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ABSTRACT

An increasing number of heterogeneous datasets abiding by the
Linked Data paradigm is published everyday. Discovering links
between these datasets is thus central to achieving the vision be-
hind the Data Web. Declarative Link Discovery (LD) frameworks
rely on complex Link Specification (LS) to express the conditions
under which two resources should be linked. Complex LS com-
bine similarity measures with thresholds to determine whether
a given predicate holds between two resources. State of the art
LD frameworks rely mostly on string-based similarity measures
such as Levenshtein and Jaccard. However, string-based similar-
ity measures often fail to catch the similarity of resources with
phonetically similar property values when these property values
are represented using different string representation (e.g., names
and street labels). In this paper, we evaluate the impact of using
phonetics-based similarities in the process of LD.

Moreover, we evaluate the impact of phonetic-based similarity
measures on a state-of-the-art machine learning approach used
to generate LS. Our experiments suggest that the combination
of string-based and phonetic-based measures can improve the F-
measures achieved by LD frameworks on most datasets.
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1 INTRODUCTION

With the rapid increase in the number and heterogeneity of RDF
datasets comes the need to link such datasets. Declarative LD frame-
works depend on complex link specification (LS) to express the
conditions necessary for linking resources within these datasets.
For instance, state-of-the-art LD frameworks such as LIMEs [23]
and S1LK [15] adopt a property-based computation of links between
entities. To make sure that links can be computed with high accu-
racy, these frameworks provide a large number of similarity mea-
sures (e.g., Levenshtein, Jaccard for strings) for comparing property
values. One of the most common tasks of LD frameworks is to dis-
cover the same resources in the same or different dataset(s). Such
resources are commonly linked via owl: sameAs. The discovery of
such links is often dubbed matching. The input for a matching task
consists of a source knowledge base S, a target knowledge base T, a
similarity measure! ¢ and a threshold 0. Consequently, a key chal-
lenge arises when trying to discover matches between resources
in S and in T, which is the selection of appropriate similarity mea-
sures. While the selection process could be carried out manually,
finding the appropriate ¢ and 0 is often a tedious endeavor. This is
due amongst other to the wide range of measures available in the
literature (e.g., [12] categorize similarity measures into different
groups based on their characteristics while [17, 39] survey string
similarity search and joins).

Supporting the user during the process of finding appropriate
similarity measures and thresholds for matching tasks has been
studied in a large body of literature. Recently, many LD frameworks
have adopted machine learning approaches to support their user
in their search for adequate similarity measures via supervised,
unsupervised and even active learning techniques [14, 16, 25-28,
35, 38]. While phonetic similarity measures have been applied to
different challenges in information retrieval (e.g., the representation
of Short Message Services (SMS) [3, 32], microtext normalization in
social networks on the Web [10]), their use in LD (and especially
matching) has not been studied in the current literature.

In this paper, we study the impact of phonetic similarities on
the LD problem. In particular, we aim to answer the following
research question: Can the inclusion of phonetic similarities in LS
improve the F-measure of LD frameworks? To address this question,
we add phonetic similarities into a LD framework and use them to
measure the similarity between written resources, hence measuring
whether phonetic information can actually improve the results of
LD. Throughout our experiments, we limit ourselves to studying

!Note that, a distance measure can be used instead of a similarity measure.
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the effect of including phonetic-based similarities into LSs used by
declarative LD frameworks to express the conditions necessary for
matching resources from heterogeneous datasets. To the best of
our knowledge, this is the first work that actually quantifies the
effect of phonetic algorithms on LD.

The contributions of this paper can be summarized as follows:

e We extend a state-of-the-art LD framework with phonetic
similarities and measure the effect of this addition on the
overall F-measure achieved by said framework.

e To measure the effect of phonetic similarities, we evaluate
the F-measure achieve by the same state-of-the-art algorithm
in two configurations: (1) using only string similarities and
(2) using string and phonetic similarities.

The rest of this paper is structured as follows: First, we introduce
the preliminaries and background to this paper in Section 2. Then,
we give an overview of the phonetic similarities used in this paper
in Section 3. We then evaluate and discuss the impact of phonetic
similarity with respect to the F-Measure on benchmark datasets
in Section 4. After a brief review of related work in Section 5, we
conclude our work with some final remarks and future work in
Section 6.

2 PRELIMINARIES

In the following, we present the core of the formalization and
notation necessary to achieve the goal of our work. We first define
LD. Then, we present the syntax and the semantics of the grammar
that underlies LS.

2.1 Link Discovery

Let K be a finite RDF knowledge base. K is as a set of triples (s, p, 0) €
(RUB)XP x(RU LU B), where R is the set of all resources,
B is the set of all blank nodes, P is the set of all predicates and £
the set of all literals. The LD problem can be expressed as follows:
Given two sets of resources S and T (e.g., author and writer) and
a relation r (e.g., owl:sameAs), find all pairs (s,t) € S X T such
that r(s, t) holds. The result is produced as a set of links called a
mapping: Ms,t = {(si, 7, tj)|s; € S,t; € T}. Optionally, a similarity
score (sim € [0, 1]) calculated by an LD framework can be added to
the entries of mappings to express the framework’s confidence in a
computed link.

