&ttt

Collaborative Project

GeoKnow - Making the Web an Exploratory Place

for Geospatial Knowledge

Project Number: 318159 Start Date of Project: 01/12/2012 Duration: 36 months

Deliverable 2.4.1

Geospatial Clustering

Dissemination Level Public

Due Date of Deliverable Month 24,30/11/2014

Actual Submission Date Month 25,06/01/2015
ok 2 S bt G
Task T2.4 - Geospatial Clustering

Type Prototype

Approval Status Final

Version 1.0

Number of Pages 28

Filename D2.4.1_Geospatial_Clustering.pdf

Abstract: This document describes the implementation of geospatial clustering on RDF

quads and characteristic sets.

The information in this document reflects only the author’s views and the European Community is not liable for any use that
may be made of the information contained therein. The information in this document is provided “as is” without guarantee or
warranty of any kind, express or implied, including but not limited to the fitness of the information for a particular purpose.

The user thereof uses the information at his/ her sole risk and liability.

e —_— *
SEVENTH FRAMEWORK * 5k
PROGRAMME

Project funded by the European Commission within the Seventh Framework Programme (2007 - 2013)

€0 ‘z(%OW

D2.4.1-v.1.0
History
Version | Date Reason Revised by
0.1 22/12/2014 Initial Draft Hugh Williams
0.3 01/01/2015 Geospatial Clustering content Orri Erling
0.4 02/01/2015 Reformatted Content Hugh Williams
0.5 04/01/2015 Additional updates Mirko Spasi¢
0.6 06/01/2015 Peer Review Jens Lehmann
1.0 05/01/2015 Finalised Deliverable Hugh Williams
Author List
Organisation Name Contact Information
OGL Orri Erling oerling@openlinksw.com
OGL Hugh Williams hwilliams@openlinksw.com
OGL Mirko Spasi¢ mspasic@openlinksw.com
InfAl Jens Lehmann lehmann@informatik.uni-liepzig.de
Time Schedule before Delivery
Next Action Deadline Care of
First version 31/12/2014 Hugh Williams (OGL)
Second version 02/01/2015 Orri Erling (OGL)
Third version 04/01/2015 Mirko Spasi¢ (OGL)
Final version 06/01/2015 Hugh Williams (OGL)

€0 k%OW

D2.41-v.1.0

Executive Summary

This deliverable describes the prototype enhancements made to geospatial clustering support for
rearranging physical storage according to geospatial criteria. [t demonstrates benefits from
reorganizing physical data placement according to geospatial properties. The use of Structure-Aware
RDF Storage using characteristic set was also implemented and used in this deliverable. These
techniques apply to both single servers and scale out elastic cluster Virtuoso configurations.

€0 ‘z(%OW

\ D2.4.1-v.1.0
Abbreviations and Acronyms

\ Acronym \ Explanation
BSP Bulk Synchronous Processing
DFG Distributed Join Fragment
DBMS DataBase Management System
EWKT Extended Well Known Text/Binary
ETL Extract Transform Load
GeoSPARQL standard for representation and querying of geospatially linked data for the Semantic
Web from the Open Geospatial Consortium (0GC)
GPF Graph Processing Framework
LGD Linked Geo Data
LOD Linked Open Data
MBR Minimum Bounding Rectangle
NE North-East
NW North-West
0GC Open Geospatial Consortium
OSM OpenStreetMap (http://www.openstreetmap.org/)
OWL Web Ontology Language
RDF Resource Description Framework: the data model of the semantic web
RDFS RDF Schema
SE South-East
SPARQL Simple Protocol and RDF Query Language: standard RDF query language
SQL Structured Query Language: standard relational query language
SQL/MM SQL Multimedia and Application Packages (as defined by ISO 13249-3)
SW South-West
TPC-DS Transaction Processing Council Decision Support benchmark
WGS84 World Geodetic System (EPSG:4326)
WKT Well Known Text (as defined by ISO 19125)

€0 ‘z(%’OW

D2.41-v.1.0

Table of Contents

3 TR {11 0 T L U0 o 6
2. Structure-Aware RDF StOrage ... 6
2.1 Characteristic Set SCHEMA ..o ———————————— 6
2.2 Characteristic Set P1an GeNneration ... 6
2.2.1 Run Time Adaptivity
2.3 Data Clustering and Subject/Object Identifier Allocationccocunmsssmsnsmsmsssssssssnsssnens 8
R €710 153 2= 10 B 1 R0 LY) o 1 8
3.1 Selecting Clustering Grip DensSity ... 8
3.2 Geo Clustering With Characteristic Sets (CS) ... 9
3.3 Data Load Behavior With CIUStEring ... 11
BT T 0T Lo 000 L2 T) o 13
4. Query EXecution ANAlYSis ... ssssssssssssssssssssssssasses 15
4.1 Benefits of Characteristic SEts (CS) ... 16
5. Conclusions and Future Work ... 17
LT 0] 0 Y3 L 18
6.1 Query EXecution PlansS... s s ssssssssssssssssssssssssssssssssssssssns 18
7. RefEIEINCES...ccviiiinmsis AR R 29

€0 ‘z(%OW

D2.41-v.1.0

1. Introduction

This deliverable describes the prototype enhancements made to geospatial clustering support for
rearranging physical storage according to geospatial criteria. It demonstrates benefits from
reorganizing physical data placement according to geospatial properties. First the implementation of
Structured-Aware RDF and Characteristic Set in Virtuoso will be described as this the Geospatial
clustering enhancements and built on top of these features. These techniques apply to both single
servers and scale out elastic cluster Virtuoso configurations.

The Virtuoso enhancements in this deliverable are available in the GIT v7fasttrack! feature/emergent
branch.

2. Structure-Aware RDF Storage

The Virtuoso Structure-Aware RDF Store feature optimizes storage of RDF data in cases where the
data exhibits regular, relational-like structure.

