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Abstract

Link discovery is central to the integration and use of data across RDF knowledge bases. Geospatial information is increasingly
represented according to the Linked Data principles. Resources within such datasets are described by means of vector geometry,
where link discovery approaches have to deal with millions of point sets consisting of billions of points. In this paper, we study the
effect of simplifying the resources’ geometries on runtime and F-measure of link discovery approaches. In particular, we evaluate
link discovery approaches for computing the point-set distances as well as the topological relations among RDF resources with
geospatial representation. The results obtained on two different real datasets suggest that most geospatial link discovery approaches
achieve up to 67× speedup using simplification, while the average loss in their F-measure is less than 15%. Our implementation is
open-source and available at http://github.com/dice-group/limes.
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1. Introduction

With the increasing growth of Linked Data in geospatial resources over recent years comes the need to develop
highly scalable approaches for discovering links among such resources. As pointed out in previous works [1], only
7.1% of the links between resources connect geospatial entities. This is due to two main factors: 1) The large number
of resources with geospatial representation available on the Linked Open Data (LOD), which require scalable algo-
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rithms for computing links between geospatial resources. For example, LinkedGeoData1 contains more than 20 billion
triples that describe millions of geospatial entities. 2) The vector representation of geospatial resources demands the
computation of particular relations, i.e., distance and topological relations between geospatial resources. For example,
finding the near by point of interest within a given radius.

According to the Linked Data principles,2 the provision of links between knowledge bases in RDF3 is of central
importance for numerous semantic web tasks. However, the link discovery process become more challenging specially
when dealing with geospatial resources in real-time application including structured machine learning [2], question
Answering [3] and data fusion [4]. In such real-time application, the provision of explicit geospatial relations among
resources is of central importance to achieving scalability.

Only a few sate-of-the-art approaches for Link Discovery (LD) have been developed to deal with geospatial data
represented in RDF. For example, [1] uses the Hausdorff distance to compute the distance between geospatial entities.
A survey of 10 point-set distance measures for LD is provided in [5]. Based on the MultiBlock, Silk [6] computes topo-
logical relations according to the DE-9IM standard. Recently, Radon [7] has provided an indexing method combined
with space tiling that enables the efficient computation of topological relations between geospatial resources.

To the best of our knowledge, no previous work has studied the problem of discovery of geospatial relations among
a simplified version of vector representations of geospatial resources. In this paper, we study the effect of applying
two line-simplification algorithms as a preprocessing step prior to the discovery of geospatial relations among such
resources. In particular, we consider the effect of simplification upon both efficiency of discovered relations (i.e.,
F-measure) and scalability of the LD approaches (i.e., runtime). The contributions of this paper are as follows:

• We present and formalize the problem of LD for geospatial resources as well as the line simplification problem.
• We study the effect of simplifying the geospatial representation of resources upon the quality of discovered

relations.
• We study the speedup of various LD approaches when dealing with RDF resources with simplified geometries.
• We present an evaluation of two line-simplification approaches for different LD approaches and show that while

such approaches only lose on overage 15% F-measure on the original data, they gain up to 67× speedup when
applied to the simplified data.

The rest of this paper is structured as follows. We begin by introducing the Link Discovery problem over RDF
knowledge bases in Section 2, where we formally define the topological and point-set distance functions. Then, we
describe the line simplification problem and the two algorithms we used in this work in Section 3. In Section 4, we
present our evaluation and results. We then in Section 5 discuss the state-of-the-art related work. Finally, we conclude
our paper and present some future work in Section 6.

2. Link Discovery

Let K be a finite RDF knowledge base. K can be regarded as a set of triples (s, p, o) ∈ (R ∪ B) × P × (R ∪L ∪ B),
where R is the set of all resources, B is the set of all blank nodes, P the set of all predicates andL the set of all literals.

The Link Discovery (LD) problem can be expressed as follows: Given two sets of resources S and T (for example
hotels and gas stations) and a relation r (e.g., :nearBy), find all pairs (s, t) ∈ S × T such that r(s, t) holds. The
result is produced as a set of links called a mapping: MS ,T = {(si, r, t j)|si ∈ S , t j ∈ T }. Optionally a similarity score
(sim[0, 1]) computed by an LD tool can be added to the entries of mappings to express assurance of a computed link.
Finding solutions for the LD problem is challenging due to the typically large volume and semantic heterogeneity of
datasets making it difficult to meet main requirements such as high effectiveness (i.e maximize a fitness function such
as F-measure) and high efficiency (i.e., minimize runtime).

