
Managing and Compiling Data
Dependencies for Semantic Applications

Using Databus Client

Johannes Frey(B) , Fabian Götz, Marvin Hofer , and Sebastian Hellmann

Knowledge Integration and Linked Data Technologies (KILT/AKSW), DBpedia
Association/InfAI, Leipzig University, Leipzig, Germany

{frey,gotz,hofer,hellmann}@informatik.uni-leipzig.de

Abstract. Realizing a data-driven application or workflow, that con-
sumes bulk data files from the Web, poses a multitude of challenges
ranging from sustainable dependency management supporting automatic
updates, to dealing with compression, serialization format, and data
model variety. In this work, we present an approach using the novel
Databus Client, which is backed by the DBpedia Databus - a data asset
release management platform inspired by paradigms and techniques suc-
cessfully applied in software release management. The approach shifts
effort from the publisher to the client while making data consumption and
dependency management easier and more unified as a whole. The client
leverages 4 layers (download, compression, format, and mapping) that
tackle individual challenges and offers a fully automated way for extract-
ing and compiling data assets from the DBpedia Databus, given one com-
mand and a flexible dependency configuration using SPARQL or Databus
Collections. The current vertical-sliced implementation supports format
conversion within as well as mapping between RDF triples, RDF quads,
and CSV/TSV files. We developed an evaluation strategy for the format
conversion and mapping functionality using so-called round trip tests.

Keywords: Data dependency management · Data compilation · Data
release management platform · Metadata repository · ETL

1 Introduction

With the growing importance of transparent, reproducible, and FAIR publishing
of research results as well as the rise of knowledge graphs for digital twins in cor-
porate and research environments in general, there is on the one hand an urging
demand for (research) data infrastructure and management platforms to publish
and organize produced data assets. On the other hand, there is a huge potential
for plenty of research that depends on workflows using a variety of internal and
external data dependencies or that creates applications which consume large
amounts of data and try to make use of it (e.g. AI-based algorithms).

One major reason for the introduction of the Semantic Web was to make
data on the Web more useful for machines such that they could automatically
c© Springer Nature Switzerland AG 2022
E. Garoufallou et al. (Eds.): MTSR 2021, CCIS 1537, pp. 114–125, 2022.
https://doi.org/10.1007/978-3-030-98876-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98876-0_10&domain=pdf
http://orcid.org/0000-0003-3127-0815
http://orcid.org/0000-0003-4667-5743
https://doi.org/10.1007/978-3-030-98876-0_10


DBpedia Databus Release Management Platform 115

discover, access, read, understand and process it. While the Linked Data design
principles provide a guideline to browse Linked (Open) Data in an automated
and decentralized fashion, when it comes to workflows and applications that
are driven by a variety of high volume data (bulk file dumps) and that aim to
be automatically deployed and updated, several challenges arise with respect to
managing and consuming these data dependencies.

Although data repositories or management platforms with rich homogeneous
metadata catalogs like the DBpedia Databus [2] allow to manage, find, and access
files in a unified way, difficulties arise if consumers want to use data from differ-
ent publishers and domains. These files can be released in various serialization
formats (e.g. RDF can be represented in more than 8 formats) and compression
variants, that typically can not be read all by an application or workflow with-
out any prior conversion. Moreover, in many research disciplines, data is stored
in relational databases and exported into tabular-structured data formats (e.g.
CSV) or specialized community-specific formats. Loading this data alongside
knowledge graphs requires a mapping process to be performed on the consumer
side. However, this mapping effort is usually lost on the local infrastructure or in
a GitHub repository, where it is hard to find and reuse. Even if data dependen-
cies are not fed manually into the system, plenty of custom scripted solutions per
application becoming quickly chaotic tend to grow, making applications harder
to maintain and reproduce, finally leaving users and consumers with the resulting
decreased reusability and unclear provenance.

While some of the conversion to popular formats is already performed by
publishers, we argue that this should not be the burden of the data provider in
general. Instead, we envision a software client, that - given a dependency config-
uration - can dump any data asset registered on a data management platform
and converts it to a format supported by the target infrastructure. A client that
can execute different applications and ingest compiled data automatically, such
that data is only one command away, like in traditional software dependency,
built, and package management systems. Analogous to compiling of software, we
define compiling of data as the process that converts, transforms or translates
data geared to the needs of a specific target application.