2.2 Link Specification

The goal of LD is to find the set {(s,t) € SX T : r(s, t)}. Declarative
LD frameworks define the conditions necessary to generate such
links using LS. Several grammars have been used for describing
LS in previous work [25, 35]. These grammars suppose that a LS
consists of two types of atomic components: similarity measures m,
which compare property values of input resources and operators op,
which can be used to combine these similarities to more complex
specifications. We define a similarity measure m as a function m :
SxT — [0,1]. We use mappings Ms,7 € S x T to collect the
results of the application of a similarity function to S X T or subsets
thereof. We define a filter as a function f(m, 6). We call a LS atomic
iff it contains exactly one filtering function. A complex LS can be
obtained by combining two specifications L; and Ly through an
operator op that allows the results of L1 and Ly to be fused. We use

the operators M, LI and \ as they are complete and frequently used
to define LS [35]. A graphical representation of a complex LS is
given in Figure 1.

Our definition of the semantics [[L]]5r of a LS L w.r.t. a mapping
M is given in Table 1. These semantics are similar to those used in
languages like SPARQL, i.e., they are defined extensionally through
the mappings they generate. The mapping [[L]] of a LS L with
respect to S X T contains the links that will be generated by L.

f(ggrams(:name, :name), 0.42) |

f(trigrams(:name, :description), 0.61) |

Figure 1: Example of complex LS. The filter nodes are rectangles while the operator nodes
are circles.

Table 1: Link Specification Syntax and Semantics.

LS [[LSTIm

f(m,0)  {(s,0)|(s,t) € M A m(s,t) = 0}

LinLy  {(s,0)I(s,t) € [[L1]lm A (s, 8) € [[L2]]m}
LiuLy  A{(s,0)I(st) € [[L1llm V (s, 1) € [[L2]]m}

Li\Ly  {(s,0)I(s 1) € [[La]lm A (s, 0) € [[L2]]m}

3 APPROACH

We introduced all ingredients necessary to extend LD frameworks
by adopting phonetic algorithms and to assess the effect of such
phonetic algorithms on the machine learning approaches used to
generate LS. Our work in this paper relies on: First, the phonetic
algorithms as a major part to extend our LS and LD framework.
Second, machine learning algorithms to generate either a hybrid
LS including both string and phonetic similarity measures or only
including phonetic algorithms.

3.1 Phonetic Algorithms

A phonetic algorithm transforms an input word into a phonetic
code which abstracts upon the pronunciation of said word in a
particular language. Special attention must be drawn to the approx-
imate nature of these codes, as their goal is to support the matching
of words with similar pronunciations. In this work, we utilize the
ten most popular state—of—the—art phonetic algorithms developed
for the English and German languages. Most of these algorithms
were originally designed with the end goal of matching person
names [13, 29] and were used as such in previous works [7, 11, 36].
In particular, [7, 11, 36] carry out purely comparative studies of
name-matching algorithms while considering phonetic algorithms
and other types of similarity metrics. Given that the phonetic phe-
nomena captured by phonetic algorithms occur in most words of
the language they were designed for, we hypothesize that phonetic
similarities can also be useful in matching other types of similarly
sounding words and improving the results of LD.

In this work, we evaluate Soundex, Metaphone, Double Meta-
phone, Daitch-Mokotoff soundex, New York State identification and
intelligence system (NYSIIS), Match rating approach, Caverphone,



Caverphone2, Cologne, and Refined soundex to improve the LD pro-
cess. In the rest of this section, we explain the algorithms behind the
Soundex, Metaphone, Cologne and Daitch-Mokotoff Soundex phonetic
similarities, the rest of the algorithms can be found in [10].

3.1.1  Soundex.

Soundex was developed by Robert C. Russell and Margaret King
Odell and patented in 1918 [20]. It is considered the first phonetic
algorithm in history. The algorithm mainly encodes the consonants
of an input word using numerical digits, but also encodes both con-
sonants and vowels in the first position using that same character.
The encoded word consists of a letter followed by three numerical
digits: the letter is the first letter of the word, and the digits encode
the remaining consonants. Consonants at a similar place of artic-
ulation share the same digit. For example, the labial consonants
B, F, P, andV are each encoded as the number 1. The generated
codes have a fixed length of four characters, attached with trailing
0’s when needed [34]. Soundex is the basis for many other modern
phonetic algorithms. These newer algorithms essentially try to ad-
dress its low precision. A commonly used example is the Refined
Soundex algorithm,? which is also tested in this work. This revised
version does not impose a length limit on the encoding and takes
vowels more into consideration for the encoding.

3.1.2  The Cologne phonetic.

This phonetic algorithm, also known as "die Kélner Phonetik",
was published in 1969 by Hans Joachim Postel [33]. It is inspired
by soundex phonetic algorithm but is optimized to match words
written in German. One of the core use case which triggered its
design was the need to perform similarity search between words.
For example, it made finding entries like "Meier" under different
spellings such as "Maier", "Mayer", or "Mayr" in name lists.

Like Soundex, the algorithm assigns a sequence of digits (pho-
netic code) to each word, so that identically sounding words have
the same code. As shown in Table 2, each letter of a word matches
with a digit between "0" and "8". To select the appropriate digit, we
need to use at most one adjacent letter as a context. Furthermore,
a set of rules must be applied to the first letter of words hence
the similar sounds are supposed to be assigned the same code. For
instance, the letters "W" and "V" are both encoded with the number
"3" (e.g. the phonetic code for "Wikipedia" is "3412" (W = 3,K = 4,
P=1,and D = 2)).

