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Abstract. With the growth of the number and the size of RDF datasets comes an
increasing need for scalable solutions to support the linking of resources. Most
Link Discovery frameworks rely on complex link specifications for this purpose.
We address the scalability of the execution of link specifications by presenting the
first dynamic planning approach for Link Discovery dubbed Condor. In contrast
to the state of the art, Condor can re-evaluate and reshape execution plans for
link specifications during their execution. Thus, it achieves significantly better
runtimes than existing planning solutions while retaining an F-measure of 100%.
We quantify our improvement by evaluating our approach on 7 datasets and 700
link specifications. Our results suggest that Condor is up to 2 orders of magnitude
faster than the state of the art and requires less than 0.1% of the total runtime of
a given specification to generate the corresponding plan.

1 Introduction

The provision of links between knowledge bases is one of the core principles of Linked
Data.3 Hence, the growth of knowledge bases on the Linked Data Web in size and num-
ber has led to a significant body of work which addresses the two key challenges of
Link Discovery (LD): efficiency and accuracy (see [1] for a survey). In this work, we
focus on the first challenge, i.e., on the efficient computation of links between knowl-
edge bases. Most LD frameworks use combinations of atomic similarity measures by
means of specification operators and thresholds to compute link candidates. The com-
binations are often called linkage rules [2] or link specifications (short LSs, see Figure 1
for an example and Section 2 for a formal definition) to compute links [1]. So far, most
approaches for improving the execution of LSs have focused on reducing the runtime of
the atomic similarity measures used in LSs (see, e.g., [3,4,5]). While these algorithms
have led to significant runtime improvements, they fail to exploit global knowledge
about the LSs to be executed. In Condor, we build upon these solutions and tackle the
problem of executing link specifications efficiently.

Condor makes used of a minute but significant change in the planning and execu-
tion of LSs. So far, the execution of LSs has been modeled as a linear process (see [1]),
where a LS is commonly rewritten, planned and finally executed.4 While this architec-
ture has its merits, it fails to use a critical piece of information: the execution engine

3 http://www.w3.org/DesignIssues/LinkedData.html
4 Note that some systems implement the rewriting and planning in an implicit manner.

http://www.w3.org/DesignIssues/LinkedData.html
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Fig. 1: Graphical representation of an example LS

knows more about runtimes than the planner once it has executed a portion of the spec-
ification. The core idea behind our work is to make use of the information generated
by the execution engine at runtime to re-evaluate the plans generated by the planner.
To this end, we introduce an architectural change to LD frameworks by enabling a flow
of information from the execution engine back to the planner. While this change might
appear negligible, it has a significant effect on the performance of LD systems as shown
by our evaluation (see Sect. 4).

The contributions of this work are hence as follows: (1) We propose the first plan-
ner for link specification which is able to re-plan steps of an input LS L based on the
outcome of partial executions of L. By virtue of this behavior, we dub Condor a dy-
namic planner. (2) In addition to being dynamic, Condor goes beyond the state of the
art by ensuring that duplicated steps are executed exactly once. Moreover, our planner
can also make use of subsumptions between result sets to further reuse previous results
of the execution engine. (3) We evaluate our approach on 700 LSs and 7 datasets and
show that we outperfom the state of the art significantly.

2 Preliminaries

The formal framework underlying our preliminaries is derived from [6,7]. LD frame-
works aim to compute the set M = {(s, t) ∈ S × T : R(s, t)} where S and T are sets of
RDF resources and R is a binary relation. Given that M is generally difficult to compute
directly, declarative LD frameworks compute an approximation M′ ⊆ S × T × R of M
by executing a link specification (LS), which we define formally in the following.

An atomic LS L is a pair L = (m, θ), where m is a similarity measure that compares
properties of pairs (s, t) from S × T and θ is a similarity threshold. LS can be combined
by means of operators and filters. Here, we consider the binary operators t, u and
\, which stand for the union, intersection and difference of specifications respectively.
Filters are pairs ( f , τ), where f is either empty (denoted ε), a similarity measure or a
combination of similarity measures and τ is a threshold.