This work introduces a conceptual approach implemented within the DBpe-
dia Databus Client, that facilitates a more natural consumption and compiling of
data from the DBpedia Databus and brings us one step closer towards our vision.
Our main contributions are: a modular and extendable client that leads in com-
bination with the Databus platform to less format conversion publishing effort
(w.r.t. storage and time), enables easier and systematic data consumption with
less conversion issues, allows for realizing data-driven apps using automatically
updating data dependencies with clear provenance, and improves findability and
reuse of mapping definitions.

The remainder of the paper is structured as follows: in the next section we
sketch the process of data release and dependency management leveraging the
DBpedia Databus. In Sect. 3 we present the conceptual design of the client,
followed by the description of its implementation in Sect. 4. We evaluate the



116 J. Frey et al.

approach in Sect. 5 and compare it to other related work in Sect. 6. We conclude
with a discussion and future work.

2 DBpedia Databus Release Management Platform

Inspired by paradigms and techniques successfully applied in (Java) software
release management and deployment, we started to think how we could transfer
these to data engineering and management. Additionally driven by the need for
a flexible, heavily automatable dataset management and publishing platform for
a new and more agile DBpedia release cycle [5], we initiated the development of
the DBpedia Databus Platform1 over 3 years ago.

The Databus [2] uses the Apache Maven concept hierarchy group, artifact,
version and ports it to a Linked Data based platform, in order to manage data
pipelines and enable automated publishing and consumption of data. Artifacts
form an abstract identity of a dataset with a stable dataset ID and can be
used as entry point to discover all versions. A version usually contains the
same set of files for each release. These concepts are embedded in the personal
IRI (Internationalized Resource Identifier) space that is issued by the Databus
for every user. The full IRI https://databus.dbpedia.org/<publisher>/
<group>/<artifact>/<version>/<file> can be used as a stable ID for a par-
ticular dataset file in a particular version. Groups provide a coarse modular-
ization or bundling of datasets forming (useful) units to improve overview and
consumption. The overall structure is very flexible as software libraries, but once
defined should be as fixed as software to prevent applications from breaking, if
they update on a new version.

Additionally, every file can be described by key-value records (so-called
content-variants) which allow another level of granularity as well as address-
ing and querying for particular files (e.g. split labels of entities based on their
language into different files).

Databus metadata is represented with an extension of the DataID core
vocabulary for group, artifact, version, and file entities that allows for flexi-
ble, fine-grained, as well as unified metadata access using SPARQL. Based on
dcat:downloadURL links in this metadata, Databus file IDs form a stable (but
redirectable) abstraction layer independent of file hosting (similar to w3id.org).
Provenance can be added by specifying Databus IDs of the input data on version
or file level.

Moreover, users can create automatically updating or stable catalogs of data
assets via so-called Databus collections2, which encode the information need or
asset selection via SPARQL queries. Collections can be created and refined via
a faceted browsing UI on the Databus Website similar to a shopping cart and
used as easy way to specify data input dependencies while recording provenance.

An example collection which consists of 2 artifacts from 2 different publishers
(a crawl of the German Energy Market Core Register (MaStR) filtered to files
1 https://databus.dbpedia.org.
2 https://www.dbpedia.org/blog/databus-collections-feature/.

https://databus.dbpedia.org
https://www.dbpedia.org/blog/databus-collections-feature/


DBpedia Databus Release Management Platform 117

Fig. 1. Data dependency definition using Databus Collections

with wind and solar units, as well as parsed files of the Open Energy Ontology
from DBpedia Archivo [4]) is shown as dependency tree in Fig. 1. Using the
dedicated collection identifier, it is possible to retrieve the generated SPARQL
query which encodes the dependency tree and optional filters based on the facet
selection. When issuing this query against the Databus SPARQL endpoint, a list
of Databus files will be returned, which is also displayed in the Collection view
on the Databus website.