3.1.3  Metaphone.

Metaphone considers sets of letters to identify the phonetic vari-
ations and inconsistencies in words [30]. The algorithm initially
performs transformations using diphthongs such as converting
"MB" into "B" if at the end of the word, "SCH" into "K", "CIA"
into "X", and removes all the vowels in the encoded word. The
algorithm shows that the phonetic sound of vowels combined with
the consonants is considered instead of individual consonant or
vowel sounds. Metaphone imposes a length code from 4-letter code
to 12-letter code [4]. The metaphone code used in this paper is of
4-letter code length. In 2000, a new revised version of Metaphone,
dubbed Double Metaphone [31], was released with improvements

2Made available by A.S. Foundation since 2017 as an Apache commons codec. http:
//commons.apache.org/proper/commons-codec/ (accessed February 2019).

Table 2: Cologne phonetic encoding

Letter Context Code
AEL]LOUY 0
H -
B 1
P Not before H 1
D, T Not before C, S, Z 2
EV,W 3
P Before H 3
G,KQ 4
C In the initial sound before A, H, K, L, O, Q, R, U, X 4
C Before A, H, K, O, Q, U, X except after S, Z 4
X Not after C, K, Q 48
L 5
M, N 6
R 7
S.Z 8
C After S, Z 8
C In initial position except before A, H, K, L, O, Q,R, U, X 8
C Not before A, H, K, O, Q, U, X 8
DT Before C, S, Z 8
X After C,K, Q 8

such as the consideration of several spelling peculiarities from dif-
ferent languages, including English. Double Metaphone can provide
an output of two alternative encodings of the input word.

3.1.4  Daitch-Mokotoff Soundex.

The Daitch-Mokotoff Soundex is designed to improve the original
Soundex algorithm by increasing its precision when dealing with
Slavic and Yiddish surnames [21]. In contrast to the original Soundex,
it assigns code with lengths up to six characters. The algorithm
codes the initial character of the name and applies several rules
to encode multiple character n-grams as single units. For instance,
the code of Moskowitz in the original Soundex is M232, while it is
computed to be 645740 by Daitch-Mokotoff Soundex. This code is
the same as the code of the word Moskovitz, which has a different
Soundex code (i.e., M213).

3.2 Machine Learning for LD

Our machine learning evaluation relies on WoMBAT [35]. Wom-
BAT is based on generalization via an upward refinement operator
to traverse the space of LS. WoMBAT consists of two main steps.
First, it aims to derive initial atomic specifications A; that achieve
a target function (e.g., the F-measure when provided with training
data or a pseudo-F-measure when used in an unsupervised setting).
The second step of the approach combines these atomic specifi-
cations to a complex LS by using the operators M, LI and \. For
more details see [35]. We chose this algorithm because it achieves
state-of-the-art performance while being deterministic. Moreover,
it is the only positive-only learning algorithm for LD found in the
current literature.

4 EVALUATION

To evaluate the impact of phonetic-based similarities on the effec-
tiveness of LD, we conducted a set of experiments to answer the
following two research questions:

Q1: Is using phonetic algorithms in LD useful, i.e., can we achieve
a higher F-Measure using LSs that combine phonetic-based
similarities with string similarities than when using LSs
which rely exclusively on string similarities?
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Q2: Do phonetic-based similarities enhance the performance of
machine learning algorithms for generating LSs?

4.1 Experimental setup

To answer our research questions, we carried out four experiments
using the state-of-the-art LD framework Limes.> We configured
WomBAT as follows: We set the maximal depth of refinement to
2, minimum property coverage to 0.4, maximum iteration time 20
minutes, and the maximum refinement trees size to 1000. Our imple-
mentation of phonetic-based similarities are based on the Apache
commons codec package.* We ran all experiments using a 3.40 GHz
Intel Core i5 processor (4 cores) with 8 GB of memory. We used the F-
Measure as our evaluation metric. Our experiments were carried out
on benchmark datasets from [19], i.e., Amazon-GoogleProducts,
DBLP-ACM and ABT-BUY as well as on the OAEI datasets PersonT,
Person2 and Restaurants and on the Drugs dataset. > We used
these benchmark datasets because they are widely used both in the
Link Discovery and the entity matching literature (see [19, 22] and
are available as RDF. The datasets from [19] were scrapped from the
Web and curated manually (see refered paper for details). Hence,
they are representative for real-world data and allow measuring the
impact of phonetic similarity algorithms in real-world scenarios.
The other datasets are synthetic but were also not designed to suit
particular kinds of algorithms. While datasets designed to evaluate
phonetic algorithms do exist (see, e.g., [10]), they were not consid-
ered in our experiments because they are clearly biased towards
phonetic algorithms. Hence, the results we would achieve on such
datasets would not reflect the real performance of LD frameworks
enriched with phonetic algorithms on real datasets.