A complex LS L is a triple ( f , τ, ω(L1, L2)) where ω is a specification operator and
( f , τ) is a filter. An example of a LS is given in Fig. 1. Note that an atomic specification
can be regarded as a filter ( f , τ, X) with X = S ×T . Thus we will use the same graphical
representation for filters and atomic specifications. We call ( f , τ) the filter of L and
denote it with ϕ(L). For our example, ϕ(L) = (ε, 0.5). The operator of a LS L will be
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Table 1: Semantics of link specifications
L [[L]]

(m, θ) {(s, t,m(s, t)) ∈ S × T : m(s, t) ≥ θ}

( f , τ, X)

{(s, t, r) ∈ [[X]] : r ≥ τ} if f = ε

{(s, t, r) ∈ [[X]] : f (s, t) ≥ τ} else.
u(L1, L2) {(s, t, r) | (s, t, r1) ∈ [[L1]] ∧ (s, t, r2) ∈ [[L2]] ∧ r = min(r1, r2)}

t(L1, L2)

(s, t, r) |


r = r1 if ∃(s, t, r1) ∈ [[L1]] ∧ ¬(∃r2 : (s, t, r2) ∈ [[L2]]),
r = r2 if ∃(s, t, r2) ∈ [[L2]] ∧ ¬(∃r1 : (s, t, r1) ∈ [[L1]]),
r = max(r1, r2) if (s, t, r1) ∈ [[L1]] ∧ (s, t, r2) ∈ [[L2]].


\(L1, L2) {(s, t, r) | (s, t, r) ∈ [[L1]] ∧ ¬∃r′ : (s, t, r′) ∈ [[L2]]}
∅(L) [[L]]

denoted op(L). For L = ( f , τ, ω(L1, L2)), op(L) = ω. In our example the operator of the
LS is \. The size of L, denoted |L|, is defined as follows: If L is atomic, then |L| = 1. For
complex LSs L = ( f , τ, ω(L1, L2)), we set L = |L1| + |L2| + 1. The LS shown in Fig. 1
has a size of 7. For L = ( f , τ, ω(L1, L2)), we call L1 resp. L2 the left resp. right direct
child of L.

We denote the semantics (i.e., the results of a LS for given sets of resources S
and T ) of a LS L by [[L]] and call it a mapping. We begin by assuming the natural
semantics of the combinations of measures. The semantics of LSs are then as shown
in Table 1. To compute the mapping [[L]] (which corresponds to the output of L for a
given pair (S ,T )), LD frameworks implement (at least parts of) a generic architecture
consisting of an execution engine, an optional rewriter and a planner (see [1] for more
details). The rewriter performs algebraic operations to transform the input LS L into
a LS L′ (with [[L]] = [[L′]]) that is potentially faster to execute. The most common
planner is the canonical planner (dubbed Canonical), which simply traverses L in post-
order and has its results computed in that order by the execution engine.5 For the LS
shown in Fig. 1, the execution plan returned by Canonical would thus first compute
the mapping M1 = [[(cosine(label, label), 0.4)]] of pairs of resources whose property
label has a cosine similarity equal to, or greater than 0.4. The computation of M2 =

[[(trigrams(name, name), 0.8)]] would follow. Step 3 would be to compute M3 = M1t

M2 while abiding by the semantics described in Table 1. Step 4 would be to filter the
results by only keeping pairs that have a similarity above 0.5 and so on. Given that there
is a 1-1 correspondence between a LS and the plan generated by the canonical planner,
we will reuse the representation of a LS devised above for plans. The sequence of steps
for such a plan is then to be understood as the sequence of steps that would be derived
by Canonical for the LS displayed.