A Characteristic Set (CS) is a collection of subjects sharing several single-valued or nearly single-
valued properties that occur together. For example, all triples extracted from a relational table
naturally form a characteristic set.

2.1 Characteristic Set Schema

Each characteristic set is represented by a single table with a primary key of S (Subject), G (Graph). All
properties that are relatively dense and mostly single-valued are represented as dependent columns in
the CS table. The high bits of the S identify the CS table. Missing property values are represented as
NULLs and extra values are represented as entries in the PSOG index. The equivalent of a secondary
index is an entry in the POSG index, which allows finding an S based on equality or range of the 0. Not
all predicates, nor all values in a predicate need have a POSG entry. There is for instance little point in
a POSG entry for common values in a P. This often occurs with properties like rdfs:type or
enumerations or measures like prices where the 0 is seldom a lookup key. An impression of having an
index on everything is created at run time by actually having a POSG entry for selective values and by
adaptively going to a scan for common values.

2.2 Characteristic Set Plan Generation

A query plan with characteristic sets starts with a SPARQL query expressed in terms of triple patterns.
Triple patterns that have the same S and a P which is in at least one CS form abstract tables. These are
treated like actual tables for purposes of query plan formulation. The abstract tables are often closely
aligned with actual CS tables, making it possible to sample actual data for selectivity estimation. This
is better than sampling at the triple pattern level since this can catch correlations between columns
without actual joins. This also reduces the plan search space to the size of the relational equivalent,
greatly accelerating compilation and allowing broader exploration of different plan shapes.

L https://github.com/v7fasttrack/virtuoso-opensource

€0 ‘z(%OW

D2.4.1-v.1.0
Triple patterns that have an unspecified P or where the P is not in any CS are left as references to the
RDF quad table. Plan generation involves index choice, i.e. whether to do a scan or a lookup on a
possibly non-existent or partial POSG index for finding the S.

2.2.1 Run Time Adaptivity

The following cases of run-time adaptivity are supported:

* Abstract table scan: We start with a set of CS properties and filtering conditions on these.
Some of the properties may be optional. The S may come from any CS in which all the non-
optional properties occur. We note that occurrence here means either being a column in the
CS or the existence of at least one PSOG entry with the S falling in the range of the CS. A special
case is the 0 CS which does not have a table and corresponds to the default schema-less RDF
index. For each such CS an executable sub-plan referring to the actual tables is constructed
when first needed.

* The physical plan consists of the following scheme: Scan the CS table. For each row, look in
RDF quads on PS for extra values. For each range of consecutive values found in the CS table,
look at the first non-optional P in RDF quad so that the S was not in the CS table. This will
capture matches that are not in the CS table, which may occur for example after deleting all but
exception values.

When there is a non-satisfied condition on a column of the table, the S is not automatically disqualified
since there could be a match in the exceptions. Too this effect, a bit vector is filled in. If the match
depends on an exception, the corresponding RDF quad lookup has the meaning of inner join, else that
of left outer join for the specific S.

* Lookup on S - The situation of matching a set of patterns where the S and optionally G are
given is simpler. Each S uniquely identifies a CS. A match can however exist even if there is no
row in the CS table, since all the properties may be found as exceptions.

A further complication occurs in both cases when there are many G’s for one S. A Cartesian product of
all the S/G/P combinations must be generated to mimic the behavior of the RDF quad table. The need
to do this is detected when processing the CS table: If there is a non-unique S in the result, the
solutions where not each match has the same G (coming from the same row) are generated by another
executable plan generated on demand. This is a join of single column lookups on the CS table, filtering
out matches where all properties are from the same G. This is infrequent in practice, though.

When looking for S based on O, the plan usually involves a POSG lookup but in the case of known P and
O values for which there is no POSG, this morphs into a no-op that passes a fleg to the next operation
down the pipeline, which then morphs from a lookup by S into a scan of CS’s looking for the O.

Finally, situations which are left as RDF quad references may still be matched from CS tables,
depending on the run-time values of S and P. The RDF quad reference is therefore itself adaptive,
cycling through a set of variations depending on the S and P.

The above range of adaptivity may appear expensive at first sight. In practice, exceptions are rare, and
the more rare these are the less expensive they are to detect. For example, there is a Bloom filter for
each P for the presence of an exception on a given S. If a table scan does has an unmatched condition

€0 ‘z(%OW

D2.4.1-v.1.0
on a column and there is no match for the S in the Bloom filter of the P (column), then the S can be
rejected there and then.

The CS logic is made even more efficient by vectored execution. All the exception checks for example
take place on selection vectors, optimally exploiting pre-fetching and instruction level parallelism. The
interpretation overhead of checking many different cases is de facto absorbed by doing this on vectors
of tens of thousands of values. In principle heterogeneous (multi-cset) vectors may occur but with
regular data this is uncommon and overheads are minimal.

The resulting executable plan is still expressed in terms of abstract tables. These are either table scans
or lookups where the subject and possibly graph are known.

2.3 Data Clustering and Subject/Object Identifier Allocation

At data insertion time the RDF IRI's and literals concerned may or may not exist. If they exist, their
identifiers are fixed and the CS membership of the subject IRI determines the CS, if any, that is affected.
If the subject IRI does not have an identifier, one can be chosen from the available CS's depending on
the IRI string, the properties and the property values present at the time.

The simplest case consists of having a sequence of ID's per CS. Additionally, property values may
influence the choice of subject ID selection, so as to cluster subjects with similar property values
together.

3. Geospatial Clustering

This section describes the implementation of geospatial clustering on RDF quads and characteristic
sets (CS).

3.1 Selecting Clustering Grip Density

The identifiers of O and S for geometries and the subjects with geometry properties come from
different ranges depending on the location of the geometry on the map.