Experiment 1 was conducted to answer the Q1 while Experiment
2, 3and 4, were designed to answer Q2. In the following, we explain
each experiment in detail.

e Experiment 1: Atomic LS. This experiment consists of 16
tasks. In each task, we consider one atomic similarity mea-
sure (i.e., either a string similarity or a phonetic similarity
measure). For phonetic similarity measures, we evaluated the
10 most widely used phonetic algorithms (i.e., Soundex, Meta-
phone, Double Metaphone, Daitch-Mokotoff soundex, New York
State Identification and Intelligence System (NYSIIS), Match
rating approach, Caverphone, Caverphone2, Cologne and Re-
fined soundex). For evaluating string similarity measures, we
picked up the 6 most used string similarities in the recent
literature of LD [25, 35]. i.e., cosine, Overlap, Trigram, Qgram,
Levenstein and Jaccard.

o Experiment 2: Complex string-based LS. In this experi-
ment, we used the unsupervised version of the simple Wom-
BAT operator [35] to generate a set of LS to be used later in
the process of linking datasets. Each generated LS relies on
a combination of the string similarity measures Jaccard, Tri-
grams, Cosine, and Qgrams. We kept the same initial setting
as defined in WoMBAT [35]. Moreover, we limit the set of

3https://github.com/dice-group/LIMES (version 1.5.5, accessed February 2019)
“4http://commons.apache.org/proper/commons-codec/, (accessed February 2019).
Shttp://wwwi.wiwiss.fu-berlin.de/drugbank/sparql

properties to be included in the learning process of Wom-
BAT to include only non-numerical properties. i.e., {name,
authors, description, surname, title, given-name}.

e Experiment 3: Complex phonetic-based LS. We repeated
Experiment 2 but provided WoMBAT exclusively with the
10 phonetic measures aforementioned. Consequently, the
LS learned contained one or more phonetic similarity mea-
sures. We used exactly the same set of properties as listed in
Experiment 2.

e Experiment 4: Complex hybrid LS. In this last experi-
ment, we also used the unsupervised simple WoMBAT ap-
proach but allowed WoMBAT to compute LSs using both
string and phonetic-based similarity measures. We dubbed
the generated LS hybrid. For this experiment, we used all
the string similarity measures mentioned in Experiments 2
and all the phonetic algorithms in Experiment 3. We used the
same set of properties as in Experiment 1.

4.2 Results and Discussion

Answering Q1: We start our discussion by analyzing the results
from Experiment 1to answer Q; as follows:

Table 3 shows the results obtained from Experiment 1 where
the upper part of the table (colored in dark gray) provides the
results of the phonetic measures, while the results of the string
similarity measures are in the lower part of the table (colored in
light gray). The results clearly show that for the dataset Drugs, all
the phonetic algorithms achieved a higher F-Measure than string
similarity measures. The achieved F-Measure is up to 50% higher.
This result is due to a peculiarity of the Drugs dataset: Here, the
one property (i.e., name) is sufficient to characterize a drug. Given
that the names of drugs are short, the phonetic encoding of a name
is sufficient to represent a significant portion of the name. Hence,
matching these names phonetically is easy. Another remarkable
improvement over string measures is observed for the titles in
DBLP-ACM (see DBLP-ACM (Title)) in which algorithms such as
Caverphone2 and Match rating approach (Match) achieved up to
40% higher F-Measure, while for algorithms such as Refined soundex
(Rsoundex) and Cologne, the improvement of F-Measure reached up
to 50% for the same dataset. For Caverphone2, the length of encoded
string is a fixed length of 10 characters, while the length code in
Match rating approach (Match) is fixed to a length of 6. On the
other hand, the algorithms Refined soundex (Rsoundex) and Cologne
impose no limit on code length, however we fixed the length to 10
characters. Not surprisingly, the length of the encoded generated
by a phonetic similarity can impact the F-Measure, especially in
cases where the ratio between the length of encoded string and the
length of string is large.

The results obtained in Experiment 1 suggest that using phonetic
algorithms in LD has the potential of enhancing the effectiveness
of LD frameworks. It is important to mention that generated codes
by all the phonetic algorithms used have a fixed length and in most
cases they have length between 4 and 10 digits. The length of gener-
ated codes can notably affect the effectiveness of linking knowledge
graphs especially when the length of strings (e.g., name of persons
or cities) to be encoded phonetically is long. We conducted more
experiments to test different values of 8. The results with § = 0.9
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are shown in Table 4. Table 5 shows the result when 0 = 0.6.5. We
also computed Recall and Precision.”

Answering Qz: To answer Qy, we used the results obtained
from Experiments 2,3 & 4. In Table 6, we present the LSs computed
using only string-based measures relying on the simple version of
WomBAT algorithm. Table 7 shows the LSs which resulted from
using phonetic-based measures exclusively. The results in Table 6
and 7 show different behavior for the same datasets during LD
process leading to achieving different F-Measure. It is worth noting
that phonetic approaches which generate short encodings tend to
restrict the effectiveness of WoMBAT. This is clearly due to the
discrete value space to which these similarities map pairs of input
strings. For example, if the length of the code is 4 (like for Soundex),
there are exactly 5 similarity values of similarity that two strings can
be mapped to (i.e., 0, 0.25, 0.5, 0.75 and 1.0). While this accelerates the
convergence of WOMBAT, the very low granularity of the similarity
sores also reduces the number of LSs with different output, and
hence also the probability of achieving a high F-Measure. Overall,
our results suggest that using phonetic similarities alone in LD is
rarely useful, as they tend to perform poorly on complex datasets
(e.g., Amazon-GoogleProducts).