3 Databus Client Concept

The Databus Client is designed in a modular way to achieve high reusability,
which means that the components and functionalities such as the downloading
component, and compression converter can be used separately and interchange-
ably. It leverages 4 functionality layers depicted in Fig. 2.

The fundamental Download-Layer is supposed to download exact copies of
data assets via the DBpedia Databus in a flexible way. It can be understood as
a simple extraction phase of the ETL (Extract-Transform-Load) process. More-
over, it is supposed to persist the input data provenance by recording stable file
identifiers and additional metadata. The data assets to be downloaded can be
selected in a fine-grained way via an interoperable data dependency specifica-
tion. and optional compiling configurations tailored to the needs of a consuming
app or workflow.

If any conversion process is required, the Compression-Layer takes action.
It sniffs for the input compression format and decompresses the file. If the input
file format differs from the output file format, the decompressed file is passed to
the Format-Layer. The Compression-Layer takes the decompressed file, which



118 J. Frey et al.

Fig. 2. Layers of the databus client data compiling process.

may be format converted by the Format-Layer or Mapping-Layer, and com-
presses it to the requested output compression format. This compressed file is
passed back to the Download-Layer, after the conversion process has finished.

Within the data format conversion process, the Databus Client utilizes
the Format-layer and the Mapping-Layer where required. The Format-Layer
receives the uncompressed file and parses it to a unified internal data struc-
ture of the corresponding (format) equivalence class. Such an equivalence class
contains all serialization formats that can be used interchangeably while repre-
senting the same amount of information, given a defined common data model
for the class (e.g. a set of triples for RDF triple formats, a table of Strings for
tabular-structured data formats). Subsequently, the Format-Layer serializes the
internal data structure to the desired output file format. It passes the serialized
data back to the Compression-Layer.

Whenever the input file format and the requested output file format are in dif-
ferent equivalence classes (e.g. Turtle/RDF triples and TSV/tabular-structured
data), the Mapping-Layer is additionally used. However, it could also be used
to manipulate the data of the same equivalence class (e.g. ontology mapping).
With the aid of mapping configurations, the Mapping-Layer transforms the data
represented using the internal data structure of the input equivalence class, to
data of the internal data structure of the equivalence class of the target file
format. After that process has finished, the data is passed back to the Format
layer.

The Compression-Layer, File-Format-Layer, and Mapping-Layer represent
the transformation-phase of the ETL process.



DBpedia Databus Release Management Platform 119

4 Implementation

We implemented a vertical slice of the four conceptional layers in the command-
line tool Databus Client3. It is written in Scala and using Apache Maven. Sub-
sequently, it is executable within a Java Virtual Machine (JVM) or a Docker4

container, allowing it to be run on almost any machine and to be interoperable
to a broad amount of applications. In addition, we provide a Maven package with
interfaces to invoke the functions of the Databus Client from other JVM-based
applications.

Depending on the data compilation command parameters, the client applies
different methods at each layer, either passing already processed data (as file,
stream, or object) to the next higher layer or returning it to the one beneath.

Layer 0 (Download & Persistence) manages the data handling between
the Databus, the Compression Layer, and the local file system. Its implementa-
tion consists of two modules: 1) the Download-Module that queries file metadata
using the Databus, retrieves the files by accessing their download URLs, and
finally verifies the download process; 2) the Persistence-Module which generates
local provenance metadata and stores the target files in the correct file structure.

The Databus Client can download any file registered on the Databus as exact
copy and verifies it according to its corresponding Databus metadata (using the
SHA256 checksum). The files to be downloaded are specified via a SPARQL
query or a Databus collection.

The Persistence-Module receives the target data as stream or file from
either the Compression-Layer or directly from the Download-Module and stores
the data on the local file system reproducing a directory structure simi-
lar to the Databus hierarchy /<account>/<group>/<artifact>/<version>
/<fileName>. In addition, it creates a summary file tracking provenance of the
Databus file identifiers and processing information, like applied mappings.

The Compression-Layer is implemented using Apache Commons Com-
press5. This library provides functions to detect and decompress several file
compression formats, like gzip, bzip2, snappy-framed, xz, deflate, lzma, and zstd.
The Compression-Module can either read/write from the local file system or a
byte stream, getting data from the Download-Module and passing data to the
Persistence-Module.