In specific, there are 48 physical partitions spread across 4 server processes. 256 consecutive
identifiers will be on one slice, the next 256 on the next slice and so forth.

The id range to use for geometries falling on a particular square is constructed from segments of 48 *
256 ids.

For each square, each process has an independent sliced sequence object for allocating id's for this
square. There are in fact two sequences per square, one for the O id's for the geometry objects and one
for the Sid's of triples referencing the geometries.

We prefer to allocate the O and the S from the same slice. This means that these will, if newly
allocated, be always co-located, saving on network communication. When a new geometry is seen, a
hash is calculated for identifying the slice of its hash to id mapping (RO_VAL index of RDF_OBJ]). The
slice in question is consulted for checking if the identical geometry already exists. If this does not exist,
an id has to be allocated. There is at this time a choice of per-square range and of slice. The square is

€0 ‘z(%OW

' D2.4.1-v.1.0
calculated at the start, together with the hash and is sent to the slice being checked. The slice of the O
id is picked to be the same as that of the hash of the geometry. Now a square/slice specific id is
obtained and associated to the hash.

At the same time, the S id of the triple might or might not be known. If the S IRI has an id, there is no
further choice. If one must be allocated, it will be allocated from the same square and slice as the O.
This is known independently of the O id, depending only on the geometry and the slice given by the
geometry hash, so the eventual S allocation does not depend on results from other partitions and can
proceed in parallel with the O allocation. The S must be checked for existence according in a slice
given by a hash of the IRI string. This is nearly always different from the slice of the geometry hash. If
an S id exists for the IRI of the S, there is no further choice. If this does not exist, then one can be
selected from the slice of the geometry hash. To this effect, any process must be able to allocate id's in
any slice. Therefore the id's do not come necessarily contiguous. This is not a problem however.

A square will due to the above have 256 (run of consecutive ids in per slice) * 48 (slices) * 4 (server
processes) identifiers minimally associated with it. This is a minimum range of 49152 ids.

If this many geometries were evenly spread across all slices and all were accessed, this would come to
48 * 4 reads of 256 consecutive O's and the same for the S's. First the geometries get read, fetched
from the R tree, leading to closely packed O values. Then the O's get translated to S, then the S is used
to retrieve property values associated to the subject with the geometry.

This would be realized if we split the world in squares of 48K geometries. This would make for the 2.6
billion geometries 53K squares. This is feasible but we will settle for a slightly coarser grain with
192K consecutive geometries per square. This comes to a read of 4 * 1024 consecutive places in each
slice if the full square is accessed.

3.2 Geo Clustering With Characteristic Sets (CS)

Using Geo clustering with characteristic sets (CS) is similar to its use with triples. The characteristic
sets situation uses an IRI pattern to bypass maintaining a name to id mapping table. However, since
the ids directly derived from the string cannot be clustered, there must be a separate step for mapping
the number derived from the string into a geo-clustered internal id. There is a table RDF_N_IRI for this
mapping. This translates an external ID derived from the URI string into an internal one allocated
from a per-square sequence and back.

We note that a number to number mapping is much more compact than a string to number mapping,
specially with the user of column-wise compression.

There is a generic mechanism for declaring property-based clustering for characteristic sets. If
clustering is to be used with a characteristic set, the subject identifier will be allocated from one of
many "per-bucket" sequences, such that the sequence is selected based on the value of one or more
clustering properties. A clustering property is declared in the declaration of the characteristic set
itself, along with a clustering function and optional extra parameters. In these cases, there are
multiple sub-sequences associated to the subject ID sequence of the characteristic set.

Id sequences thus form hierarchies, with a sequence having a densely numbered set of consecutive
sub-sequences. These sub-sequences feed off the same sequence object as the super-sequence.

Such sub-sequences may exist under a property-clustered CS sequence but also under the sequence of
literal ID's.

€0 k%OW

' D2.4.1-v.1.0
For example, in OSM there are two geo-clustered characteristic sets: nodes_cset and ways_cset,
corresponding to the LGD/OSM nodes and ways. Since these are distinct characteristic sets these have
disjoint ID ranges, differing the high bits of the S id.

Both are geo-clustered with the same grid of squares and hence both ID sequences have a sub-
sequence for each Geo clustering grid square. The RDF literal id sequence itself has a top level
geometry id sequence that feeds off the main sequence of object ids and in turn has a sub-sequence for
each grid square.

The Geo clustering function, given the geometry itself, identifies the grid square. This gives the
applicable sub-sequence under the applicable ID sequence. In the present case these are:

1. The per square literal object id's,
2. The nodes CS ids and
3. The ways CSid's.

The clustering function only indicates a bucket number, the position (which CS and whether this is a
literal or IRI) determines the actual sequence to use.
As an example, the declaration of the nodes CS follows:

ir init (name => 'geo o init', seq => 'RDF RO ID', txn n ways => 1, slice bits => 8§,
n slices => 48, chunk => 8);

ir init subs (super name => 'geo o init', txn n ways => 1, n subs => 5000, n slices =>
48, slice bits => 8, chunk => 8);

These declare the per-square sequences for the geometry literal ids.
rdf cset ('nodes', properties => vector (
'http://linkedgeodata.org/ontology/version',
'http://purl.org/dc/terms/contributor’,
'http://purl.org/dc/terms/modified’,
'http://linkedgeodata.org/ontology/changeset’,

vector ('http://geovocab.org/geometry#geometry"', 'index', 'cluster', 'cscl geo',
'cluster params', vector (1)),

'http://www.w3.0rg/2003/01/geo/wgs84 pos#long',
'http://www.w3.0rg/2003/01/geo/wgs84 pos#lat'),

types => vector (), txn n ways => 1, n slices => 48, slice bits => 8, chunk => 8);

The above declares the CS, listing the properties that become columns. The geometry property is
declared indexed and to be a clustering property for the CS. The index declaration means that for each
value of this property in the CS there is a POSG and OP entry in RDF_QUAD for retrieving the S and P by
the O or PO. If the value of the geometry property is given at load time and the S or the geometry O do
not yet have a fixed id, then the clustering function can influence the allocation of the S and O ids. The
clustering function suggests a preferred bucket/slice for the O and S and the ID allocation takes this
into account if no ID exists yet.