We hence also studied the combination of string-based and pho-
netic measures. Our results are presented in Table 8, which shows
the resulting LSs computed by WoMBAT. The results in Table 8 in-
dicate that using hybrid LS has a measurable (not always positive)
impact on the LSs computed by WoMBAT.

As shown in Figure 2, WoMBAT achieve a higher F-measure on
most of the 4 real datasets when using hybrid similarity measures.
For instance, the dataset Person1 achieves up to 11% higher F-
Measure over the F-Measure obtained from only using phonetic-
based LS. For the datasets ABT-BUY and Restaurants, the string-
based approach achieves a higher F-Measure.

We believe that the lower F-Measure for datasets ABT-BUY and
Restaurants in the case of using a hybrid-based approach is due
to: (1) the limited length of the encoding generated by some of
the phonetic algorithms, which limits the flexibility of WoMmBAT
algorithm and (2) the significantly larger search space of WomBAaT
(because of the combination of 4 string similarity measures and
10 phonetic algorithms). (2) is the most relevant here: Because
WoOMBAT is configured to only search a limited space, it ends up
not swapping out the phonetic similarity for a string similarity.
However, note that WoMBAT (especially the complete version of
the operator) is guaranteed to find any specification which can be
built from the atomic specifications it is provided. However, this
search does not always scale. We hence aimed to report the results
of the approach with a realistic configuration for WoMBAT. In our
larger-scale experiments (which will roughly 6 months to run), we
will allow WoMBAT to explore significantly larger portions of the
search space in a supervised setting, run a ten-fold cross-validation
and characterize when the approach discards phonetic similarities

These two points clearly show the limitations brought about
by using phonetic similarities in an unsupervised setting as in our
experiments. We will address these limitations in future works by
devising a customized machine learning algorithm that can handle

®More results with varying values of 6 can be accessed at https://bit.ly/2DUWTUL.
7 All results where Recall and Precision are reported at https://bit.ly/2DUWTUL.

phonetic algorithms with different lengths of encoded words. Sec-
ond, we will study other exploration strategies that allow relaxing
the termination condition of the algorithm, such as the depth of
generated LS.

Table 3: F-Measure results achieved when applying string and phonetic similarity mea-
sures with 0 = 1.0 (perfect matches). The F-measure achieved by a phonetic similarity
being in bold signifies that this F-measure is superior to that achieved by string-based
measure. The same holds vice-versa.
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Metaphone 0.02 009 0.03 0.72 0.13 008 070 061 0.03 0.03
DoublMetaphone  0.02 0.06 0.03 0.64 0.12 008 064 053 003 0.03
Soundex 0.02 003 0.02 056 0.11 006 050 055 0.03 0.02
RSoundex 075 068 047 099 087 046 076 0.57 0.88 0.90
Cologne 075 0.69 046 097 087 057 068 052 085 0.75
Nysiis 003 014 0.03 0.79 0.14 009 076 0.66 0.03 0.03
Daitch 0.07 016 0.03 093 031 016 051 047 0.09 0.08
Match 036 045 0.20 098 0.70 037 074 059 044 033
Cosine 083 040 058 1.00 092 059 078 079 1.00 0.00
Overlap 083 040 058 1.00 092 059 078 079 1.00 0.00
Trigram 083 040 058 1.00 092 059 078 079 1.00 0.00
Jaccard 082 039 044 1.00 092 057 078 079 1.00 0.00
Levenshtein 082 040 043 1.00 092 044 078 079 1.00 0.00
Qgram 083 040 044 1.00 091 054 067 026 1.00 0.00
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Table 5: F-Measure results of applying string and phonetic similarity measures with 6 =
0.6.
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Figure 2: Phonetic-based LS vs string-based LS vs hybrid LS with respect to the F-Measure.

5 RELATED WORK

We believe that this is the first work that aims to quantify the effect
of phonetic algorithms on LD and to generate hybrid LS using a
machine learning approach. Related work comes from two research
areas: Declarative LD and phonetic similarities.

5.1 Declarative Link Discovery

LD frameworks rely on complex LS to express the conditions neces-
sary for linking resources within RDF datasets. In the state-of-the-
art LD frameworks such as LimEs [23] and SiLk [15], a property-
based computation of links between entities has been adopted. Such
frameworks help their users to manually write LS and execute it
against source-target resources. In recent years, the problem of
using machine learning for the automatic generation of accurate
LS has been addressed by most of the LD frameworks. For example,
the SiLx framework [15] implements a batch learning approach for
the discovery LS, based on genetic programming, which is similar
to the approach presented in [6]. In LIMEs framework, the active

learning RAVEN algorithm [24] is implemented to treat the dis-
covery of specifications as a classification problem. In RAVEN, the
discovery of LS is done by first finding class and property mappings
between knowledge bases automatically. It then uses these map-
pings to calculate linear and boolean classifiers that can be used
as LS. A related approach that has the goal of detecting the dis-
criminative properties for linking is presented by [37]. In addition,
several machine-learning approaches have been developed to learn
LS as classifiers for record linkage. For example, machine-learning
frameworks such as FEBRL [8] and MARLIN [5] rely on models
such as Support Vector Machines [9, 18], decision trees [40] and
rule mining [1] to detect classifiers for record linkage.

