
LSVS: Link Specification Verbalization and
Summarization

Abdullah Fathi Ahmed1 Mohamed Ahmed Sherif1,2 and Axel-Cyrille Ngonga
Ngomo1,2

1 Paderborn University, Data Science Group, Pohlweg 51, D-33098 Paderborn,
Germany

E-mail: {firstname.lastname}@upb.de
2 Department of Computer Science, University of Leipzig, 04109 Leipzig, Germany

E-mail: {lastname}@informatik.uni-leipzig.de

Abstract. An increasing number and size of datasets abiding by the
Linked Data paradigm are published everyday. Discovering links between
these datasets is thus central to achieve the vision behind the Data Web.
Declarative Link Discovery (LD) frameworks rely on complex Link Speci-
fication (LS) to express the conditions under which two resources should
be linked. Understanding such LS is not a trivial task for non-expert
users, particularly when such users are interested in generating LS to
match their needs. Even if the user applies a machine learning algorithm
for the automatic generation of the required LS, the challenge of explain-
ing the resultant LS persists. Hence, providing explainable LS is the key
challenge to enable users who are unfamiliar with underlying LS tech-
nologies to use them effectively and efficiently. In this paper, we address
this problem by proposing a generic approach that allows a LS to be ver-
balized, i.e., converted into understandable natural language. We propose
a summarization approach to the verbalized LS based on the selectivity
of the underlying LS. Our adequacy and fluency evaluations show that
our approach can generate complete and easily understandable natural
language descriptions even by lay users.

Keywords: Open Linked Data, Verbalization, Link Discovery, Link Spec-
ification, NLP, Text Summarization

1 Introduction

With the rapid increase in the number and size of RDF datasets comes the need
to link such datasets. Declarative Link Discovery frameworks rely on complex
Link Specification to express the conditions necessary for linking resources within
these datasets. For instance, state-of-the-art LD frameworks such as Limes [13]
and Silk [9] adopt a property-based computation of links between entities. For
configuring LD frameworks, the user can either (1) manually enter a LS or (2)
use machine learning for automatic generation of LS.

There are a number of machine learning algorithms that can find LS auto-
matically, by using either supervised, unsupervised or active learning. For exam-
ple, the Eagle algorithm [15] is a supervised machine-learning algorithm able to

2 Ahmed et al.

learn LS using genetic programming. In newer work, the Wombat algorithm [19]
implements a positive-only learning algorithm for automatic LS finding based on
generalization via an upward refinement operator. While LD experts can easily
understand the generated LS from such algorithms, and even modify if necessary,
most lay users lack the expertise to proficiently interpret those LSs. In addition,
these algorithms have been so far unable to explain the LS they generate to lay
users. Consequently, these users will face difficulty to i) assess the correctness
of the generated LS, ii) adapt their LS, or iii) choose in an informed manner
between possible interpretations of their input.

In this paper, we address the readability of LS in terms of natural language.
To the best of our knowledge, this is the first work that shows how to verbalize
LS. As a result, it will help people who are unfamiliar with the underlying
technology of LS to understand and interact with it efficiently. The contribution
of this paper is twofold. First, we address the readability of LS and propose
a generic rule-based approach to produce natural text from LS. Second, we
present a selectivity-based approach to generate a summarized verbalization of
LS. Our approach is motivated by the pipeline architecture for natural language
generation (NLG) systems performed by systems such as those introduced by
Reiter & Dale [18].

The rest of this paper is structured as follows: First, we introduce our basic
notation in Section 2. Then, we give an overview of our approach underlying LS
verbalization in Section 3. We then evaluate our approach with respect to the
adequacy and fluency [5] of the natural language representations it generates in
Section 4. After a brief review of related work in Section 5, we conclude our work
with some final remarks in Section 6.

Throughout the rest of the paper, we use the following LS shown in Listing 1
as our running example, which is generated by the Eagle algorithm to link the
ABT-BUY benchmark dataset from [10], where the source resource x will be linked
to the target resource y if our running example’s LS holds.

1 OR(jaccard (x.name ,y.name)|0.42 , trigrams (x.name ,y. description) |0.61)

Listing 1: Running example.

2 Preliminary

In the following, we present the core of the formalization and notation necessary
to implement our LS verbalization. We first give an overview of the grammar
that underlies LS. Then, we describe the notation of LS verbalization.