3 Condor

The goal of Condor is to improve the overall execution time of LSs. To this end, Con-
dor aims to derive a time-efficient execution plan for a given input LS L. The basic idea
behind state-of-the-art planners for LD (see [7]) is to approximate the costs of possible

5 Note that the planner and engine are not necessarily distinct in existing implementations.
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plans for L, and to simply select the least costly (i.e., the presumable fastest) plan so
as to improve the execution costs. The selected plan is then forwarded to the execution
engine and executed. We call this type of planning static planning because the plan
selected is never changed. Condor addresses the planning and execution of LSs differ-
ently: Given an input LS L, Condor’s planner uses an initial cost function to generate
initial plans P, of which each consists of a sequence of steps that are to be executed
by Condor’s execution engine to compute L. The planner chooses the least costly plan
and forwards it to the engine. After the execution of each step, the execution engine
overwrites the planner’s cost function by replacing the estimated costs of the executed
step with its real costs. The planner then re-evaluates the alternative plans generated
afore and alters the remaining steps to be executed if the updated cost function suggests
better expected runtimes for this alteration of the remaining steps. We call this novel
paradigm for planning the execution of LSs dynamic planning.

3.1 Planning

Algorithm 1 summarizes the dynamic planning approach implemented by Condor. The
algorithm (dubbed plan) takes a LS L as input and returns the plan P(L) with the small-
est expected runtime. The core of the approach consists of (1) a cost function r which
computes expected runtimes and (2) a recursive cost evaluation scheme. Condor’s plan-
ner begins by checking whether the input L has already been executed within the current
run (Line 2). If L has already been executed, there is no need to re-plan the LS. Instead,
plan returns the known plan P(L). If L has not yet been executed, we proceed by first
checking whether L is atomic. If L is atomic, we return P = run(m, θ) (line 6), which
simply computes [[L]] on S × T . Here, we make use of existing scalable solutions for
computing such mappings [1].

If L = ( f , τ, ω(L1, L2)), plan derives a plan for L1 and L2 (lines 10 and 11), then
computes possible plans given op(L) and then decides for the least costly plan based
on the cost function. The possible plans generated by Condor depend on the operator
of L. For example, if op(L) = u, then plan evaluates three alternative plans: (1) The
canonical plan (lines 21, 23, 27, 31), which consists of executing P(L1) and P(L2),
performing an intersection between the resulting mappings and then filtering the final
mapping using ( f , τ); (2) The filter-right plan (lines 24, 32), where the best plan P1
for L1 is executed, followed by a run of a filtering operation on the results of P1 using
( f2, τ2) = ϕ(L2) and then filtering the final mapping using ( f , τ); (3) The filter-left plan
(lines 28, 32), which is a filter-right plan with the roles of L1 and L2 reversed.

As mentioned in Section 1, Condor’s planning function re-uses results of previ-
ously executed LSs and plans. Hence, if both P1 and P2 have already been executed
(r(P1) = r(P2) = 0), then the best plan is the canonical plan, where Condor will only
need to retrieve the mappings of the two plans and then perform the intersection and
the filtering operation (line 20). If P1 resp. P2 have already been executed (see Line 22
resp. 26), then the algorithm decides between the canonical and the filter-right resp.
filter-left plan. If no information is available, then the costs of the different alternatives
are calculated based on our cost function described in Sect. 3.2 and the least costly plan
is chosen. Similar approaches are implemented for op(L) = \ (lines 12- 18). In particu-
lar, in line 17, the plan algorithm implements the filter-right plan by first executing the
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plan P1 for the left child and then constructing a “reverse filter” from ( f2, τ2) = ϕ(L2)
by calling the getReverseFilter function. The resulting filter is responsible for allowing
only links of the retrieved mapping of L1 that are not returned by L2. For op(L) = t

(line 36) the plan always consists of merging the results of P(L1) and P(L2) by using
the semantics described in Table 1.

3.2 Plan Evaluation

As explained in the first paragraphs of Sect. 2, one important component of Condor
is the cost function required to estimate the costs of executing the corresponding plan.
Based on [8], we used a linear plan evaluation schema as introduced in [7]. A plan P is
characterized by one basic component, r(P), the approximated runtime of executing P.