1 http://linkedgeodata.org
2 https://www.w3.org/DesignIssues/LinkedData.html
3 Resource Description Framework, see https://www.w3.org/RDF/.
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2.1. Link Discovery of Topological Relations

The Dimensionally Extended nine-Intersection Model (DE-9IM) [8] is a topological model and a standard used
to describe the spatial relations of two geometries in two-dimensional space. Since the spatial relations expressed by
DE-9IM are topological, they are invariant to rotation, translation and scaling transformations [9]. The DE-9IM model
is based on a 3 × 3 intersection matrix with the form:

DE9IM(g1, g2) =

 dim(I(g1) ∩ I(g2)) dim(I(g1) ∩ B(g2)) dim(I(g1) ∩ E(g2))
dim(B(g1) ∩ I(g2)) dim(B(g1) ∩ B(g2)) dim(B(g1) ∩ E(g2))
dim(E(g1) ∩ I(g2)) dim(E(g1) ∩ B(g2)) dim(E(g1) ∩ E(g2))

 (1)

where dim is the maximum number of dimensions of the intersection ∩ of the interior(I), boundary(B), or
exterior(E) of the two geometries g1 and g2. The domain of dim is {−1, 0, 1, 2}, where −1 indicates no intersec-
tion, 0 stands for an intersection that results in a set of one or more points, 1 indicates an intersection made up of lines
and 2 stands for an intersection that results in an area. A simplified binary version of dim(x) with the binary domain
{true, f alse} is obtained using the Boolean function β(dim(I(g)) = f alse iff dim(I(g)) = −1 and true otherwise. There
is only a subset of the topological relations obtainable through DE-9IM that reflects the semantics of the English lan-
guage [8] [10] including equals, within, contains, disjoint, touches, meets, covers, coveredBy,

intersects, crosses and overlaps.
For discovering topological relations in RDF datasets, the Silk LD framework proposed an implementation based

on the multiBlocking technique [6]. Recently, the Limes LD framework proposed the Radon approach [7] for the
same task. We base our evaluation of topological relations only on Radon because it was proven4 to be complete and
efficient.

2.2. Link Discovery of Point-Sets Distance Measures

The input to a point-set distance measure is two sets of points, we denote gs = (s1, . . . , sn) as a sequence of points
to describe the source resource geometry gs, and gt = (t1, . . . , tm) as sequence of points to describe the target resource
geometry gt. We assume (n >= m), where n resp. m stands for the number of distinct points in the geometry of gs resp.
gt. A point pi on the surface of the planet is entirely described by two values: its latitude lat(pi) = ϕi and its longitude
lon(pi) = λi. We denote points pi as pairs (ϕi, λi).

The state of the art of link discovery includes many measures for computing the distance between the vector de-
scriptions of RDF resources. We base our work in this paper on the Limes implementation of the Hausdorff, mean, min,
link and sumOfMin point-set distances. Next, we will introduce both the Hausdorff and the mean distance functions
as two examples of such measures. A detailed survey on state-of-the-art approaches for point-set distance measures
for link discovery is available at [5].

2.2.1. Hausdorff Point-Set Distance
The Hausdorff distance [11] is defined as the maximum of the minimum pairwise distances between the two sets

of points of source resp. target geometries. Formally, DHausdor f f (gs, gt) = maxsi∈gs

{
mint j∈gt

{
δ(si, t j)

}}
. where δ(si, t j)

is the minimum distance between two points, si and t j. δ(si, t j) can be accurately computed based on the great elliptic
curve distance [12], but because of its high time complexity, most LD approaches depend on the orthodromic distance
for computing δ(si, t j). The orthodromic distance is formally defined as:

δ(si, t j) = R cos−1 sin(ϕsi ) sin(ϕt j ) + cos(ϕsi ) cos(ϕt j ) cos(λsi − λt j ) (2)

where R = 6371 km is the earth’s radius, assuming the planet to be a perfect sphere.

4 see [7] for the full poof.
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2.2.2. Mean Point-Set Distance
The mean distance function [13] is one of the most efficient distance measures for point sets with complexity O(n).

First, a mean point is computed for each of the source and target point sets. Then, the distance between the two mean
points is computed by using the orthodromic distance (see. Equation 2). Formally, the mean distance between the two
geometries gs, gt is defined as: Dmean(gs, gt) = δ

(
1
n
∑

si∈gs
si,

1
m

∑
t j∈gt

t j

)
, where n and m are the sizes of gs resp. gt.