2.1 Link Specification

The link discovery problem is formally defined as follows: Given an input relation
ρ (e.g., owl:sameAs), a set of source resources S and a set of target resources
T , the goal of link discovery is to discover the set {(s, t) ∈ S × T : ρ(s, t)}.
Declarative link discovery frameworks define the conditions necessary to generate

LSVS 3

such links using LS. Several grammars have been used for describing LS in
previous work [9,19,15]. In general, these grammars assume that a LS consists
of two types of atomic components: similarity measures m, which allow the
comparison of property values of input resources and operators op, which can
be used to combine these similarities to more complex specifications. Without
loss of generality, we define a similarity measure m as a function m : S × T →
[0, 1]. We use mappings M ⊆ S × T to store the results of the application of a
similarity function to S × T or subsets thereof. We define a filter as a function
f(m, θ). We call a specification atomic LS when it consists of exactly one filtering
function. A complex specification (complex LS) can be obtained by combining
two specifications L1 and L2 through an operator op that allows the results of
L1 and L2 to be merged. Here, we use the operators u, t and \ as they are
complete and frequently used to define LS [19]. A graphical representation of
our running example’s complex LS from Listing 1 is given in Figure 1.

We define the semantics [[L]]M of a LS L w.r.t. a mapping M as given in
Table 1. Those semantics are similar to those used in languages like SPARQL,
i.e., they are defined extensionally through the mappings they generate. The
mapping [[L]] of a LS L with respect to S × T contains the links that will be
generated by L. We define the selectivity score of a sub-LS Ls ∈ L as a function
σ(L) that returns the the F-Measure achieved by the mapping [[Ls]] of Ls by
considering the mapping [[L]] generated by the original LS L as its reference
mapping.

Fig. 1: Our running example complex LS.
The filter nodes are rectangles while the op-
erator nodes are circles.

f(Jaccard(:name, :name), 0.42)

f(trigrams(:name, :description), 0.61)
t

Table 1: Link Specification Syntax and Semantics.

LS [[LS]]M
f(m, θ) {(s, t)|(s, t) ∈M ∧m(s, t) ≥ θ}
L1 u L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∈ [[L2]]M}
L1 t L2 {(s, t)|(s, t) ∈ [[L1]]M ∨ (s, t) ∈ [[L2]]M}
L1\L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) /∈ [[L2]]M}

2.2 Link Specification Verbalization

Our definition of realization function ζ relies on the formalization of the LS
declared in the previous Section. Let A be the set of all atomic LS that can be
combined in a complex LS L. Let CS resp. CT be two sets of constraints that
specify the sets S resp. T . LetM be a set of similarity measures and T a set of
thresholds. In General, a constraint C is a logical predicate. Constraints in LS
could state, for example, the rdf:type of the elements of the set they describe,
i.e., C(x) ↔ x rdf:type someClass, or the features that each element in the
set must have, e.g., C(x) ↔ (∃y : x someProperty y). Each s ∈ S must abide
by each of the constraints CS

1 . . . C
S
m, while each t ∈ T must abide by each of

the constraints CT
1 . . . CT

k . We call z ∈ A ∪ CS ∪ CT ∪ M ∪ T an atom. We
define the realization function ζ : A ∪ CS ∪ CT ∪M ∪ T → Language, where
Language is our target language. In turn, this realization function ζ maps each
atom to a word or sequence of words in our target language. Formally, the goal

4 Ahmed et al.

Table 2: Dependencies used by LS verbalization.

Dependency Explanation

amod Represents the adjectival modifier dependency.
For example, amod(ROSE,WHITE) stands for white rose.

dobj Dependency between a verb and its direct object.
For example, dobj(EAT,APPLE) expresses "to eat an/the apple".

nn The noun compound modifier is used to modify a head noun by the
means of another noun.
For instance, nn(FARMER,JOHN) stands for farmer John.

poss Expresses a possessive dependency between two lexical items.
For example, poss(JOHN,DOG) express John’s dog.

prep_X Stands for the preposition X, where X can be any preposition, such as
via, of, in and between.

subj Relation between subject and verb.
For example, subj(PLAY,JOHN) expresses John plays.

of this paper: first is to construct the extension of ζ to the entire LS so that
all atoms z can be mapped to their realization ζ(x). Second : how these atomic
realizations can be combined. For the sake of simplicity, we denote the extension
of ζ by the same label ζ. We adopt a rule-based approach to achieve this goal,
where the rule extending ζ to the entire LS is expressed in a conjunctive manner.
This means that for premises P1, . . . , Pn and consequences K1, . . . ,Km we write
P1 ∧ . . . ∧ Pn ⇒ K1 ∧ . . . ∧ Km. The premises and consequences are clarified
by using an extension of the Stanford dependencies3. Notably, we build on the
constructs explained in Table 2. For example, dependency between a verb and
its object is represented as dobj(verb, object).