Approximation of r(P) for atomic LSs. We compute r(P(L)) by assuming that the
runtime of L = f (m, θ) can be approximated in linear time for each metric m using the
following equation:

r(P) = γ0 + γ1|S | + γ2|T | + γ3θ , (1)

where |S | is the size of the source KB, |T | is the size of the target KB and θ is the
threshold of the specification. We used a linear model with these parameters since the
experiments in [8] and [7] suggested that they are sufficient to produce accurate approx-
imations. The next step of our plan evaluation approach was to estimate the parameters
γ0, γ1, γ2 and γ3. However, the size of the source and the target KBs is unknown prior
to the linking task. Therefore, we used a sampling method, where we generated source
and target datasets of sizes 1000, 2000, . . . , 10000 by sampling data from the English
labels of DBpedia 3.8. and stored the runtime of the measures implemented by our
framework for different thresholds θ between 0.5 and 1. Then, we computed the γi pa-
rameters by deriving the solution of the problem to the linear regression solution of
Γ = (RT R)−1RT Y , where Γ = (γ0, γ1, γ2, γ3)T , Y is a vector in which the yi-th row
corresponds to the runtime retrieved by running ith experiment and R is a four-column
matrix in which the corresponding experimental parameters (1, |S |, |T |, θ) are stored in
the ri-th row.

Approximation of r(P) for complex LSs. For the canonical plan, r(P) is estimated
by summing up the r(P) of all plans that correspond to children specifications of the
complex LS. For the filter-right and filter-left plans, r(P) is estimated by summing the
r(P) of the child LS whose plan is going to be executed along with the approximation
of the runtime of the filtering function performed by the other child LS. To estimate
the runtime of a filtering function, we compute the approximation analogously to the
computation of the runtime of an atomic LS.

Additionally, we define a set of rules if ω = u or ω = \: (1) r(P) includes only
the sums of the children LSs that have not yet been executed. (2) If both children of
the LS are executed then r(P) is set to 0. Therefore, we force the algorithm to choose
canonical over the other two options, since it will create a smaller overhead in total
runtime of Condor.
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3.3 Execution

Algorithm 2 describes the execution of the plan that Algorithm 1 returned. The execute
algorithm takes as input a LS L and returns the corresponding mapping M once all steps
of P(L) have been executed. The algorithm begins in line 2, where execute returns the
mapping M of L, if L has already been executed and its result cached. If L has not
been executed before, we proceed by checking whether a LS L′ with [[L]] ⊆ [[L]]′ has
already been executed (line 7). If such a L′ exists, then execute retrieves M′ = [[L]]′ and
runs ( f , τ, [[L]]′) where ( f , τ) = ϕ(L) (line 9). If @L′, the algorithm checks whether L is
atomic. If this is the case, then P(L) = run(m, θ) computes [[L]]. If L = ( f , τ, ω(L1, L2)),
execute calls the plan function described previously.

3.4 Example Run

To elucidate the workings of Condor further, we use the LS described in Fig. 1 as a
running example. Table 2 shows the cost function r(P) of each possible plan that can be
produced for the specifications included in L, for the different calls of the plan function
for L. The runtime value of a plan for a complex LS additionally includes a value for
the filtering or set operations, wherever present. Recall that plan is a recursive function
(lines 10, 11) and plans L in post-order (bottom-up, left-to-right). Condor produces a
plan equivalent to the canonical plan for the left child due to thet operator. Then, it pro-
ceeds in finding the least costly plan for the right child. For the right child, plan has to
choose between the three alternatives described in Sect. 3.1. Table 2 shows the approxi-
mation r(P) of each plan for (u((cosine(label, label), 0.4), (trigrams(name, name), 0.8)), 0.5).
The least costly plan for the right child is the filter-left plan, where L′ = (trigrams
(name, name), 0.8)) is executed and [[L′]] is then filtered using (cosine(label, label),
0.4)) and (ε, 0.5). Before proceeding to discover the best plan for L, Condor assigns an
approximate runtime r(P) to each child plan of L: 3.5 s for the left child and 1.5 s for
the right child.