3. Line Simplification

Line simplification (in some literature dubbed curve simplification) has been adopted in many fields including com-
puter vision, cartography and computer graphics. The input to a line simplification algorithm is a polygonized curve
with n vertices composed of line segments (also called a Polyline in some contexts). The goal of a line simplification
algorithm is to find an approximating polygonized curve with m vertices as output, where m < n. A closely related
problem is to take a line with n vertices and approximate it within a defined error tolerance ε > 0. We introduce in this
work only the Douglas-Peucker and VisvalingamWhyatt algorithms as case studies due to their popularity. A detailed
review of line simplification algorithms can be found in this survey [14].

3.1. The Douglas-Peucker Algorithm

The Douglas-Peucker algorithm [15] is the most widely used high-quality curve simplification algorithm. It was
independently invented by many authors. At each iteration, the Douglas-Peucker algorithm tries to approximate a
sequence of points by a line segment from the first point to the last point. As shown in Algorithm 1, the algorithm
starts by the two end points of the input polyline. Then, it finds the point with farthest distance d from the line
segment formed by the current start- and end-points. If d is below the simplification factor dmax, the approximation
is accepted, otherwise the algorithm is recursively applied to the two polylines before and after the chosen point. The
Douglas-Peucker algorithm, though not optimal, has generally been invented to generate the highest subjective- and
objective-quality approximations when compared with many other heuristic algorithms. Its best case time cost is Ω(n),
its worst case cost is O(mn), and its expected time cost is about Θ(n log m). The worst case behaviour can be improved,
with some sacrifice in the best case behaviour, using a Θ(n log) algorithm employing convex hulls [14].

Algorithm 1: Douglas-Peucker-Algorithm
Result: return ResultList[]

1 function DouglasPeucker(PointList[], epsilon);
2 dmax = 0;
3 index = 0;
4 for i = 2 to (length(PointList) - 1) do
5 d = PerpendicularDistance(PointList[i], Line(PointList[1], PointList[end]));
6 if d > dmax then
7 index = i ;
8 dmax = d;
9 end

10 end
11 if dmax > epsilon then
12 recResults1[] = DouglasPeucker(PointList[1...index], epsilon);
13 recResults2[] = DouglasPeucker(PointList[index...end], epsilon);
14 ResultList [] = recResults1[1...end-1] recResults2[1...end];
15 else
16 ResultList[] = PointList[1], PointList[end];
17 end
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3.2. The Visvalingam-Whyatt Algorithm

Visvalingam-Whyatt algorithm [16] (see Algorithm 2) uses the concept of effective area for progressive simplifi-
cation of a line by point elimination. The basic idea behind this algorithm is to iteratively drop the less characteristic
points. i.e., the ones which produce the least areal displacement from the current part-simplified line. The algorithm
filters points on lines by a process of elimination rather than selection, while Douglas-Peucker Algorithm keeps the
points on curves by selecting points rather than eliminating them. To delete points, the Visvalingam-Whyatt iteratively
computes the area of all triangles formed by each three successive points. If the area of the smallest triangle is smaller
than a threshold (area-tolerance), then its middle point is deleted.

Algorithm 2: Visvalingam-Whyatt Algorithm
Result: L

1 Input line L as a list of points, separate list R of ranked points;
2 Compute the effective area of each point on the line;
3 Delete all points with zero area and store them in a separate list;
4 for do
5 Find the point with least effective area and call it current point;
6 Delete the current point from the original list L and add it to the ranked list R with its effective area;
7 Recalculate the effective area of the two adjacent points;
8 if Size of L = 2 then
9 Terminate

10 end
11 end

4. Evaluation

We have now prepared all ingredients needed for our study. We study the impact of line simplification algorithms on
the main requirements (i.e., efficiency and runtime) of link discovery over RDF knowledge bases containing geospa-
tial entities. We evaluate the effect of simplification of geometries on the so-far used approaches in the geospatial
link discovery: point-sets measures (e.g. Hausdorff and mean measures) and topological relations (e.g. contains and
overlaps relations).

We aimed to answer four questions with our experimental evaluation:

Q1 How much performance (i.e., F-measure) each of the geospatial LD approaches loses, when to deal with the
simplified geometries vs. when to deal with the original ones?