The Format-Layer that handles the format conversion within an equiv-
alence class, currently supports three equivalence classes: 1) quad-based RDF
formats, 2) triple-based RDF formats, and 3) Tabular structure formats.

For RDF formats, the implementation uses Apache Jena6 either leverag-
ing Jena‘s StreamRDF in combination with Apache SPARK7 or the RDF
Model/Dataset API, supporting various formats (see Table 1). Apache Spark

3 https://github.com/dbpedia/databus-client.
4 https://www.docker.com/.
5 https://commons.apache.org/proper/commons-compress/.
6 https://jena.apache.org/.
7 https://spark.apache.org/.

https://github.com/dbpedia/databus-client
https://www.docker.com/
https://commons.apache.org/proper/commons-compress/
https://jena.apache.org/
https://spark.apache.org/


120 J. Frey et al.

utilizes Resilient Distributed Datasets (RDD) [10], which provide several rela-
tional algebra operations to transform and combine this kind of data structure
in a salable way. A significant benefit of an RDD is that it can be partitioned
and distributed over several computing nodes, including swapping (spill) par-
titions to disk to avoid out-of-memory exceptions that larger datasets could
introduce. The inner type of an RDD can be any serializable JVM Object. In
our case, the internal data structure of triple-based RDF formats is an instance
of RDD[Triple], and the internal data structure of quad-based RDF formats is
an instance of RDD[Quad].

For tabular-structured data, the conversion methods of Apache Spark’s IO
library are utilized, allowing to handle configurable CSV formats (specified by
delimiter and escape characters). The internal representation of Tabular struc-
tured data is an instance of RDD[Row]. The Format-Layer is either passing the
internal representation of an equivalence class to the Mapping-Layer, or a stream
of the target format back to the Compression-Layer.

Mapping-Layer. To convert formats between different equivalence classes, the
Format-Layer passes the internal data structure of an equivalence class to the
Mapping-layer. With the aid of additional mapping information, the client can
transform data between different equivalence classes. At the time of writing, the
client supports conversion from tabular-structured data to RDF triples, or from
RDF to tabular-structured data, or between RDF quads and triples.

Tabular to RDF. For mapping tabular-structured data to RDF triples, the
client utilizes the Tarql8 mappings language. Currently, the Tarql library only
supports the mapping of tabular data to RDF triple formats. RDF quad formats
can be supported in the future by using the RDF Mapping Language (RML)9.
There are three strategies to apply a mapping from a table to RDF using the
Databus Client: 1) a generic transformation from CSV to RDF, that generates
a resource URI for each row and creates a triple for each column and its corre-
sponding value (the column header is appended to a generic base URI to specify
the property). The value is represented either as an IRI if it can be parsed as
valid IRI or a literal value otherwise. 2) Databus managed - The Databus can be
requested to find matching mapping files for the given Databus file identifiers.
Users can associate mapping files (e.g., a published Tarql file) using metadata in
a flexible way with Databus groups, versions, or file identifiers, allowing anyone
to reuse and apply these with the client automatically. 3) manual mapping - The
user can specify a mappings file for the Databus file selection (query, collection)
with a command-line parameter.

RDF to Tabular. The client implements a generic approach for mapping RDF
into a wide table. Each RDF triple <subject, predicate, object> is mapped
8 https://tarql.github.io/.
9 https://rml.io/.

https://tarql.github.io/
https://rml.io/


DBpedia Databus Release Management Platform 121

to one or more table cells, whereas each row contains information about one
subject/entity. The first column of the table contains the subject’s IRI. Then,
for each occurring property of the source dataset, either one or two columns are
created depending on the stored value. In case of an IRI, one column is created.
Otherwise, two columns are created, one with the lexical form and a separate
one to encode the original value’s datatype or language tag information.

In addition to the resulting tabular file, the process generates a Tarql file
that contains information for mapping the resulting table back to the original
RDF structure.

RDF to RDF. The Databus Client can also convert between RDF triples
and RDF quads formats. The mapping of RDF triples to RDF quads assigns a
configurable graph name to the triples. The graph name setting can be given via
a command-line option.