The clustering functions are built in but the choice can be extended via a plug-in mechanism without
recompiling the server executable.

cset iri pattern ('nodes', 'http://linkedgeodata.org/triplify/node%%', vector (vector (0,
10000000000)), int range => ir by name ('DB.DBA.nodes cset rng'));

Page 10

€0 ‘z(%’OW

' D2.4.1-v.1.0
This declares the ID pattern for subject URI's for the CS.

ir init subs (super name => 'DB.DBA.nodes cset rng', txn n ways => 1, n subs => 5000,
n slices => 48, slice bits => 8, chunk => 8);

This declares a set of 5000 per-square sub-sequences for the main ID sequence created for the CS. The
main sequence is implicitly created by the rdf cset function.

All operations that create sequences either implicitly or explicitly take a set of common parameters for
sizing the slices. These are

* txn_n_ways - Different transactions may feed off different sequences, so that concurrently
allocated ids do not fall on the same page. This may improve insert performance by reducing
contention on page latches. In the present case this is 1, so that all transactions get ids from
the same sequence.

* n_slices - For an elsatic cluster, this is the number of distinct physical slices, in this case 12
slices in each of 4 server processes.

* slice_bits - This is the number of low bits that are ignored in slice calculation. 8 bits means
that 256 consecutive ids fall on the same slice.

* chunk - When allocating a set of per-bucket (in this case per-sq square) ids, we must get at
least n_slices << slice_bits worth of numbers, so that an id for any of the slices can be supplied
from the set f numbers.

For 448 slices * 256 consecutive ids per slices this would be 12288. In this case we allocate 8
times as many consecutive ids each time when getting a new set of ids for a square. When
allocating a set of ids, the first id of the first slice always falls on slice 0, so that ranges are aligned
on n_slices << slice_bits boundaries.

3.3 Data Load Behavior With Clustering

The dataset for the CS load was prepared by re-exporting the initially loaded OSM dataset so that
triples of one subject were within predictable p[proximity of each other. The dataset produced by
Sparqlify? is ordered by the property URI, which is ill suited for loading characteristic sets, especially
with clustering. If only non-clustering properties are seen, the subjects must be assigned an ID for
storage without the benefit of a clue for ID selection. Thus for these techniques to work the relevant
properties of a subject must be seen together before there is a need to assign an ID to the subject for
storage. Alternately, the data may be renamed in place, essentially reading one copy of the database
while writing another.

The latter requires nearly double the space though and was not done here.

We note that there is no correlation between location geographical and OSM node or way identifier.
Since all data dumps basically reflect this order, the clustering data load exhibits an insert behavior
that is more scattered than that of a non-clustered load: Without clustering, ID's are assigned

2 http://aksw.org/Projects/Sparqlify.html

Page 11

€0 k%OW

' D2.4.1-v.1.0
consecutively, whereas with clustering these are assigned consecutively within any one of 4500
squares.

The clustering was selected so as to have squares of at most 2 million geometries. The division into
squares was done on the basis of the non-clustered, triples dataset. The resulting number of squares
was 4497.

These squares were first imported into the empty CS based database and were loaded in memory to
serve as basis for the sequence selection of the gscl clustering function mentioned above in the
declaration of the nodes cset.

The load was then started with 7 files * 4 processes worth of concurrent streams. The loading speed
was initially 5.2M nodes per minute, falling to 2.2M nodes per minute after 1.2 billion nodes. Speeds of
4.8M nodes per minute were regularly observed after 1.5bn nodes. The variable locality of reference
accounts for large variation in throughput. A node is between 10 and 15 triples.
The CPU profile for the load follows:

578696 12.3988 itc_geo row

536841 11.5020 rd box union

121257 2.5980 dv_compare

98872 2.1184 cs_compress

97172 2.0819 gethash

80441 1.7235 ttlyylex

75365 1.6147 memzero

74166 1.5890 code vec run 1
66328 1.4211 itc _geo check link
62279 1.3344 id hash _get

58996 1.2640 gen gsort

53078 1.1372 dc_serialize sliced
52858 1.1325 Dbox hash

52302 1.1206 pf shift compress
50302 1.0777 pg row check

The profile is dominated by maintaining the geo index, with the top 2 items making up 24% of the
total. This is similar to previous results and the use of CS or clustering was not expected to change
this. The 24% can be dropped to %around 5% by replacing external byte order floats with machine
byte order ints for the R tree operations. This is a trivial change to be undertaken at such time when
all opportunities with greater gains have been exhausted.

The loading working set appears as follows, at towards the end of the load, with 2.2bn geometries
loaded:

KEY TABLE INDEX NAME
TOUCHES READS READ PCT N DIRTY N BUFFERS
DB.DBA.RDF GEO RDF_GEO
0 2017936 201793600 536335 1063323
DB.DBA.RDF OBJ RO_VAL
252036859 1408331 O 1494235 2089006

Page 12

€0 k%OW

' D2.4.1-v.1.0
DB.DBA.nodes cset nodes cset
16350745542 1214189 0 815126 2673934
DB.DBA.RDF N IRI RDF N IRI
290897863 674714 0 35300 89077
DB.DBA.RDF QUAD RDF_QUAD POGS
2377260949 529211 0 534009 787775
DB.DBA.RDF OBJ RDF_OBJ
239912320 278590 0 99213 228350
DB.DBA.RDF QUAD RDF_QUAD
878933247 207721 0 292833 403516
DB.DBA.RDF N IRI RI N REV
232954626 132818 0 188214 347628
DB.DBA.RDF QUAD RDF _QUAD SP
606396844 27923 0 125752 158338

The 4th column is the count of disk reads, the last is the count of buffers and the second last is the
count of dirty buffers. The view concerns one of the 4 processes in the setup, the processes all have
very similar state.