Q2 How well each of the geospatial LD approaches scale (i.e., runtime speedup), and when to deal with the simpli-
fied geometries?

Q3 Which relation is the most/least affected by the simplification process?
Q4 What is the run time cost of simplification?

4.1. Experimental Setup

Hardware. All the experiments were carried out on the OCuLUS cluster running OpenJDK 64-Bit 1.8.0 161 on
Ubuntu 16.04.3 LTS. OCuLUS is a high performance machine located at the computer science institute in the main
campus of university Paderborn. It consists of 9.920 processor cores 2.6 GHz Intel Xeon ”Sandy Bridge” with main
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memory of capacity 45 TB. For our created jobs, we assigned 16 CPUs and 200 GB of RAM for each job with time
out of 4 hours.

Limes. For our experiments, we selected the LD framework Limes [17] to study the impact of the line simplification
algorithms on the discovery of links between RDF resources with geospatial representation. We selected Limes as
it implements the time-efficient approach Radon [7] for the discovery of topological relations and also because it
implements various point-set distance functions [5].

Datasets . We evaluated our approach using two real-world datasets. (1) NUTS 5 is manually curated by the Eurostat
group of the European Commission. NUTS contains a detailed hierarchical description of whole European regions. (2)
CORINE Land Cover is an activity of the European Environment Agency that collects data regarding the land cover
of European countries. CORINE Land Cover contains 44 sub-datasets ranging in size from 240 resources to 248, 242
resources.6 We merged all CORINE Land Cover sub-datasets into one big dataset of 2, 209, 538 that we dubbed CLC.
As Limes can only read geometries in well known text (WKT) format, we adopted the same preprocessing technique
proposed by [7]. In particular, we preprocessed NUTS and CLC by converting the ngeo:posList serialization into
the WKT, and lines larger than 64 KB were trimmed.

4.2. F-measure Analysis

For evaluating F-measure, we conducted four sets of experiments as follows:
In the first set of experiments, we used the Radon approach with the same setting in [7] for discovering the rela-

tions equals, intersects, contains, covers, coveredBy, touches, crosses and overlaps. We used
the NUTS dataset as the source dataset and CLC as the target one. We then tested the impact of the line simplification
algorithm of Douglas-Peucker [15] on Radon’s performance (i.e., F-measure) when applied to the simplified data.
For generating the simplified data, we applied the simplification factors of 0.05, 0.09, 0.10 and 0.2. Given that Radon
is complete [7] (i.e., Radon always achieved an F-measure of 1), we used the results generated by applying Radon
against the original dataset as our reference dataset. Using such reference dataset, we were able to compute the pre-
sented F-measures in Table 1. Our results show a reverse correlation between the simplification factor and F-measure.
On average, Radon was able to achieve 0.94 F-measure when applied against the simplified geometries. This answer
Q1 for LD of topological relations when applied to simplified geometries using the Douglas-Peucker algorithm.

Relation/Factor 0.05 0.09 0.10 0.20 Average

Equals 1.00 1.00 1.00 1.00 1.00 ± 0.00
Intersects 0.99 0.97 0.97 0.94 0.97 ± 0.02
Contains 0.99 0.97 0.97 0.93 0.97 ± 0.03
Within 0.99 0.97 0.97 0.93 0.97 ± 0.03
Covers 0.99 0.97 0.97 0.93 0.97 ± 0.03
Coveredby 0.99 0.97 0.97 0.93 0.97 ± 0.03
Crosses 1.00 1.00 1.00 1.00 1.00 ± 0.00
Touches 1.00 1.00 1.00 1.00 1.00 ± 0.00
Overlaps 0.80 0.52 0.47 0.28 0.52 ± 0.21

Average 0.97 ± 0.07 0.94 ± 0.16 0.93 ± 0.17 0.90 ± 0.23 0.94 ± 0.03

Table 1. F-measures results of applying Radon against geometries generated using the Douglas-Peucker line simplification algorithm.

Using the same setting, we ran our second set of experiments, where we used the Visvalingam-Whyatt [18] algo-
rithm for simplifying geometries. The results, as shown in Table 2, show that the selection of simplification parameter
is more critical to the Visvalingam-Whyatt algorithm. Using the smallest simplification factor of 0.005 leads to the

5 Version 0.91 (http://nuts.geovocab.org/data/0.91/) is used in this paper.
6 For more details about CORINE Land Cover see https://datahub.io/dataset/corine-land-cover

http://nuts.geovocab.org/data/0.91/
https://datahub.io/dataset/corine-land-cover
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best results with average F-measure of 0.97. Also, the reverse correlation between the simplification factor and the
F-measure still holds. Those results answer Q1 for LD approaches for topological relations when applied to simplified
geometries using the Visvalingam-Whyatt algorithm.