3 Approach

We have now introduced all ingredients necessary for defining our approaches
for LS verbalization and summarization. Our goal is to generate a complete
and correct natural language representation of an arbitrary LS. Our approach is
motivated by the pipeline architecture for natural language generation (NLG)
systems as introduced by Reiter & Dale [18]. The NLG architecture consists of
three main stages: document-planner, micro-planner and surface realizer. Since
this work is the first step towards the verbalization of LS, our efforts will be
focused on document-planner (as explained in Section 3.1) with an overview of
the tasks carried out in the micro-planner (Section 3.2). The surface realizer is
used to create the output text.
3 For a complete description of the vocabulary, see http://nlp.stanford.edu/

software/dependencies_manual.pdf.

http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf

LSVS 5

3.1 Document-Planner
The document-planner consists of the content determination process to create
messages and the document structuring process that combines those messages.
We focus on document structuring to create independently verbalizable messages
from the input LS and to decide on their order and structure. These messages are
used for representing information. This part is carried out in the preprocessing
and processing steps.

Preprocessing: The goal of the preprocessing step is to extract the central
information of LS. This step mainly relies on the atomic LS where the necessary
information can be extracted. The input for this step is the atomic LS while the
output is the realization of each individual part of the atomic LS. To this end,
we break down the atomic LS into its individual parts, consisting of properties
p (for each atomic LS there are two properties - 1. ps for the resource s ∈ S and
2. pt for the resource t ∈ T), threshold θ and similarity measure m. After that,
on each part of the atomic LS we apply the dependency rule introduced in table
1. We start with the realization of similarity measure m (e.g. jaccard as stated
in our running example in Listing 1) as follows:
1. ζ(m) ⇒ nn(m,similarity)

Now, we can combine ζ(m) and ζ(θ).
2. ζ(m,θ) = ζ(m)∧ ζ(θ) ⇒ prep_of(ζ(θ),ζ(m))

Furthermore, if θ equals 1, we replace its value by “exact match” and in cases
where θ is equal to 0, we replace it by “complete mismatch”. Otherwise, we keep
the θ value (e.g., in the case of our running example). Regarding the properties
ps and pt, we move the explanation into the processing step since they play
an important role in the construction of a subject to be used later in sentence
building.

Processing: In this step, we aim to map all atoms z into their realization
function ζ(z) and to define how these atomic realizations are to be combined.
The input for this step is the LS and the output is the verbalization of the LS
at hand. Given our formalization of LS in Section 2.1, any LS is a binary tree,
where the root of the tree is an operator op and each of its two branches are
LSs. Therefore, we recursively in-order apply our processing step at the LS tree
at hand. As the complete verbalization of an atomic LS mainly depends on the
properties ps and pt, we here distinguish two cases: a first case where ps and pt

are equal, so we only need to verbalize ps. In this case the realization function
of an atomic LS a ∈ A is constructed as follows:
3. ζ(a)⇒subj(have,nn(prep_of(ζ(ps), ζ(source and target)),
ζ(resources)))∧ dobj(have,ζ(m,θ))

The second case is where the ps and pt are not equal. Here, both properties need
to be verbalized as follows:
4. ζ(ps,pt)⇒ ζ(ps) ∧ ζ(pt)

6 Ahmed et al.

3.2 Micro-Planer

The micro-planner is divided into three processes: lexicalization, referring ex-
pression generation and aggregation. We explain each process in the following.