In most LD approaches for learning LS, supervised machine
learning methods were developed. One of the first approaches to
target this goal was presented in [14]. Although this approach
achieves a high F-Measure, it also needs huge amounts of training
data. Whereas active learning such as EAGLE [25], which is based on
genetic programming, generates highly accurate LSs while reducing
the annotation burden for the user. Hence, methods based on active
learning have also been developed (see, e.g., [16, 27]). In general,
these approaches assume some knowledge about the type of links
to be discovered. For example, unsupervised approaches such as
Paris [38] target the discovery of the owl : sameAs links exclusively.
Modern unsupervised approaches to learn LS propose techniques
based on probabilistic models [38] and genetic programming [26,
28], which all suppose that a 1-to-1 mapping is to be discovered.
Recently, the WoMBAT algorithm [35] has implemented a machine
leaning algorithm for automatic LS finding by using generalization
via an upward refinement operator.

5.2 Phonetic Similarities

Phonetic similarities have been traditionally used for phonetic
string matching in information retrieval. For instance, the work [41]
explains the parallels between information retrieval and phonetic
matching. The authors compare different codes and propose new
techniques for text representation to be used on the information
retrieval task. Moreover, phonetic algorithms play a central role in
mobile applications. For instance, the works [3, 32]) use phonetic-
based representations for SMS message. In recent work such as [10],
phonetic algorithms have been considered to tackle the problem of
microtext normalization.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present first results on the impact of using phonetic-
based similarity measures in LD. Our evaluation suggest that the
combination of phonetic similarities and string similarites has the
potential to improve the performance of LD approaches, especially
on real datasets. In particular, our results suggest that simple LS
based on phonetic similarity measures can achieve an up to 50%
higher F-Measure. We consider these results as a promising mile-
stone toward effective LD tools based on phonetic similarity mea-
sures. However, achieving conclusive results allowing to character-
ize datasets upon which phonetic similarities should be used will
demand a significantly larger number of experiments to be carried
out. This research question will be addressed in future works.



Table 6: String-b

d Link-Specification (LS) generated by WomBsarT algorithm with respective F-Measure (F).

Datasets F LS

Personl 0.850 AND(AND(jaccard(x.surname,y.surname)|1.0, cosine(x.surname,y.surname)|1.0)|0.0,qgrams(x.given-name,y.given-name)|1.0)
Person2 0.480 OR(AND(jaccard(x.surname,y.surname)|1.0, cosine(x.surname,y.surname)|1.0)|0.0,jaccard(x.given-name,y.given-name)|1.0)
Restaurants 0.770 OR(AND(jaccard(x.name,y.name)|0.48,cosine (x.name,y.name)|0.53)|0.0,cosine(x.name,y.name)|0.53)

DBLP-ACM 0.880 MINUS(qgrams(x.title,y.title)|0.43,cosine (x.authors,y.title)|0.48)

ABT-BUY 0.400 OR(AND(jaccard(x.name,y.name)|0.43,cosine (x.name,y.name)|0.6)|0.0,cosine(x.name,y.name)|0.6)

Drugs 0.900 OR(qgrams(x.name,y.name)|0.66,jaccard(x.name,y.name)|0.48)

Amazon-GoogleProducts 0.420

OR(cosine(x.title,y.name)|0.53,cosine(x.description,y.description)|0.43)

Table 7: Phonetic-based LS generated using WomBAT algorithm with respect to F-Measure (F) and Link-Specification (LS).

Datasets F LS

Personl 0.740 OR(AND(doublemeta(x.surname,y.surname)|1.0,caverphone2 (x.surname,y.surname) |1.0)|0.0,matchrating(x.surname,y.surname)|1.0)
Person2 0.500 OR(doublemeta(x.surname,y.surname)|1.0,soundex (x.surname,y.surname)|1.0)

Restaurants 0.300 AND(doublemeta(x.name,y.name)|0.78,soundex(x.name,y.name)|0.73)

DBLP-ACM 0.900 cologne(x.title,y.title)|1.0

ABT-BUY 0.350 OR(cologne(x.description,y.name)|0.48, matchrating(x.name,y.name)|1.0)

Drugs 1.000 AND(AND(doublemeta(x.name,y.name)|1.0,caverphone?2 (x.name,y.name)|1.0)[0.0,nysiis(x.name,y.name)|1.0)

Amazon-GoogleProducts 0.006

MINUS(matchrating(x.description,y.name)|0.66,soundex (x.title,y.name)|1.0)

Table 8: Hybrid LS generated using WoMBAT algorithm with respect to F-Measure (F).