We note that the RDF Geo R tree counts for most of the reading and space utilization.

3.4 Space Utilization

Below is a summary of the space utilization in the Geo-clustered CS based database and the
corresponding quads based one.

The first table is the row-wise structures in MB per each index. The second table gives the column-
wise structures for each index, when present.

The tables are for the first server process of four, thus represent approximately a quarter of total space
utilization. The relative sizes of the different structures are clearly visible. Some structures occur as
both row and column, column-wise, as columnar structures have some row-wise superstructure also.

Row-wise:
DB.DBA.RDF_OBJ 31803
DB.DBA.RDF_GEO 22789
RO_VAL 19536
DB.DBA.RDF N IRI 11588
DB.DBA.RDF IRI 1708
DB _DBA RDF IRI UNQC RI ID 994

DB.DBA.VTLOG DB DBA RDF_OBJ 442

RDF_QUAD POGS 47
DB.DBA.nodes cset 31
DB.DBA.RDF QUAD 13

Page 13

€0 k%OW

' D2.4.1-v.1.0
Column-wise:

DB.DBA.nodes_cset 26446

RDF_QUAD POGS 7286

DB.DBA.RDF QUAD 3990

RI_N REV 2556

RDF_QUAD SP 1397

DB.DBA.ways_cset 924

RDF_QUAD OP 419

RDF_QUAD GS 361

The numbers for quads are:

Row-wise:
DB.DBA.RDF_OBJ 32326
DB.DBA.RDF IRI 28062
DB _DBA RDF IRI UNQC RI ID 27324
DB.DBA.RDF_GEO 24518
RO_VAL 20995

Column-wise:

RDF_QUAD_POGS 35929
DB.DBA.RDF_QUAD 30953
RDF_QUAD_SP 7151
RDF_QUAD_OP 5633
RDF_QUAD_GS 313

In total space consumption the CS based variant is about 76% of the size of the quads based one.

We note a difference in space for IRI to string mapping. Since much of this is by number to number
mapping in the node and way URI's, we see most of the load on RDF_IRI move to RDF_N_IRI. The row-
wise index is not much better than the row-wise number to string one. The column-wise reverse index
(from mapped to numeric id) is however much smaller, see RI_N_REV.

Page 14

€0 k%OW

' D2.41-v.1.0

4. Query Execution Analysis

In this section we review performance of different query plans under different data layouts.

The base query is the following:
spargl select ?f as ?facet ?latlon ?cnt
where

{

select ?2f °?x 2y max (concat (xsd:string(?a)," ",xsd:string(?0))) as 2latlon
count (*) as ?cnt

where

{

select ?f ?a ?o0 xsd:integer (20* (?a - 45.1361)/4.5) as ?y xsd:integer (40* (?0 -
4.0278)/9) as ?x

where

{

?s <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> 2f . filter (?2f =
<http://linkedgeodata.org/ontology/Village> | ?f =
<http://linkedgeodata.org/ontology/PlaceOfWorship> |
<http://linkedgeodata.org/ontology/Restaurant> |
<http://linkedgeodata.org/ontology/Sport>)

}

?s <http://www.w3.0rg/2003/01/geo/wgs84 pos#lat> 2a ;
<http://www.w3.0rg/2003/01/geo/wgs84 pos#long> 2o

?s <http://geovocab.org/geometry#geometry> ?p

filter(bif:st intersects(bif:st geomfromtext ("BOX(4.0278 45.13061, 13.0278
49.6361)"), 2?p))

}

}
group by ?f ?x ?y
order by ?f ?x ?y

}
This returns the types of selected entities in a wide geographical area. The area in question has 202M
geometries, accounting for 7.7% of all geometries in the database.

Page 15

€0 k%OW

D2.4.1-v.1.0
We consider three alternative plans:

1. One builds a Hash table from the subjects with the geometries, then probes this with the
subjects with selected types.

2. The second works purely by Index, with the search starting with the geo index, then
proceeding to the types.

3. The third is for a Characteristic Set (CS) based plan for the same query

The Query Execution Plans are list in Appendix 6.1 below. Here we summarize the most important
comparison between these three query executions in the following table:

Time CPU Rnd Seq Same seg Same pg
589630 1363% 9.97E+008 8.86E+009 99.51% 0.43%
344657 2477% 1.20E+009 4.38E+008 96.68% 3.15%
115343 2971% 5.52E+008 2.38E+008 92.34% 7.31%

Table 1: Comparison of different query plans

4.1 Benefits of Characteristic Sets (CS)

We notice that the CS plan with clustering has a faster execution time and significantly reduced
network traffic as opposed to the quads based queries with and without hash join.

We further see that 70% of time is spent in the entirely avoidable block with decimal arithmetic.
Vectored floating point arithmetic will reduce this time to near zero.

The reduction in network traffic is clear since the data placement is such that the geometry object and
the subject it qualifies are most often co-located.

We can see this in the low time utilization of the DFG stage 2 which is an exchange that sends tuples
cross partition when going from the geometry to the subject. In practice, very little cross partition
traffic takes place, hence the fast execution time.
We consider the CPU profile:

2422210 9.5795 num divide

1387026 5.4855 dv_compare

1229055 4.8608 box to any 1

955277 3.7780 box deserialize string
899979 3.5593 num multiply int
642112 2.5395 cs _decode

611079 2.4167 dc_any_cmp

Page 16

€0 kfhow

D2.41-v.1.0
570249 2.2553 sslr gst get
490142 1.9385 itc param cmp
471083 1.8631 dk free tree

We see that most of the time goes in arithmetic and that there is no point in doing decimal arithmetic
in the application anyway. The database operations themselves are low in the profile.

