QPB be a query pattern binding, P1

and P2 be graph patterns and tp be a triple pattern and tpb = (tp, TRM) be
triple pattern binding for tp with the set of term maps TRM . The relation for
each trm ∈ TRM is denoted r. The translation of a graph pattern P into a SQL
query Qsql = tQPB(P ) is performed as follows.

1. If P is a triple pattern: tQPB(P ) = UNION ALL {∀trm ∈ TRM : SELECT

toCG(trm.s), toCG(trm.p), toCG(trm.o) FROM r WHERE filterp(P)}
2. If P is (P1 AND P2): tQPB(P ) = SELECT * FROM ( tQPB(P1) ) p1

JOIN ( tQPB(P2) ) p2 ON( joinCond(p1 , p2 ) )

3. If P is (P1 OPT P2): tQPB(P ) = SELECT * FROM ( tQPB(P1) ) p1

LEFT JOIN ( tQPB(P2) ) p2 ON( joinCond(p1 , p2 ) )

4. If P is (P1 UNION P2): tQPB(P ) = ( align(tQPB(P1), tQPB(P2))) UNION (

align(tQPB(P2), tQPB(P1)) )

5. If P is (P1 FILTER R): tQPB(P ) = SELECT * FROM tQPB(P )
WHERE filterf (R)

The translation of the example of Figure 4 is depicted in Figure 7. The column
groups are indicated here by the notion (CG(t)), where t is the RDF term or
variable the column group was created for.
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4.3 Query execution

The SQL query created as outlined in the previous section can now be executed
on the mapped database. The result set of this SQL query is then mapped into
a SPARQL result set depending on the query type of the SPARQL query. Each
row of a SQL result set produces for every column group an RDF term which
then can be used to create the SPARQL result set. In the case of an SPARQL
SELECT query, for each projected variable the corresponding column group is
used to generate the RDF terms. We use the result set for the query initially
described in Figure 3 to illustrate the result set translation process. The following
listing presents a result set snippet for the column group of variable ?dep. For
brevity, literal columns are collapsed into to dep_lits.

dep_type|dep_datatype|dep_lits|dep_reslength| dep_res_1 |dep_res_2

--------|------------|--------|-------------|-------------------|---------

1| 1| null| 2|http://comp.com/dep| 1

--------|------------|--------|-------------|-------------------|---------

According to dep_type the RDF term is a resource. The IRI of the resource is
generated from 2 columns, indicated by dep_reslength. The IRI is constructed
by concatenating the prefix from s_res_1 with the percent-encoded6 value from
dep_res_2. The SPARQL result set corresponding to the sample query is con-
sequently:

<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<head><variable name="dep"/></head>

<results> <result>

<binding name="dep"><uri>http://comp.com/dep1</uri></binding>

</result> </results>

</sparql>

4.4 Implementation and Optimizations

We implemented the mapping candidate selection, query translation and query
execution in SparqlMap, a standalone SPARQL-to-SQL rewriter. It utilizes ARQ7

for SPARQL parsing and Java servlets for exposing a SPARQL endpoint. Our
implementation is available under an open-source license on the project page8.
We implemented several optimizations for achieving both better SQL query run-
time and efficient mapping candidate selection. After parsing the query filter ex-
pressions are pushed into the graph patterns as describe in [10]. Further, when
searching for mapping candidates, the patterns are grouped according to their
subject for reducing search time. As described in [7] we flatten out the nested
SQL structure described in Section 4.2 with the goal of minimizing self-joins.

6 as defined in http://tools.ietf.org/html/rfc3986
7
http://jena.apache.org/documentation/query/

8
http://aksw.org/projects/SparqlMap

http://tools.ietf.org/html/rfc3986
http://jena.apache.org/documentation/query/
http://aksw.org/projects/SparqlMap
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5 Evaluation

We evaluated SparqlMap using the Berlin Sparql Benchmark (BSBM) [4]. We
selected BSBM because of its widespread use and the provision of both RDF and
relational data with corresponding queries in SPARQL and SQL. As a baseline
tool D2R [3] was chosen since D2R is the most mature implementation and also
implemented as standalone application, interacting with a remote database. As
outlined in Section 2, D2R performs only a part of the operations of a SPARQL
query in the database. Therefore multiple SQL queries will be issued for a single
SPARQL query.