Datasets F LS

Personl 0.870 AND(jaccard(x.surname,y.surname)|1.0,soundex(x.given-name,y.given-name)|1.0)

Person2 0.540 OR(AND(jaccard(x.surname,y.surname)|1.0,doublemeta(x.surname,y. surname)|1.0)|0.0,soundex(x.surname,y.surname)|1.0)
Restaurants 0.460 OR(caverphonel(x.name,y.name)|0.81,cosine(x.name,y.name)|0.53)

DBLP-ACM 0.910 OR(refinedsoundex(x.title,y.title)|1.0,cologne(x.title,y.title)|1.0)

ABT-BUY 0.290 OR(jaccard(x.name,y.name)|0.43,cologne(x.description,y.name)|0.48)

Drugs 1.000 AND(match(x.name,y.name)|1.0,caverphone2(x.name,y.name)|1.0)

Amazon-GoogleProducts 0.450 qgrams(x.title,y.name)|0.43

We plan to develop machine learning techniques that consider
the nature of phonetic algorithms (e.g., the length of code represents
the encoded terms) in a way that machine learning algorithms
can decide to use either phonetic similarity measures or string
similarities based on the given dataset and the length of the encoded
terms . We will also study the impact of phonetic algorithms in LD
with respect to run times. The explainability of generated hybrid
LS in terms of explainable Al will be ensured by extending the
LS explanation approach introduced in [2] to deal with phonetic
similarities.

ACKNOWLEDGMENTS

This work has been supported by the BMVI projects LIMBO (GA no.

19F2029C) and OPAL( no. 19F2028A), Eurostars Project SAGE (GA
no. E!10882) as well as the H2020 project SLIPO (GA no. 731581).

REFERENCES

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. 1993. Mining association
rules between sets of items in large databases. SIGMOD Rec. 22 (June 1993),
207-216. Issue 2. https://doi.org/10.1145/170036.170072

[2] A F Ahmed, Mohamed Ahmed Sherif, and Axel-Cyrille Ngonga Ngomo. 2019.
LSVS: Link Specification Verbalization and Summarization. In 24th International
Conference on Applications of Natural Language to Information Systems (NLDB
2019) (Lecture Notes in Computer Science).

[3] Aw AiTi, Zhang Min, Yeo PohKhim, Fan ZhenZhen, and Su Jian. 2005. Input
normalization for an english-to-chinese sms translation system. In The Tenth
Machine Translation Summit.

[4] Arup Kumar Bhattacharjee, Atanu Mallick, Arnab Dey, and Sananda Bandyopad-
hyay. 2013. Enhanced Technique for Data Cleaning in Text File. International
Journal of Computer Science Issues (IJCSI) 10, 5 (2013), 229.

[5] Mikhail Bilenko and Raymond J. Mooney. 2003. Adaptive Duplicate Detection
Using Learnable String Similarity Measures. In KDD. 39-48.

[6] Moisés G. Carvalho, Albero H. F. Laender, Marcos André Gongalves, and Alti-
gran S. da Silva. 2008. Replica identification using genetic programming. ACM.

[7] Peter Christen. 2006. A comparison of personal name matching: Techniques and
practical issues. In Sixth IEEE International Conference on Data Mining-Workshops
(ICDMW"06). IEEE, 290-294.

[8] Peter Christen. 2008. Febrl -: an open source data cleaning, deduplication and
record linkage system with a graphical user interface. In KDD ’08. 1065-1068.


https://doi.org/10.1145/170036.170072

=

[10]

[11]

[12]
[13]

[14

[15]

[16

[17]

(18

[19

[20]
[21

[22

[23

[24

[25

[26]

[27

[28

[29]

[30]

(31

[32]

[33

[34]

[35]

[36

Nello Cristianini and Elisa Ricci. 2008. Support Vector Machines. In Encyclopedia
of Algorithms.

Yerai Doval, Manuel Vilares, and Jests Vilares. 2018. On the performance of
phonetic algorithms in microtext normalization. Expert Systems with Applications
113 (2018), 213 - 222. https://doi.org/10.1016/j.eswa.2018.07.016

Carmen Galvez. 2006. Identificacion de nombres personales por medio de sistemas
de codificacion fonética. Encontros Bibli: revista eletronica de biblioteconomia e
ciéncia da informagao 22 (2006), 105-116.

Wael H Gomaa and Aly A Fahmy. 2013. A survey of text similarity approaches.
International Journal of Computer Applications 68, 13 (2013), 13-18.

David Holmes and M Catherine McCabe. 2002. Improving precision and recall
for soundex retrieval. In Proceedings. International Conference on Information
Technology: Coding and Computing. IEEE, 22-26.

Robert Isele and Christian Bizer. 2011. Learning Linkage Rules using Genetic
Programming. In Sixth International Ontology Matching Workshop.

R. Isele, A. Jentzsch, and C. Bizer. 2011. Efficient Multidimensional Blocking for
Link Discovery without losing Recall. In WebDB.

Robert Isele, Anja Jentzsch, and Christian Bizer. 2012. Active Learning of Expres-
sive Linkage Rules for the Web of Data. In Web Engineering, Marco Brambilla,
Takehiro Tokuda, and Robert Tolksdorf (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 411-418.

Lianyin Jia, Lulu Zhang, Guoxian Yu, Jinguo You, Jiaman Ding, and Mengjuan
Li. 2018. A Survey on Set Similarity Search and Join. International Journal of
Performability Engineering 14, 2 (2018).