5. Conclusions and Future Work

The CS results presented here were done by clustering the data at load time. A conversion from a
loaded database of quads into CS's will be tried in the future. The implementation is straightforward, a
simple copy plus delete from the quads to the CS tables, together with renaming subjects ids and
geometry objects.

Performance of CS's against quads will be measured on a broader variety of queries. The benefits of
clustering are the most obvious when query plans start with a geometry lookup: After all, such a
lookup is expected to hit a number of tightly packed ID ranges. The same locality gains are expected to
be seen also when approaching the data via other dimensions since nearby content will often end up
being accessed.

The IN predicate used in the present experiments is not optimal. A better "invisible hash join" based
IN predicate exists and will be used in future experiments.

We have implemented geospatial data clustering and characteristic sets based RDF storage. The CS
based storage model is above and beyond the original scope of the GeoKnow project. The great benefit
of this became apparent after the first GeoKnow review in comparing SQL and RDF quads based query
performance. After the present initial demonstration of CS benefits we expect to attain near parity
with SQL while running schema-less RDF behind the scenes enhanced with CS technology.

Page 17

€0 k%OW

6. Appendix

6.1 Query Execution Plans

Hash plan:
{
time 5.5e-08% fanout 1 input 1 rows
time 0.11% fanout 1 input 1 rows
{ hash filler
walt time 0.19% of exec real time, fanout
QF {
time 3.4e-06% fanout 0 input 0 rows
Stage 1
time 2% fanout 4.31428e+06 input 48 rows
geo 3 st intersects (CONTAINS (<tag 238
49.636100)>) node on DB.DBA.RDF GEO 0.12 rows
tl1l2.0
time 3.9% fanout 0.976704 input 2.07085e+08 rows

RDF_QUAD_POGS 2.3e+08 rows (tl2.8)

P = ##geometry , O = cast
time 0.28% fanout 0.99712 input 2.02261e+08 rows
Stage 2

time 0.093% fanout 0 input 2.02261e+08 rows
Sort hf 50 2.3e+08 rows (g tl2.8) -> ()

}
}
Subquery 56
{

time 0.0018% fanout 1 input
{ fork

time 4.7e-07% fanout 1 input
{ fork

wait time 39% of exec real time,
QF {

fanout

c BOX2D(4.027800

1 rows

1 rows

D2.41-v.1.0

45.136100,13.027800

€0 k%OW

' D2.41-v.1.0
time 0.00022% fanout 0 input 0 rows
Stage 1
time 0.57% fanout 1.18286e+06 input 48 rows
RDF_QUAD_POGS le+08 rows (t9.0, t9.8)
inlined P = ##type
hash partitiont+bloom by 54 ()
time 0.046% fanout 1 input 8.95077e+08 rows
END Node
After test:
0: if (0 = 1) then 4 else 22 unkn 4
4: if (0 = 1) then 8 else 22 unkn 8
8: one of these := Call one of these (t9.0, #/Village , #/PlaceOfWorship)
13: one of these := Call one of these (t9.0, #/Village , #/PlaceOfWorship)

18: 1if (0 < one of these) then 22 else 23 unkn 23
22: BReturn 1

23: BReturn 0

time 1.4% fanout 0.92966 input 8.95077e+08 rows
Stage 2

time 2.2% fanout 0.477258 input 8.95077e+08 rows
Hash source 50 0.12 rows(g t9.8) -> ()

After code:
0: tl2.8 := := artm t9.S

4: BReturn 0

time 1.5% fanout 0.848928 input 4.27183e+08 rows
RDF QUAD 1 rows(tl1l0.S, tl10.0)
inlined P = ##lat , S = tl2.S
time 29% fanout 1 input 3.62647e+08 rows
Precode:
0: temp := artm t10.0 - 45.1361
4: temp := artm 20 * temp
8: temp := artm temp / 4.5

12: BReturn 0

RDF QUAD 1 rows (tl1l1l.0)
inlined P = ##long , S = tl10.S
time 58% fanout 0.999999 input 3.62647e+08 rows

€0 k%OW

' D2.41-v.1.0
Precode:
0: cvt := Call cvt (<constant>, temp)
5: temp := artm t11.0 - 4.0278
9: temp := artm 40 * temp
13: temp := artm temp / 9
17: cvt := Call cvt (<constant>, temp)
22: QNode {
time % fanout 0 input 0 rows
dpipe
£t11.0 -> R0O2SQ -> ro2sqg
£10.0 -> R0O2SQ -> ro2sqg
}
24: cvt := Call cvt (<constant>, ro2sq)
29: rdf sglval of obj := Call rdf sglval of obj (_cvt)
34: cvt := Call cvt (<constant>, ro2sq)
39: rdf sglval of obj := Call rdf sglval of obj (_cvt)
44: rdf concat impl := Call rdf concat impl (_ rdf sqglval of obj, <c

__rdf sqglval of obj)

49: BReturn 0
Stage 3
time 0.83% fanout 0 input 3.62647e+08 rows

Sort (set no, g g t9.0, g cvt, g cvt) -> (rdf concat impl, inc)

}
}

wait time 0% of exec real time, fanout 0
QF {
time 0.00038% fanout 2396.6 input 48 rows

group by read node

(gb_set no, t9.0, cvt, cvt, aggregate, aggregate)

time 0.0099% fanout 0 input 115037 rows
Precode:

0: ONode {
time 0% fanout 0 input 0 rows
dpipe

£t9.0 -> RO25Q -> roZsq

€0 k%OW

' D2.41-v.1.0

2: BReturn 0

Sort (_ ro2sq, _cvt, cvt) -> (t£9.0, aggregate, aggregate)

time 1.8e-08% fanout 0 input 0 rows
ssa iterator
time 2e-05% fanout 10000 input 1 rows