Lexicalization: Within the lexicalization process we decide what specific words
should be used to express the content. In particular, we choose the actual nouns,
verbs, adjectives and adverbs to appear in the text from a lexicon. Also, we
decide which particular syntactic structures to use, for example, whether to use
the phrase the name of the resource or resource’s name.
5. ζ(ps)⇒ prep_of(poss(ζ(resource), ps),ζ(source))
6. ζ(pt)⇒ prep_of(poss(ζ(resource), pt),ζ(target))
7. ζ(a)⇒ subj(have,ζ(ps,pt))∧ dobj(have,ζ(m,θ))

Applying preprocessing and processing steps followed by Lexicalization step on
our running example from Listing 1 generates the following verbalization: The
name of source and target resources has a 42% of Jaccard similarity
or the resource’s name of the source and the resource’s description
of the target have a 61% of Trigrams similarity. Note that our running
example contains both cases.

Referring expression generation: Here we carry out the task of deciding
which expressions should be used to refer to entities. Considering the example,
the source and the target have a resource’s name and they have a 45%
of Jaccard similarity, they is referring to the expression the source and
the target. However, we avoid such a construction in our verbalization be-
cause we aim to generate a simple yet readable text that contains the central
information of the LS at hand.

Aggregation: The goal of aggregation in NLG is to avoid duplicating informa-
tion that has already been presented. In our LS verbalization, we mainly focus
on the subject collapsing, defined in [4] as the process of “collecting clauses
with common elements and then collapsing the common elements”. Formally, we
define subject subj(vi, si) as si, object dobj(vi, oi) as oi

8. ζ(s1)= ζ(s2)=...=ζ(sn)⇒ subj(v1,s1)∧ dobj(v1, coord(o1,o2,...,on))

In the Listing 2, we present a second example LS where grouping is applicable.
1 OR(jaccard (x.name ,y.name)|0.42 , qgrams (x.name ,y.name) |0.61)

Listing 2: Grouping example.

The original verbalization of LS from Listing 2 is: The name of source and
target resources has a 42% of Jaccard similarity or the name of source
and target resources has a 61% of Qgrams similarity. And after apply-
ing grouping, our verbalization will become more compact as follows: The name
of source and target resources has a 42% of Jaccard similarity or a
61% of Qgrams similarity.

LSVS 7

3.3 Summarization

We propose a sentence-scoring-based LS summarization approach. The basic
idea behind our summarization approach is to simplify the original LS tree by,
in order, pruning LS sub-trees that achieve the minimum selectivity score. i.e.,
keep the information loss minimum. Given an input LS Li, our summarization
approach first generates an ordered list L of simplified LSs of Li, where L is
ordered by the selective score of each of its elements in descending order. This
step is carried out by iteratively pruning the sub-tree of Li with the minimum
selectivity score.

In cases where a summarization threshold τ ∈ [0, 1] is given, the output of
our summarization algorithm will be generated by applying our LS verbalization
approach to the LS L ∈ L with the highest selectivity score σ(L) ≤ τ . Otherwise,
the output of our summarization approach will be a list of the verbalization of
the whole list L.

4 Evaluation

We evaluated our approaches for LS verbalization and summarization in order
to elucidate the following questions:

Q1: Does the LS verbalization help the user to better understand the conditions
sufficient to link the resources in comparison to the original LS?

Q2: How fluent is the generated LS verbalization? i.e., how good is the natural
language description of the LS verbalization in terms of comprehensibility
and readability?

Q3: How adequate is the generated LS verbalization? i.e., How well does the
verbalization capture the meaning of the underlying LS?

Q4: How much information do we lose by applying our summarization approach?

4.1 Experimental setup

To answer the first three questions, we conducted a user study in order to eval-
uate our LS verbalization. Therefore, we used our approach to verbalize a set of
five LSs automatically generated by the Eagle algorithm [15] for the benchmark
datasets of Amazon-GP, ABT-BUY, DBLP-ACM, and DBLP-Scholar from [10]. Our
user study consists of four tasks, where each task consists of five multiple choice
questions4. Altogether, we have a group of 18 participants in our user study from
the DICE5 and AKSW6 research groups. In the following, we explain each task:

4 The survey interface can be accessed at https://umfragen.uni-paderborn.de/
index.php/186916?lang=en

5 https://dice.cs.uni-paderborn.de/about/
6 http://aksw.org/About.html

https://umfragen.uni-paderborn.de/index.php/186916?lang=en
https://umfragen.uni-paderborn.de/index.php/186916?lang=en
https://dice.cs.uni-paderborn.de/about/
http://aksw.org/About.html

8 Ahmed et al.

– Task 1: This task consists of five identical sub-tasks. For each we present
the survey participant a LS and three pairs of source and target resources
represented by their respective concise bounded descriptions (CBD)7 graph.
These pairs are matched together based on the provided LS with different
degrees of confidence. To this end, the participant is asked to find the best
matched pair, and we measure the response time for each participant.