RDF quads to RDF triples are converted by splitting the input (quads) file
into multiple triple files, one for each named graph.

Table 1. Equivalence class implementation overview: Reported are the equiva-
lence classes with their supported serialization formats and mapping strategies between
each other (inter equivalence class mapping)

Equivalence class Supported mapping strategy

Name Serial. formats to Quads to Triples to Tabular

RDF Quad trig, trix, nquads, json-ld – File split Wide table

RDF Triple turtle, ntriples, rdf-xml Conf. graph – Wide table

Tabular tsv, csv N/A Tarql –

5 Evaluation

We created a test suite and performed so-called round trip tests to verify the cor-
rectness of the file compiling for the reading and writing functionalities for every
supported input/output format combination. We distinguish between round trip
format conversion tests (Layer 2) and round trip mapping tests (Layer 3). Layer
0 and 1 are tested with regular unit tests.

A round trip format conversion test runs as follows. We take a file i and
read it into the internal data structure of its equivalence class. Subsequently,
that internal data structure is serialized to a file o, which is of the same format
as file i. If the information in both files is equal, the round trip test succeeds.
Within a round trip mapping test, we take a file i and convert it to file c of
the format of another equivalence class before we convert c back to file o of the
same format as i. Therefore, i first has to be read into the internal data structure
of the equivalence class of i (see (1) in Fig. 3). Then this data is mapped to the
internal data structure of the equivalence class of c (2) before it is written out



122 J. Frey et al.

to c (3). Next, c is read into the internal data structure of its equivalence class
(4). That resulting data is mapped back to the internal data structure of the
equivalence class i (5). In the last step (6), this internal data structure data is
written out to o. If the information of the input file i is equal to the information
of output file o, the round trip test succeeds.

Fig. 3. Walk-through of a round trip mapping test

A round trip test is considered successful if we detect equality in the amount
of information between the input and output file. There may be differences in
syntax especially if no canonical version of the format is available. As a conse-
quence, the files are parsed (ideally using a different software library) into some
kind of internal/abstract data model again to be compared. In case of a non-
bijective mapping between two equivalence classes (mapping is not reversible
without information loss), these predictable losses have to be taken into account
when evaluating the amount of information. We call this “quasi”-equal.

The layer design and round trip test approach reduce the quadratic amount
of transformation/compiling combinations to be probed, and therefore help to
realize a reliable and sustainable way to extend the client with other formats
while maintaining/ensuring quality and correctness with a manageable effort.
The number of tests performed on format layer is Tf = ne1 + ne2 + ...+ nex−1 +
nex , whereas nei is the number of formats in equivalence class ei and x the
total number of classes. Currently, the Databus Client has three implemented
equivalence classes (see Table 1), which add up to 4 + 3 + 2 = 9 format round
trip tests that need to be performed.

To test the correctness of the mapping layer, we pick one format for each class
and do a round trip mapping test for every (ordered) pair of equivalence classes.
If we have two classes e1 and e2 we perform one mapping round trip test starting
with a format from e1 and a second test starting with a format from e2. Picking
one format is sufficient since we already tested the format conversion process
within the equivalence classes for Layer 2. In summary, for x equivalence classes,
the number of round trip mapping tests can be calculated by Tm = x!

(x−2)! . How-
ever, this formula assumes that there is exactly one mapping implementation in



DBpedia Databus Release Management Platform 123

every direction from/to every class. There could be cases where two equivalence
classes can not be mapped or only in one direction (because the underlying data
models differ too much), or multiple implementations for one mapping transition
exist (that would need to be tested additionally).

When having 3 equivalence classes using exactly one mapping implemen-
tation between every class 3!

(3−2)! = 3! = 6 round trip mapping tests need to
performed. Since there is currently no mapping from tabular to RDF quads, 5
tests were performed.

Round trip tests allow to automate the conversion test, but they also have
a limitation in spotting two interfering, systematic implementation errors, (e.g.
one in the parser and one in the serializer), that counteract themselves. However,
we consider them as sufficient in the scope of this work, especially when using
frameworks that are broadly used and already tested in itself.

6 Related Work

The following section reports related work that also aims to improve the con-
sumption of Linked Data into applications.