Key from temp (ro2sq, t9.0, cvt, cvt, aggregate, aggregate)

time 0% fanout 0 input 10000 rows

gf select node output: (ro2sq, aggregate, aggregate, cvt, cvt, t9.0, set no)
}

}

time 0.00034% fanout 10000 input 1 rows

cl fref read
output: (ro2sq, aggregate, aggregate, cvt, cvt, t9.0, set no)
order: 6 0 3 4

After code:

0: £ := := artm t9.0

4: X := := artm cvt

8: y := := artm cvt

12: latlon := := artm aggregate
16: cnt := := artm aggregate

20: BReturn 0
time 1.7e-08% fanout 0 input 10000 rows
Subquery Select (f, x, y, latlon, cnt)
}

After code:
0: QNode {
time 0% fanout 0 input 0 rows
dpipe
f -> RO28Q -> facet
}

2: BReturn 0

time 2e-08% fanout 0 input 10000 rows

€0 k%OW

' D2.4.1-v.1.0
Select (facet, latlon, cnt)
}
589630 msec 1363% cpu, 9.96987e+08 rnd 8.85933e+09 seqg 99.5124% same seg
0.428192% same pg
1352689 messages 28391 bytes/m, 40% clw
Compilation: 13 msec 0 reads 0% read 0 messages 0% clw

Index based plan:

{

time 0.0021% fanout 1 input 1 rows

{ fork

time 2.8e-07% fanout 1 input 1 rows

{ fork

walt time 33% of exec real time, fanout 0

QF {

time le-05% fanout 0 input 0 rows

Stage 1

time 0.8% fanout 2.15309e+06 input 48 rows

geo 3 st intersects (CONTAINS (<tag 238 ¢ BOX2D(4.027800 45.136100,13.027800

49.636100)>) node on DB.DBA.RDF GEO

0.12 rows

tl1l2.0
time 3.2% fanout 0.976704 input 2.07085e+08 rows
RDF_QUAD_POGS 2.3e+08 rows (tl2.S)
P = ##geometry , O = cast
time 0.25% fanout 0.906418 input 2.02261e+08 rows
Stage 2
time 3.7% fanout 2.11204 input 2.02261e+08 rows
RDF QUAD 2 rows(t9.0, t9.S)
inlined P = ##type , S = g tl2.S
time 0.028% fanout 1 input 4.27183e+08 rows
END Node
After test:
0: if (0 = 1) then 4 else 22 unkn 4
4: if (0 = 1) then 8 else 22 unkn 8
8: one of these := Call one of these (t9.0, #/Village , #/PlaceOfWorship)
13: one of these := Call one of these (t9.0, #/Village , #/PlaceOfWorship)

€0 k%OW

' D2.41-v.1.0
18: 1if (0 < one of these) then 22 else 23 unkn 23
22: BReturn 1
23: BReturn O
time 3% fanout 0.848928 input 4.27183e+08 rows
RDF QUAD 1 rows(tll.S, tll.0)
inlined P = ##long , S = k t9.S
time 25% fanout 1 input 3.62647e+08 rows
Precode:
0: temp := artm t11.0 - 4.0278
4: temp := artm 40 * temp
8: temp := artm temp / 9
12: BReturn 0
RDF QUAD 1 rows (t10.0)
inlined P = ##lat , S = tll.S
time 63% fanout 0.999963 input 3.62647e+08 rows
Precode:
0: cvt := Call cvt (<constant>, temp)
5: temp := artm t10.0 - 45.1361
9: temp := artm 20 * temp
13: temp := artm temp / 4.5
17: cvt := Call cvt (<constant>, temp)
22: QNode {
time 0% fanout 0 input 0 rows
dpipe
£10.0 -> R0O2SQ -> ro2sqg
£t11.0 -> R0O2SQ -> ro2sqg
}
24: cvt := Call cvt (<constant>, ro2sq)
29: rdf sqglval of obj := Call rdf sglval of obj (_cvt)
34: cvt := Call cvt (<constant>, ro2sq)
39: rdf sglval of obj := Call rdf sglval of obj (_cvt)
44: rdf concat impl := Call rdf concat impl (_rdf sqglval of obj, <c >,
__rdf sqglval of obj)
49: BReturn O
Stage 3
time 0.85% fanout 0 input 3.62647e+08 rows

€0 k%OW

' D2.41-v.1.0
Sort (g _t9.0, g cvt, g cvt) -> (rdf concat impl, inc)
}
}
walt time 0% of exec real time, fanout 0
OF {
time 0.00035% fanout 2396.6 input 48 rows
group by read node
(9.0, cvt, cvt, aggregate, aggregate)
time 0.013% fanout 0 input 115037 rows
Precode:
0: QNode {
time 0% fanout 0 input 0 rows
dpipe
£t9.0 -> RO258Q -> ro2sq
}
2: BReturn O
Sort (_ ro2sq, _cvt, cvt) -> (t£9.0, aggregate, aggregate)
time 1.3e-08% fanout 0 input 0 rows
ssa iterator
time 1.9e-05% fanout 10000 input 1 rows
Key from temp (ro2sq, t9.0, cvt, cvt, aggregate, aggregate)
time 0% fanout 0 input 10000 rows
gf select node output: (ro2sq, aggregate, aggregate, cvt, cvt, t9.0)
}
}
time 0.0003% fanout 10000 input 1 rows
cl fref read
output: (ro2sq, aggregate, aggregate, cvt, cvt, t9.0)
order: 0 4 3
After code:
0: £ := = artm t9.0
4: X := := artm cvt

€0 k%OW

\

8: y := := artm cvt
12: latlon := := artm aggregate
16: cnt := := artm aggregate

20: BReturn 0

time 1.7e-08% fanout

0 input

Subquery Select (f, x, y, latlon, cnt)

}

After code:

0: QNode {
time 0% fanout
dpipe
f -> RO28Q -> facet
}

2: BReturn O
time 2e-08% fanout
Select (facet, latlon, cnt)
}

344657 msec 2477% cpu,

3.15432% same pg

0 input

0 input

1.19924e+09

180690 messages 91351 bytes/m,

Compilation: 10 msec 0 reads

{

time 6e-08% fanout 1 input
Subquery 28

{

time le-07% fanout 1 input
{ fork

time 0.044% fanout 1 input
{ fork

wait time 0% of exec real time,

Next we consider the CS based plan for the same query.