Relation/Factor 0.005 0.05 0.09 Average

Equals 1.00 1.00 1.00 1.00 ± 0.00
Intersects 0.86 0.01 0.00 0.29 ± 0.49
Contains 0.86 0.01 0.00 0.29 ± 0.49
Within 0.86 0.01 0.00 0.29 ± 0.49
Covers 0.86 0.01 0.00 0.29 ± 0.49
Coveredby 0.86 0.01 0.00 0.29 ± 0.49
Crosses 1.00 1.00 1.00 1.00 ± 0.00
Touches 1.00 1.00 1.00 1.00 ± 0.00
Overlaps 0.86 0.03 0.00 0.30 ± 0.49

Average 0.94 ± 0.08 0.56 ± 0.52 0.56 ± 0.53 0.69 ± 0.22

Table 2. F-measures results of applying Radon against geometries generated using the Visvalingam-Whyatt line simplification algorithm.

For the the third set of experiments, we carried out a deduplication task for the whole NUTS dataset. i.e., we set the
NUTS dataset as both the source S and target T datasets. To measure how well each of the point distance measures
performs, we first created a reference mapping M = {(n, n) ∈ NUTS }, then we measured the distance between each
of the geometries in S × T . We then computed the F-measure achieved within the experiment by comparing the pairs
in M′ (generated by applying the point-set distances) with those in M. We used the implementations of the Hausdorff,
Mean, Min, Link Sum of minimums and Surjection from Limes. The results of those experiments are listed as the last
column of Table 3. We then used the Douglas-Peucker to simplify all the NUTS geometries with the simplification
factors {0.05, 0.9, 0.1, 0.2}. As shown in Table 3, the simplification factors of 0.1 and 0.2 achieved the best average
F-measure of 0.82. One of the most interesting results of those experiments was that the majority of point-set measures
were not only able to achieve the same F-measure of the original dataset when applied on the simplified data but also
outperform the F-measure on the original data in the cases of the Hausdorff, mean and Min measures.

Measure/Factor 0.05 0.9 0.1 0.2 0.3 Average Foriginal

Hausdorff 0.90 0.91 0.91 0.91 0.91 0.91 ± 0.00 0.88
Mean 0.94 0.94 0.94 0.94 0.94 0.94 ± 0.00 0.94
Min 0.14 0.16 0.16 0.21 0.25 0.18 ± 0.04 0.13
Link 0.95 0.95 0.94 0.94 0.94 0.94 ± 0.00 0.94
SumOfMin 0.95 0.95 0.94 0.94 0.94 0.94 ± 0.00 0.94

avarege 0.77 ± 0.36 0.78 ± 0.35 0.78 ± 0.35 0.79 ± 0.32 0.80 ± 0.31 0.77 ± 0.36

Table 3. Average F-measures results of applying a deduplication task on the NUTS dataset using the point-set distance measures implementations
in Limes. As input, we used both the original NUTS geometries (results are in the last column) and simplified geometries generated using the
Douglas-Peucker line simplification algorithm.

In the fourth set of experiments, we used the same setting of the last set of experiments except for the simplifi-
cation algorithm. In this set of experiments, we generated a simplified version of the NUTS geometries using the
Visvalingam-Whyatt algorithm with the simplification factors {0.005, 0.05, 0.1}. We then computed the F-measure
based on the following distance measure functions Hausdorff, Mean, Min, Link and Sum of minimums. The results
in Table 4 show the comparison between the F-measure obtained from a simplified version of the data and the F-
measure (denoted Foriginal) obtained from an original version of the data. The results clearly show the sensitivity of
F-measure to changing the simplification factor, for instance, when the simplification factor equals 0.005 the average
of F-measure is 0.77, while it dropped down to 0.26 with a simplification factor of 0.1.
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Measure/Factor 0.005 0.05 0.1 Average Foriginal

Hausdorff 0.88 0.24 0.02 0.38 ± 0.45 0.88
Mean 0.94 0.94 0.92 0.93 ± 0.02 0.94
Min 0.13 0.13 0.13 0.13 ± 0.00 0.13
Link 0.94 0.14 0.01 0.37 ± 0.51 0.94
Sum of Min 0.94 0.94 0.24 0.71 ± 0.40 0.94

Avarege 0.77 ± 0.36 0.48 ± 0.42 0.26 ± 0.38 0.77 ± 0.36

Table 4. F-measure results of applying a deduplication task on the NUTS dataset using the point-set distance measures implementations in Limes. As
input, we used both the original NUTS geometries (results are in the last column) and simplified geometries generated using the Visvalingam-Whyatt
line simplification algorithm.