S. Sathiya Keerthi and Chih-Jen Lin. 2003. Asymptotic behaviors of support
vector machines with Gaussian kernel. Neural Comput. 15 (July 2003), 1667-1689.
Issue 7. https://doi.org/10.1162/089976603321891855

Hanna Képcke, Andreas Thor, and Erhard Rahm. 2009. Comparative evaluation
of entity resolution approaches with FEVER. Proc. VLDB Endow. 2, 2 (2009),
1574-1577.

Odell M. and Russell R.C. 1918. The Soundex coding system. (1918).

Gary Mokotoff. 2007. Soundexing and genealogy. URL: http://www. avotaynu.
com/soundex. html (2007).

Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and Erhard
Rahm. 2017. A survey of current link discovery frameworks. Semantic Web 8, 3
(2017), 419-436.

Axel-Cyrille Ngonga Ngomo and Séren Auer. 2011. LIMES - A Time-Efficient
Approach for Large-Scale Link Discovery on the Web of Data. In IJCAL
Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Séren Auer, and Konrad Hoffner.
2011. RAVEN: Active Learning of Link Specifications. In Proceedings of the
Ontology Matching Workshop (co-located with ISWC). Springer.  http://jens-
lehmann.org/files/2011/raven.pdf

Axel-Cyrille Ngonga Ngomo and Klaus Lyko. 2012. EAGLE: Efficient Active
Learning of Link Specifications Using Genetic Programming. Springer Berlin
Heidelberg.

Axel-Cyrille Ngonga Ngomo and Klaus Lyko. 2013. Unsupervised learning of link
specifications: deterministic vs. non-deterministic. In Proceedings of the Ontology
Matching Workshop.

Axel-Cyrille Ngonga Ngomo, Klaus Lyko, and Victor Christen. 2013. COALA
- Correlation-Aware Active Learning of Link Specifications. In Proceedings of
ESWC. Springer.

Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta. 2012. Unsupervised learning
of link discovery configuration. In The Semantic Web: Research and Applications.
Springer, 119-133.

Vimal P Parmar and CK Kumbharana. 2014. Study Existing Various Phonetic
Algorithms and Designing and Development of a working model for the New De-
veloped Algorithm and Comparison by implementing it with Existing Algorithm
(s). International Journal of Computer Applications 98, 19 (2014), 45-49.
Lawrence Philips. 1990. Hanging on the Metaphone. Computer Language Maga-
zine 7, 12 (December 1990), 39-44. Accessible at http://www.cuj.com/documents/
$=8038/cuj0006philips/.

Lawrence Philips. 2000. The double metaphone search algorithm. C/C++ users
Jjournal 18, 6 (2000), 38-43.

David Pinto, Darnes Vilarino, Yuridiana Aleman, Helena Gémez, and Nahun
Loya. 2012. The soundex phonetic algorithm revisited for sms-based information
retrieval. In IT Spanish Conference on Information Retrieval CERL

Hans Joachim Postel. 1969. Die K6lner Phonetik. Ein Verfahren zur Identifizierung
von Personennamen auf der Grundlage der Gestaltanalyse. IBM-Nachrichten 19
(1969), 925-931.

Rima Shah and Dheeraj Kumar Singh. 2014. Analysis and comparative study on
phonetic matching techniques. International Journal of Computer Applications
87,9 (2014).

Mohamed Ahmed Sherif, Axel-Cyrille Ngonga Ngomo, and Jens Lehmann. 2017.
WOMBAT - A Generalization Approach for Automatic Link Discovery. Springer.
Chakkrit Snae. 2007. A comparison and analysis of name matching algorithms.
International Journal of Applied Science. Engineering and Technology 4, 1 (2007),
252-257.

[37] Dezhao Song and Jeff Heflin. 2011. Automatically Generating Data Linkages

Using a Domain-Independent Candidate Selection Approach. Springer Berlin
Heidelberg.

Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. 2011. PARIS: Prob-
abilistic Alignment of Relations, Instances, and Schema. PVLDB 5, 3 (2011),
157-168.

Minghe Yu, Guoliang Li, Dong Deng, and Jianhua Feng. 2016. String similarity
search and join: a survey. Frontiers of Computer Science 10, 3 (2016), 399-417.

[40] Yufei Yuan and Michael J. Shaw. 1995. Induction of fuzzy decision trees. Fuzzy

Sets Syst. 69 (January 1995), 125-139. Issue 2. https://doi.org/10.1016/0165-
0114(94)00229-Z

[41] Justin Zobel and Philip Dart. 1996. Phonetic string matching: Lessons from

information retrieval. In Proceedings of the 19th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 166-172.


https://doi.org/10.1016/j.eswa.2018.07.016
https://doi.org/10.1162/089976603321891855
http://jens-lehmann.org/files/2011/raven.pdf
http://jens-lehmann.org/files/2011/raven.pdf
http://www.cuj.com/documents/s=8038/cuj0006philips/
http://www.cuj.com/documents/s=8038/cuj0006philips/
https://doi.org/10.1016/0165-0114(94)00229-Z
https://doi.org/10.1016/0165-0114(94)00229-Z

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Link Discovery
	2.2 Link Specification

	3 Approach
	3.1 Phonetic Algorithms
	3.2 Machine Learning for LD

	4 Evaluation
	4.1 Experimental setup
	4.2 Results and Discussion

	5 Related work
	5.1 Declarative Link Discovery
	5.2 Phonetic Similarities

	6 Conclusions and Future Work
	References