10000 rows

10000 rows

4.37993e+08

0% read 0 messages

D2.41-v.1.0

96.6808% same seg

0% clw

The hash plan is more efficient but the index based one has better platform utilization, hence is faster.

€0 k%OW

__rdf sqglval of obj)

OF {
time 5e-05% fanout 0 input 0 rows
Stage 1
time 4.1% fanout 3.95957e+06 input 48 rows
geo 3 st _intersects (CONTAINS (<tag 238 ¢ BOX2D(4.027800
49.636100)>) node on DB.DBA.RDF GEO 0 rows
d id
time 11% fanout 0.998566 input 1.90059e+08 rows
RDF_QUAD_POGS 1 rows(txs_s.S)
P = ##geometry , O = k d id
time 0.33% fanout 0.951228 input 1.89787e+08 rows
Stage 2
time 10% fanout 0.90775 input 1.89787e+08 rows
DB.DBA.nodes cset cv 18 2.2e+t09 rows(cl9.S, cl9.long, cl9.lat)
S = g txs s.S
time 74% fanout 0.489229 input 1.72279e+08 rows
Precode:
0: temp := artm cl9.long - 4.0278
4: temp := artm 40 * temp
8: temp := artm temp / 9
12: cvt := Call cvt (<constant>, temp)
17: temp := artm cl9.lat - 45.1361
21: temp := artm 20 * temp
25: temp := artm temp / 4.5
29: cvt := Call cvt (<constant>, temp)
34: QNode {
time 0% fanout 0 input 0 rows
dpipe
cl9.long -> RO28Q -> ro2sq
cl9.lat -> R0O2SQ -> ro2sqg
}
36: cvt := Call cvt (<constant>, ro2sq)
41: rdf sglval of obj := Call rdf sglval of obj (_cvt)
46: cvt := Call cvt (<constant>, ro2sq)
51: rdf sglval of obj := Call rdf sglval of obj (_cvt)
56: rdf concat impl := Call rdf concat impl

D2.41-v.1.0

45.136100,13.027800

(__rdf sglval of obj, <c >,

€0 k%OW

61: BReturn 0

RDF_QUAD 1.2 rows(tl4.0)

inlined P = ##type , S = cl9.S
time 0.02% fanout 1 input 8.42838e+07 rows
END Node

After test:

0: if (0 = 1) then 4 else 22 unkn 4

4: if (0 = 1) then 8 else 22 unkn 8

8: one of these := Call one of these (tl1l4.0, #/Village ,
13: one of these := Call one of these (tl4.0, #/Village ,

18: 1if (0 < one of these) then 22 else 23 unkn 23

22: BReturn 1

23: BReturn 0
time 0.69% fanout 0 input 8.42838e+07 rows

Sort (tl4.0, _cvt, cvt) -> (rdf concat impl, inc)

}

}

time 0.00063% fanout 94531 input 1 rows
group by read node

(t14.0, _cvt, cvt, aggregate, aggregate)

time 0.039% fanout 0 input 94531 rows
Precode:

0: QNode {
time 0% fanout 0 input 0 rows
dpipe
t1l4.0 -> RO2SQ -> ro2sqg
}

2: BReturn 0
Sort (_ ro2sq, _cvt, cvt) -> (tl4.0, aggregate, aggregate)
}
time 4e-05% fanout 10000 input 1 rows

Key from temp (tl14.0, cvt, cvt, aggregate, aggregate)

D2.41-v.1.0

#/PlaceOfWorship)
#/PlaceOfWorship)

7.3114%

€0 k%’OW

After code:

0: £ := := artm tl14.0
4: X := := artm cvt
8: y := := artm cvt
12: latlon := :=

16: cnt := :=

20: BReturn O

artm aggregate

artm aggregate

time 3.2e-08% fanout 0 input 10000 rows
Subquery Select (f, x, y, latlon, cnt)
}
After code:
0: QNode {
time 0% fanout 0 input 0 rows
dpipe
f -> RO28Q -> facet
}
2: BReturn 0
time 4.8e-08% fanout 0 input 10000 rows
Select (facet, latlon, cnt)
}
115343 msec 2971% cpu, 5.52188e+08 rnd 2.38351e+08
same pg

100956 disk reads,
19962 messages

Compilation: 8 msec 0 reads

277001 read ahead,
27915 bytes/m,

41.1771% wait
0.34% clw

0% read 0 messages

seq

0%

92.343%

clw

D2.41-v.1.0

sSame

seg

€0 k%OW

D2.41-v.1.0

7. References

[1] Chong, E. Das, S., Eadon, G. Srinivasan,]. : An Efficient SQL-based RDF Query Scheme,
http://www.nesc.ac.uk/talks/683/oracle_rdf_query_vldb_2005.pdf, VLDB Conference (2005)

[2] Wilkinson, K. : Jena Property Table Implementation - Second International Workshop on Scalable

Semantic Web Knowledge Base Systems, http://www.hpLhp.com/techreports/2006/HPL-2006-
140.pdf (2006)

[3] Levandoski,], Mokbel, M. : RDF Data-Centric Storage - ICWS '09 Proceedings of the 2009 IEEE
International Conference on Web Services, ISBN: 978-0-7695-3709-2 (2009)

Page 29