– Task 2: This task also consists of five identical sub-tasks. We again follow
the same process in Task 1 of presenting the participant with the CBDs of
matched resources, but this time we give the survey participant the verbal-
ization of the LSs. Again, we record the response time of each participant.

– Task 3: Within this task, a survey participant is asked to judge the flu-
ency of the provided verbalization. We follow here the machine translation
standard introduced in [5]. Fluency captures how good the natural language
description is in terms of comprehensibility and readability according to
the following six ratings: (6) Perfectly clear and natural, (5) Sounds a bit
artificial, but is clearly comprehensible. (May contain minor grammatical
flaws.), (4) Sounds very artificial, but is understandable (although may con-
tain significant grammatical flaws), (3) Barely comprehensible, but can be
understood with some effort, (2) Only a loose and incomplete understanding
of the meaning can be obtained, and (1) Completely not understandable at
all.

– Task 4: In this task, we provide a survey participant with a LS and its
verbalization. They are then asked to judge the adequacy of the verbaliza-
tion. Here we follow the machine translation standard from [5]. Adequacy
addresses how well the verbalization captures the meaning of the LS, ac-
cording to the following six ratings: (6) Perfect, (5) Mostly correct, although
maybe some expressions don’t match the concepts very well, (4) Close, but
some information is missing or incorrect, (3) There is significant information
missing or incorrect, (2) Natural Language (NL) description and LS are only
loosely connected, and (1) NL description and LS are in no conceivable way
related.

For answering the last question, we conducted an experiment on the bench-
mark datasets from [10]. We ran the supervised version of the Wombat algo-
rithm to generate an automatic LS for each dataset. We again used [19] to
configure Wombat. Afterwards, we applied our summarization algorithm to
each of the generated LSs. Because of the space limitation, we present only the
verbalization of the original LS (the ones generated by Wombat) as well as
the first summarization of it for the Amazon-GP and DBLP-Scholar datasets in
Table 3. The complete results are available on the project website8.

7 https://www.w3.org/Submission/CBD/
8 https://bit.ly/2XKDpKZ

https://www.w3.org/Submission/CBD/
https://bit.ly/2XKDpKZ

LSVS 9

LS1 LS2 LS3 LS4 LS5
0

20

40

60

80

100

120

140

160

U
se

r'
s

Ti
m

e
 i
n
 S

e
c.

Using LS
Using verbalization

Fig. 2: Average response time of our user study.

LS1 LS2 LS3 LS4 LS5
0%

20%

40%

60%

80%

100%

C
o
rr

e
ct

 A
n
sw

e
rs

Using LS
Using verbalization

Fig. 3: Correct answers of our user study.

4.2 Results and Discussion

After collecting all the responses of our user study, we filtered out those survey
participants who were unlikely to have thoroughly executed the survey (i.e., the
ones who took notably less time than the average response time of all other
participants) or who were likely distracted while executing it (i.e., the ones who
took notably more time than the average time of all other participants). This
process reduces the number of valid participants to 16. Our final accepted time
window was 3.5−38 minutes for Task 1 & 2. Accordingly, we start our evaluation
by comparing the user time required to find the best matched source-target pair
using LS (Task 1) against using the verbalization of the provided LS (Task 2).

As shown in Figure 2, the average user response time with LS verbalization
is less than the ones for LS in all the 5 LSs in our users study. On average, using
verbalization is 36% faster than using LS. Additionally, we also compared the
error rates of participants in Task 1 & 2, i.e. the number of incorrect answers per
question. As shown in Figure 3, using verbalization we have a higher error rate
(5% mean squared error) than when using LS. These results show that using LS
verbalization decreases the average response time, which is an indicator that our
participants were able to better understand underlying LS using verbalization.
Still, using the LS verbalization does not always lead our participants to select
the correct answer. This is due to the complexity involved in the underlying
LSs, which leads to verbalization that is too long. This answers Q1. Using our
simplification approach on the same LS verbalization leads our participants to
achieve better results.