Setup. We used a virtualized machine with three AMD Opteron 4184 cores and
4 GB RAM allocated. Data resided in all cases in a PostgreSQL 9.1.3 database9,
with 1 GB of RAM. Additional indices to the BSBM relational schema were
added, as described in the BSBM results document10. Both D2R and Spar-
qlMap were allocated 2 GB of RAM. We utilized D2R version 0.8 with the
mapping provided by BSBM11. All benchmarks employed the explore use case
and were performed on a single thread with 50 warm-up and 500 measurement
runs. In our evaluation we performed two different runs of BSBM. In the first
run the SPARQL endpoints of SparqlMap, D2R and D2R with fast mode en-
abled (D2R-fast) were tested. Additionally, the PostgreSQL database was di-
rectly benchmarked. Due to D2R running out of memory when executing query
7 and 812 with 100M triples we additionally run the benchmark without Q7 and
Q8. In a second run, we compare the efficiency of the generated SQL by record-
ing the SQL generated by SparqlMap during a benchmark session and executing
the SQL directly.

Overall runtimes. The results of the first run are presented for each query in Fig-
ure 8, the total runtime of this run is depicted in Figure 9 (b). A first observation
is the performance advantage of SQL over SPARQL. Both D2R and SparqlMap
are Java applications and therefore add overhead to the queries. Especially sim-
ple select queries like Q2 or Q11 with short execution times for BSBM-SQL show
extreme differences compared to the SPARQL-to-SQL rewriters. We therefore fo-
cus on the discussion of the first benchmark run on a comparison between D2R
and SparqlMap. For the 1M and 25M triple dataset SparqlMap outperforms
D2R-fast in the vast majority of the queries. Comparing the total runtime, as
presented in Figure 9 (b), for the 1M dataset SparqlMap is overall 5 times faster
than D2R-fast and for the 25M dataset SparqlMap is overall 90 times faster than
D2R-fast. It can be clearly seen, that SparqlMap outperforms D2R-fast by at
least an order of magnitude and has superior scaling characteristics. For larger
data sets (i.e. above 1M triples) SparqlMap’s performance is also relatively close

9
http://www.postgresql.org/

10
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/index.html#d2r

11
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/V2/results/store_config_files/
d2r-mapping.n3

12 Cf.: http://sourceforge.net/mailarchive/message.php?msg_id=28051074

http://www.postgresql.org/
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/index.html#d2r
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/V2/results/store_config_files/d2r-mapping.n3
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/V2/results/store_config_files/d2r-mapping.n3
http://sourceforge.net/mailarchive/message.php?msg_id=28051074
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Fig. 8: Berlin SPARQL Benchmark evaluation with 1M, 25M and 100M triples, com-
paring SparqlMap, D2R with and without fast mode and native SQL. Values are av-
erage runtimes of queries in seconds for each query on a log scale

to the one of handcrafted SQL. It is noteworthy, that the huge difference in
overall runtime can be attributed mainly to the slow performance of D2R-fast
in Q7 and Q8.

Query specific performance. In general, for queries 1, 2, 3, 4, 5, 9, 10, 11 and
12 SparqlMap, D2R and D2R-fast show performance figures in the same order
of magnitude. However, when examining the SQL generated by D2R and Spar-
qlMap and relate it to their performance as presented in Figure 8 we can identify
three categories.

1. Queries, which both mappers translate into a single SQL query with a similar
runtime (Q1, Q5, Q10, Q12). These queries scale well for both mappers and
the differences towards SQL decreases as the constant overhead imposed by
the mapping contributes less to query execution time.