4.3. Runtime Analysis

In order to answer Q2, we evaluated the speedup gained by applying LD approaches to the simplified geometries.
We measured the run time while performing the aforementioned four sets of experiments.

Figure 1 shows the runtime results for the first set of experiments, i.e., we measured the run time of applying Radon
to discover topological relations when applied to the original datasets vs. when applied to the simplified datasets using
the Douglas-Peucker algorithm. On average, Radon has provided a 4.9× speedup over its performance when applied
to the original datasets. Moreover, there is a direct correlation between the achieved speedup and the simplification
parameter. In particular, the lowest speedup of 3.7× is achieved when applying the simplification factor of 0.05 and
the speedup monotonically increases up to 6.1× when applying the simplification factor of 0.2.
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Fig. 1. Runtimes of Radon’s implementation of topological relations LD for original NUT ×CLC datasets vs. the runtimes of the simplified datasets
using the Douglas-Peucker algorithm with simplification factors of {0.05, 0.09, 0.1, 0.2}.

For the second set of experiments, we also measured the runtimes when applying Radon against the original
datasets vs. the simplified datasets using the Visvalingam-Whyatt algorithm. The results are shown in Figure 2. On
average, Radon achieved 49.2× speed up, with a maximum 67.3× speedup in the case of a simplification factor of
0.09 but only 4.2× speedup with a simplification factor of 0.005.

Using the same technique, we measured the runtime for the third set of experiments. The results are presented in
Figure 3. The point-set distance achieved an average speedup of 9.2 when applied to the simplified geometries using
the Douglas-Peucker algorithm (min. = 2×, max. = 19.8×).

Figure 4 shows the results of the runtimes of the fourth set of experiments. The point-set measures achieved only
an average speedup of 2.1 when applied to simplified geometries using the Visvalingam-Whyatt algorithm (only 1.1
in the case of a simplification factor of 0.005).
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Fig. 2. Run times of Radon’s implementation of topological relations LD for original NUT × CLC datasets vs. runtimes of the simplified datasets
using the Visvalingam-Whyatt algorithm with simplification parameters {0.005, 0.05, 0.1}.
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Fig. 3. Run times of Limes implementation of point-set measures LD deduplication for original NUT dataset vs. the run time of simplified dataset
using the Douglas-Peucker algorithm with simplification parameters {0.05, 0.09, 0.1, 0.2, 0.3}.

4.4. LD Relations Analysis

From all the previous sets of experiments, we can now answer Q3. In the case of the topological relations, the F-
measure of overlap relation is the most affected by the Douglas-Peucker simplification. This can be seen in Table 1.
Also, the equals,crosses and touches are not affected at all by any simplification (see Tables 1 and 2). In the
case of point-set measures, the F-measure of min measure is the most affected, while all the other relations not only
achieve the F-measure of the original data but also outperform it in many cases (see Tables 3 and 4).

For runtime of topological relations, the equal relation achieved the best speedup in the case of the Douglas-
Peucker simplification (see Figure 1), while the coverdBy had the best speedup when using the Visvalingam-Whyatt
algorithm (see Figure 2). For the runtime of point-set relations, the mean relation achieves the shortest run time even
without any simplification, while the sunOfMin relation has the least speedup (See Figures 3 and 4).
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Fig. 4. Run times of Limes implementation of point-set measures LD deduplication for original NUT dataset vs. the run time of simplified dataset
using the Visvalingam-Whyatt algorithm with simplification parameters {0.005, 0.05, 0.1}.

4.5. Simplification Runtime Analysis

To answer Q4, we measured the runtime cost of applying both the Douglas-Peucker and Visvalingam-Whyatt line
simplification algorithms. Because of the paper space restrictions, we present only the result of the first algorithm for
topological relations. We computed the average simplification time needed while doing the first and second sets of
experiments together with the average time to run Radon for each of the topological relations vs. the time needed to
run Radon against the original datasets. The result is detailed in Figure 5.