The results of Task 3 (see Figure 4) show that the majority of the generated
verbalizations (i.e., the natural language descriptions) were fluent. In particular,
87% of the cases achieved a rating of 3 or higher. On average, the fluency of the
natural language descriptions is 5.2± 1.8. This answers Q2.

For Task 4, the average adequacy rating of our verbalization was 5 ± 2.55
(see Figure 5), which we consider to be a positive result. In particular, 40% of
all verbalizations were judged to be perfectly adequate and 83% of the cases
achieved a rating of 3 or higher. This answers Q3.

10 Ahmed et al.

0% 10% 20% 30% 40%
Users

1

2

3

4

5

6

Fl
u
e
n
cy

Fig. 4: Fluency results.

0% 10% 20% 30% 40% 50%
Users

1

2

3

4

5

6

A
d
e
q
u
a
cy

Fig. 5: Adequacy results.

Table 3: Verbalization of different summarization of a LS for the DBLP-SCHOLAR and Amazon-GP dataset
together with respective F-measure.
Dataset F Verbalization

DBLP-SCHOLAR 1 The link will be generated if the title of the source and the target
resources has a 66% of Cosine similarity or the resource’s title of
the source and the resource’s author of the target has a 43% of Jaccard
similarity or the resource’s author of the source and the resource’s
title of the target has a 43% of Trigram similarity

DBLP-SCHOLAR 0.88 The link will be generated if the title of the source and the target
resources has a 66% of Cosine similarity

Amazon-GP 1 The link will be generated if the resource’s title of the source and
the resource’s name of the target has a 48% of Cosine similarity or the
description of the source and the target resources has a 43% of Cosine
similarity or the resource’s title of the source and the resource’s
description of the target has a 43% of Jaccard similarity

Amazon-GP 0.97 The link will be generated if the resource’s title of the source and the
resource’s name of the target has a 48% of Cosine similarity

5 Related work

While we believe that this is the first work that shows how to verbalize LS, related
work comes from three research areas: declarative link discovery approaches,
verbalization of Semantic data and text summarization.

Declarative Link Discovery frameworks rely on complex LS to express the
conditions necessary for linking resources within RDF datasets. For instance,
state-of-the-art LD frameworks such as Limes [13] and Silk [9] adopt a property-
based computation of links between entities. All such frameworks enable their
users to manually write LS and excute it against source-target resources. In re-
cent years, the problem of using machine learning for the automatic generation
of accurate LS has been addressed by most of the link discovery frameworks.
For example, the Silk framework [9] implements a batch learning approach for
the discovery LS, based on genetic programming, which is similar to the ap-
proach presented in [3]. For the Limes framework, the Raven algorithm [14]
is an active learning approach that treats the discovery of specifications as a
classification problem. In RAVEN, the discovery of LS is done by first finding

LSVS 11

class and property mappings between knowledge bases automatically. It then
uses these mappings to compute linear and boolean classifiers that can be used
as LS. Eagle [15] has addressed the readability of LS alongside accuracy and
efficiency. However,the generated LS is still expressed in a declarative manner.
Recently, the Wombat algorithm [19] has implemented a machine leaning algo-
rithm for automatic LS finding by using generalization via an upward refinement
operator.

With the recent demand on new explainable machine learning approaches,
comes the need for the verbalization of semantic data involved within such ap-
proaches. For example, [17] expands on an approach for converting RDF triples
into Polish. The authors of [12] espouse a reliance on the Linked Data Web being
created by reversing engineered structured data into natural language. In their
work [20], the same authors show how this approach can be used to produce
text out of RDF triples. Yet another work, [11], generated natural language out
of RDF by depending on the BOA framework [8,7] to compute the trustworthi-
ness of RDF triples using the Web as background knowledge. Other approaches
and concepts for verbalizing RDF include [16] and [22]. Moreover, approaches
to verbalizing first-order logics [6] are currently being devised. In very recent
work [21], the authors have addressed the limitations of adapting rule-based ap-
proaches to generate text from semantic data by proposing a statistical model
for NLG using neural networks.

The second fold of our approach is the summarization of LS, which is related
to work in the area of text summarization with a focus on sentence scoring
techniques. The work [1] surveys many sentence scoring techniques. Furthermore,
the survey [2] addresses many text summarization methods. However, in our
summarization technique the summarization score is user-defined.