2. Queries that D2R maps into multiple SQL queries, that still yield a perfor-
mance similar to SparqlMap (Q2, Q3, Q4, Q9, Q11). These queries however
retrieve result sets of moderate sizes and may therefore in general scale worse
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than queries executed in a single SQL query. An example for this is Q3, where
the ratio of the average execution time for SparqlMap and D2R-fast increases
from 0.84 for the 1m dataset to a factor of 2.84 for the 25m dataset.

3. Queries mapped by D2R into multiple queries with low selectivity yielding
huge intermediate result sets (Q7, Q8). In comparison with SparqlMap the
queries show poor scalability and performance. The average execution time
ratio for Q7 between SparqlMap and D2R increases from 20 for the 1m
dataset to 60 for the 25m dataset.

SQL performance comparison. The second benchmark run compares the SQL
generated by SparqlMap (SparqlMap-SQL) with the SQL queries defined for
BSBM (BSBM-SQL). This second run allows a direct comparison of efficiency
between the handcrafted BSBM-SQL and the SQL generated by SparqlMap. The
benchmark compares pure SQL efficiency, cutting out the overhead imposed by
finding and translating the queries and is depicted in Figure 9 (a). In general
we can observe that SparqlMap adds some overhead compared to the BSBM-
SQL. SparqlMap generates for Q2 structurally similar SQL compared to the
one of BSBM-SQL. The queries of SparqlMap-SQL, however, contain additional
information required to generate RDF terms, such as the datatype, and therefore
result in a twice as high average query runtime when compared to BSBM-SQL.
A more drastic example is Q12, where BSBM-SQL is approximately 3.6 times
faster than SparqlMap-SQL, or Q3 which takes on average 3.8 times longer in
SparqlMap. Due to the large amount of tables used in this query, the overhead
is more significant. In Q1 we observe that SparqlMap-SQL is slightly faster
than BSBM-SQL (factor 1.1). Also in Q5 SparqlMap-SQL slightly outperforms
BSBM-SQL by a factor of 1.2. We analyzed this difference and attribute it to
the nested queries in BSBM-SQL. Especially the multiple nesting of subqueries
in BSBM-SQL Q5 presents a challenge for the PostgreSQL query optimizer.
The flat SQL structure generated by SparqlMap performs better here. Q11 is an
example where SparqlMap-SQL performs significantly worse than BSBM-SQL
(factor 34.0). The unbound predicate of Q11 leads SparqlMap to create a SQL
query containing multiple unions of subselects. The lean structure of BSBM-SQL
explains this gap.

Fig. 9: (a) Comparison of BSBM-SQL with the SQL generated by SparqlMap for the
100M dataset. Average runtime in seconds on a log scale. (b) Total benchmark runtime
in seconds on a log scale.
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6 Conclusion and Outlook

In this paper we presented a formalization of the mapping from relational data-
bases to RDF, which allows a translation of SPARQL queries into single unified
SQL queries. The benchmarking of our implementation shows clearly, that such
an efficient mapping into a single query leveraging the SQL query optimizer and
processor during query execution and results in significantly improved scalabil-
ity when compared to non-single-SQL RDB2RDF implementations. In future
work, we aim to improve the support for R2RML. We will also add further opti-
mizations, such as support for the SPARQL REDUCED construct, which can boost
the execution of certain queries. The query generation overhead can be substan-
tially reduced by enabling prepared SPARQL queries, where a SPARQL query
template is already precompiled into the corresponding SQL query template and
subsequently reoccurring queries using the template do not have to be translated
anymore. During our evaluation, we gained the impression, that BSBM is not
best suited for benchmarking RDB2RDF mapping approaches. Certain features
that are particularly challenging for an RDB2RDF tool (such as queries over the
schema) are not part of BSBM. We plan to perform additional benchmarks and
also to evaluate SparqlMap with large-scale real-world data.
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