In case we want to discover all the topological relations at once, Figure 5(a) shows the total run time needed for
simplification on the left. Note that the simplification process is only done once for all topological relations. The total
time for running Radon for all relations on the simplified data is plotted next in the figure. Next, comes the total time
of running Radon in addition to the simplification time for all relations. Finally, the time for running Radon on the
original data is plotted. As we can see, as we perform the simplification process once and use the simplified data for
extracting all the relations, Radon is able to achieve on average 2.4× speedup.

Figure 5(b) shows the average run time needed for running Radon for only one relation on the original data vs.
running it on a simplified one. As we can see, the simplification time is on average greater than the average time for
a single Radon topological relation discovery task (see first and last columns in Figure 5 (b)). This clearly shows that
using simplification for the discovery of a single relation is sub optimal.

A complete answer for Q4 would be that the more relations there are to be discovered, the more speedup will be
gained from the usage of simplification. Moreover, the simplification runtime cost would be very high once a single
relation discovery is required. I.e, we recommend not using any simplification for a single relation discovery.

5. Related Work

The work presented in this paper is related to two main areas of research: link discovery of geospatial relations and
line simplification. We give a brief overview of these research areas in the following sections.

5.1. Link Discovery of Geospatial Relations

The discovery of topological relations has been paid little attention in previous research related to Link Discov-
ery [19]. The reduction-ratio-optimal approach Orchid [1] optimizes the computation of point-sets based on the dis-
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(b) Average runtime of a single topological relation.

Fig. 5. Runtimes of Radon on the original data vs. simplified data using the Douglas-Peucker algorithm.

tance among geospatial entities. The main idea of Orchid is to apply space tiling for both source and target resources
and compare only resources within a given range. While the use of Orchid in [1] is based only on the Hausdorff met-
ric, the work at [5] extends Orchid to other point-set distance metrics such as mean and sum of minimums. Radon [7]
proposes an indexing approach combined with space tiling and swapping technique for the efficient calculation of
topological relations between geospatial data. Based on the MultiBlocking technique, [6] proposed an approach for
spatial LD. Both the Orchid and Radon are implemented in the the LD framework Limes, while the MultiBlocking
technique is based on the LD framework Silk. A review of the current state of LD frameworks is in [20].

5.2. Line Simplification

Line simplification techniques have been used in various fields including computer vision, cartography and com-
puter graphics. [21] introduced an approach for line simplification based on image processing, which is specifically
designed for raster data. An area-reserving subdivision simplification algorithm is proposed in [22], where the algo-
rithm presents a set of topology constraints for rendering map data on the screen. In Advanced Driving Assistance
Systems (ADAS) [23], the Douglas-Peucker line simplification algorithm is used to fix the total number of vertices
for the resultant polygon from static free space extraction, which is convenient to ADAS and automotive restrictions.
Recently, Douglas-Peucker has been used to simplify the massive Asia-Pacic Data Center trajectories data from China
Automatic Identification System (AIS) for data-driven based automatic maritime routing [24]

6. Conclusions and Future Work

We present a study of the usage of simplification as a preprocessing step of LD approaches for the linking of RDF
resources with geospatial representation. We studied the behaviour of two categories of geospatial linking approaches
(i.e, the topological relations and point-set distances) when provided with simplified geometries vs. when provided
with the original ones. In particular, we studied both the F-measure and the run time of each approach. Our evaluations
show that such approaches achieve on average an F-measure of 0.94 when using the Douglas-Peucker simplification
algorithm and 0.69 when using the Visvalingam-Whyatt algorithm. In addition, LD approaches gain up to 19.8×
speedup when dealing with simplified geometries generated by the Douglas-Peucker algorithm and up to 67.3× when
using the Visvalingam-Whyatt. This suggests that the usage of geometries simplification will be of a great help for real-
time applications such as question answering where runtime is the key performance factor and result completeness
comes in the second place.

In future work, we will study the provision of a simplification algorithm able to guarantee an minimum input F-
measure. Also, we will determine for each set of relations the best geometry simplification algorithm together with
its best parameters to achieve the best results (i.e., maximum F-measure and minimum runtime). Moreover, we will
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study an optimization of a scalable geometries simplification approach able to deal with big volume of resources, each
consisting of big number points such as the ones that exist in current RDF datasets.
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