With the aid of HTTP content negotiation, HTTP clients can request
files in formats that suite best for their demands, sending a list of weighted
MIME types in the Accept header. Content negotiation is considered best prac-
tice for consuming Linked Data [8]. By using an Accept-Encoding header, the
compression can be additionally specified. However, all conversion and imple-
mentation overhead as well as the complexity is on the server/publisher side,
while leaving the consumer with the resulting technical heterogeneity, failures,
and varying availability for common formats and compressions.

HDT [1] addresses a similar problem as the Databus Client, making RDF
accessible better for consumers while being more efficient for the party host-
ing the data. It decomposes the original data into three components: Header,
Dictionary, and Triples. With the help of the dictionary it realizes a compres-
sion, and makes additional compression of RDF files obsolete. An optional index
can speed up simple lookup queries on the file. Unfortunately, there is no wide-
spread native reading support for semantic applications and tools (SPARQL
stores, reasoners, etc.). However, HDT parsing support could be integrated into
the Databus Client, to allow transparent consumption of HDT files for applica-
tions.

OntoMaven [7] uses Maven repositories to release ontologies and optionally
its dependencies (i.e. imported ontologies). As a consequence, transitive imports
can be resolved and downloaded locally (using the Maven client) and then rewrit-
ten to use the locally mirrored (transitive) imports via a Maven plugin.

Although we were not able to find any announced public repository, the
ontology organization structure is very similar to the one that is realized on the
Databus using DBpedia Archivo [4] and which can be leveraged in combina-
tion with the Databus Client to manage and consume over 1300 ontologies as
dependencies alongside instance data.



124 J. Frey et al.

While plenty of ETL frameworks exist, we mention UnifiedViews [6] as an
open-source ETL framework that supports RDF and ontologies. A data pro-
cessing pipeline in UnifiedViews, consists of one or more data processing units
(DPUs) and data flows between them. The DPUs offer basic functions that
obtain data from external sources (e.g. CSV, XLS, RDF), convert data between
various formats (e.g., CSV files to RDF, relational tables to RDF), perform
data transformations (such as executing SPARQL Construct queries, XSLT, link-
ing/fusing RDF data), and load the data to various (RDF) databases and file
sinks.

While UnifiedViews has more powerful options in the individual steps, it has
a weakness when it comes to provenance and repeatability (e.g. when the sources
have changed). In contrast, the Databus Client harnesses the clear versioning and
provenance model of the DBpedia Databus.

DataHub.io10 is a data management platform, based on CKAN . A com-
mand line tool is provided that can download a single dataset alongside its data-
package JSON metadata file. A rudimentary versioning strategy allows to down-
load the latest or an older version of a dataset. Furthermore, DataHub converts
tabular data into normalized CSV and JSON files. However, the rich DataID
metadata Model of the Databus in combination with collections or SPARQL
queries provide a much more flexible and fine-grained download configuration
method for the Databus Client.

7 Discussion and Future Work

In this work, we presented a concept and vertical-focused implementation of an
interoperable and modular Databus Client, that shifts effort from the servers to
the client while making data consumption and dependency management easier
and more unified as a whole. The Databus Client offers a fully automated way
for extracting and compiling data assets from the DBpedia Databus. Data that
is only available in one RDF or tabular format can be used for many different
semantic applications that support only a subset of these formats. Publishers
can save storage and processing power of servers as well as human effort for
publishing data in multiple formats, and instead invest resources in organizing
the release and registering it with appropriate metadata.

The client‘s modular layer structure allows to implement, test, and use dif-
ferent functionalities individually and extend the client easily in the future.
We can imagine to add one or multiple integration layers which normalize and
merge schema and entity identifiers [3]. Moreover, we can support more formats
(e.g. HDT, Manchester Syntax) and more mapping frameworks (like RML) by
expanding existing layers.

While the Databus Client allows a flexible and via DataID metadata fine-
grained access to files, this granularity is still dependent on the file partitioning
strategy of the dump publisher. Although a monthly DBpedia release is sep-
arated into over 3,000 files, if information for only a small set of entities is
10 https://datahub.io.

https://datahub.io


DBpedia Databus Release Management Platform 125

consumed by an application, a SPARQL or Linked Data fragments [9] endpoint
is more convenient. We plan to extend the current file-based focus of the client
to an even more flexible extraction phase that can use e.g. SPARQL to filter the
compiled data.