6 Conclusions and Future Work
In this paper, we presented LSVS, an approach for verbalizing LS. LSVS pro-
duces both a direct literal verbalization of the content of the LS and a more
natural aggregated version of the same content. We presented the key steps of
our approach and evaluated it with a user study. Our evaluation shows that
the verbalization generated by our approach is both complete and easily under-
standable. Our approach not only accelerates the understanding of LS by expert
users, but also enables non-expert users to understand the content of LS. Still,
our evaluation shows that the fluency of our approach is worse when the LS
gets more complex and contains different operators. In future work, we will thus
improve upon our aggregation to further increase this fluency. Moreover, we will
devise a consistency checking algorithm to improve the correctness of the natural
language generated by our approach.

References
1. Assessing sentence scoring techniques for extractive text summarization. Expert

Systems with Applications, 2013.

12 Ahmed et al.

2. M. Allahyari, S. A. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez,
and K. Kochut. Text summarization techniques: A brief survey. CoRR, 2017.

3. M. G. Carvalho, A. H. F. Laender, M. A. Gonçalves, and A. S. da Silva. Replica
identification using genetic programming. ACM, 2008.

4. H. Dalianis and E. Hovy. Aggregation in natural language generation. Springer,
1996.

5. G. Doddington. Automatic evaluation of machine translation quality using n-gram
co-occurrence statistics. In Proceedings of HLT, pages 138–145, 2002.

6. N. E. Fuchs. First-order reasoning for attempto controlled english. 2010.
7. D. Gerber and A.-C. N. Ngomo. Extracting multilingual natural-language patterns

for rdf predicates. In EKAW, pages 87–96, 2012.
8. D. Gerber and A.-C. Ngonga Ngomo. Bootstrapping the linked data web. In 1st

Workshop on Web Scale Knowledge Extraction @ ISWC 2011, 2011.
9. R. Isele, A. Jentzsch, and C. Bizer. Efficient Multidimensional Blocking for Link

Discovery without losing Recall. In WebDB, 2011.
10. H. Köpcke, A. Thor, and E. Rahm. Comparative evaluation of entity resolution

approaches with fever. Proc. VLDB Endow., 2(2):1574–1577, 2009.
11. J. Lehmann, D. Gerber, M. Morsey, and A.-C. Ngonga Ngomo. Defacto - deep fact

validation. In ISWC, 2012.
12. C. Mellish and X. Sun. The semantic web as a linguistic resource: opportunities

for natural language generation. 2006.
13. A.-C. N. Ngomo and S. Auer. Limes - a time-efficient approach for large-scale link

discovery on the web of data. In IJCAI, 2011.
14. A.-C. Ngonga Ngomo, J. Lehmann, S. Auer, and K. Höffner. Raven – active

learning of link specifications. In Proceedings of OM@ISWC, 2011.
15. A.-C. Ngonga Ngomo and K. Lyko. Eagle: Efficient active learning of link specifi-

cations using genetic programming. Springer Berlin Heidelberg, 2012.
16. H. Piccinini, M. A. Casanova, A. L. Furtado, and B. P. Nunes. Verbalization of

rdf triples with applications. In ISWC - Outrageous Ideas track, 2011.
17. A. Pohl. The polish interface for linked open data. In Proceedings of the ISWC

2010 Posters & Demonstrations Track, pages 165–168, 2011.
18. E. Reiter and R. Dale. Building natural language generation systems. Cambridge

University Press, New York, NY, USA, 2000.
19. M. Sherif, A.-C. Ngonga Ngomo, and J. Lehmann. WOMBAT - A Generalization

Approach for Automatic Link Discovery. Springer, 2017.
20. X. Sun and C. Mellish. An experiment on "free generation" from single rdf triples.

Association for Computational Linguistics, 2007.
21. P. Vougiouklis, H. Elsahar, L.-A. Kaffee, C. Gravier, F. Laforest, J. Hare, and

E. Simperl. Neural wikipedian: Generating textual summaries from knowledge
base triples. Journal of Web Semantics, 52-53:1 – 15, 2018.

22. G. Wilcock and K. Jokinen. Generating Responses and Explanations from RD-
F/XML and DAML+OIL, 2003.

	LSVS: Link Specification Verbalization and Summarization