At the current stage, the Databus Client is considered passive in the loading
phase of the ETL process. The interface to consume data is on file/folder level,
which is simple and powerful, but for better flexibility and complex workflows
we see potential in advancing the client to orchestrate the loading phase as well.

Acknowledgments. This work was partially supported by grants from the Federal
Ministry for Economic Affairs and Energy of Germany (BMWi) to the projects LOD-
GEOSS (03EI1005E) and PLASS (01MD19003D).

References

1. Fernández, J.D., Mart́Inez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary RDF representation for publication and exchange (HDT). J. Web Semant.
19, 22–41 (2013). https://doi.org/10.1016/j.websem.2013.01.002

2. Frey, J., Hellmann, S.: Fair linked data - towards a linked data backbone for users
and machines. In: WWW Companion (2021). https://doi.org/10.1145/3442442.
3451364

3. Frey, J., Hofer, M., Obraczka, D., Lehmann, J., Hellmann, S.: DBpedia FlexiFusion
the best of wikipedia > wikidata > your data. In: Ghidini, C., et al. (eds.) ISWC
2019. LNCS, vol. 11779, pp. 96–112. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30796-7 7

4. Frey, J., Streitmatter, D., Götz, F., Hellmann, S., Arndt, N.: DBpedia archivo: a
web-scale interface for ontology archiving under consumer-oriented aspects. In:
Blomqvist, E., et al. (eds.) SEMANTICS 2020. LNCS, vol. 12378, pp. 19–35.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59833-4 2

5. Hofer, M., Hellmann, S., Dojchinovski, M., Frey, J.: The new dbpedia release cycle:
increasing agility and efficiency in knowledge extraction workflows. In: Semantic
Systems (2020). https://doi.org/10.1007/978-3-030-59833-4 1

6. Knap, T., et al.: Unifiedviews: an ETL tool for RDF data management. Semant.
Web 9(5), 661–676 (2018). https://doi.org/10.3233/SW-180291

7. Paschke, A., Schäfermeier, R.: OntoMaven - maven-based ontology development
and management of distributed ontology repositories. In: Nalepa, G.J., Baumeister,
J. (eds.) Synergies Between Knowledge Engineering and Software Engineering.
AISC, vol. 626, pp. 251–273. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-64161-4 12

8. Sauermann, L., Cyganiak, R.: Cool uris for the semantic web. W3c interest group
note, W3C (2008). https://www.w3.org/TR/cooluris/

9. Verborgh, R., Sande, M.V., Colpaert, P., Coppens, S., Mannens, E., de Walle,
R.V.: Web-scale querying through linked data fragments. In: Proceedings of the
7th Workshop on Linked Data on the Web, vol. 1184. CEUR (2014). http://ceur-
ws.org/Vol-1184/ldow2014 paper 04.pdf

10. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. In: USENIX Symposium on Networked Systems Design
and Implementation (NSDI 2012), pp. 15–28. USENIX Association (2012). https://
www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1145/3442442.3451364
https://doi.org/10.1145/3442442.3451364
https://doi.org/10.1007/978-3-030-30796-7_7
https://doi.org/10.1007/978-3-030-30796-7_7
https://doi.org/10.1007/978-3-030-59833-4_2
https://doi.org/10.1007/978-3-030-59833-4_1
https://doi.org/10.3233/SW-180291
https://doi.org/10.1007/978-3-319-64161-4_12
https://doi.org/10.1007/978-3-319-64161-4_12
https://www.w3.org/TR/cooluris/
http://ceur-ws.org/Vol-1184/ldow2014_paper_04.pdf
http://ceur-ws.org/Vol-1184/ldow2014_paper_04.pdf
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

	Managing and Compiling Data Dependencies for Semantic Applications Using Databus Client
	1 Introduction
	2 DBpedia Databus Release Management Platform
	3 Databus Client Concept
	4 Implementation
	5 Evaluation
	6 Related Work
	7 Discussion and Future Work
	References