Once Condor has identified the best plans for both children of L, it proceeds to find
the most efficient plan for L. Since both children have not been executed previously,
plan goes to line 15. There, it has to chose between two alternative plans, i.e., the
canonical plan with r(P) = 6.2 s and the filter-right plan with r(P) = 5.2 s. It is obvious
that plan is going to assign the filter-right plan as the least costly plan for L. Note that
this plan overwrites the right child filter-left plan, and it will instead use the right child
as a filter.

Once the plan is finalized, the plan function returns and assigns the plan shown in
Fig. 2a to P(L) in line 14. For the next step, execute retrieves the left child (t((cosine
(label, label), 0.4), (trigrams(name, name), 0.8)), 0.5) and assigns it to L1 (line 15).
Then, the algorithm calls execute for L1. execute repeats the plan procedure for L1 recur-
sively and returns the plan illustrated in Fig. 3. The plan is executed and finally (line 16)
the resulting mapping is assigned to M1. Remember that all intermediate mappings as
well as the final mapping along with the corresponding LSs are stored for future use
(line 29). Additionally, we replace the cost value estimations of each executed plan by
their real values in line 28. Now, the cost value of (cosine(label, label), 0.4) is assigned
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Fig. 2: Initial and final plans returned by Condor for the LS in Fig. 1
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Fig. 3: Plan of the left child for the LS in Fig. 1

to 2.0 s, the cost value of (trigrams(name, name), 0.8) is assigned to 1.0 s and finally,
the cost value of the left child will be replaced by 4.0 s.

Now, given the runtimes from the execution engine, the algorithm re-plans the fur-
ther steps of L. Within this second call of plan (line 17), Condor does not re-plan
the sub-specification that corresponds to L1, since its plan (Fig. 3) has been executed
previously. Initially, plan had decided to use the right child as a filter. However, both
(cosine(label, label), 0.4) and (trigrams(name, name), 0.8) have already been exe-
cuted. Hence, the new total cost of executing the right child is set to 0.0. Consequently,
plan changes the remaining steps of the initial plan of L, since the cost of executing the
canonical plan is now set to 0.0. The final plan is illustrated in Fig. 2b.

Once the new plan P(L) is constructed, execute checks if P(L) includes any oper-
ators. In our example, op(L) = \. Thus, we execute the second direct child of L as
described in P(L), L2 = (u((cosine(label, label), 0.4), (trigrams(name, name), 0.8)),
0.5). Algorithm 2 calls the execute function for L2, which calls plan. Condor’s plan-
ning algorithm then returns a plan for L2, which is similar to the plan for the left child
illustrated in Fig. 3 by replacing the t operator with the u operator, with r(P(L2)) = 0 s.

When the algorithm proceeds to executing P(L2), it discovers that the atomic LSs of
L2 have already executed. Thus, it retrieves the corresponding mappings, performs the
intersection between the results of (cosine(label, label), 0.4) and (trigrams(name,
name), 0.8), filters the resulting mapping of the intersection with (ε, 0.5) and stores the
resulting mapping for future use (line 29). Returning to our initial LS L, the algorithm
has now retrieved results for both L1 and L2 and proceeds to perform the steps described
in line 21 and 27. The final plan constructed by Condor is presented in Fig. 2b.

If the second call of the plan function for L in line 17 had resulted in not altering
the initial P(L), then execute would have proceeded in applying a reverse filter (i.e.,
the implementation of the difference of mappings) on M1 by using (u((cosine(label,
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label), 0.4), (trigrams(name, name), 0.8)), 0.5) (line 24). Similarly operations would
have been carried out if op(L) = u in line 26.

Overall, the complexity of Condor can be derived as follows: For each node of a
LS L, Condor generates a constant number of possible plans. Hence, the complexity of
each iteration of Condor is O(|L|). The execution engine executes at least one node in
each iteration, meaning that it needs at most O(|L|) iterations to execute L completely.
Hence, Condor’s worst-case runtime complexity is O(|L|2).

4 Evaluation

4.1 Experimental Setup

The aim of our evaluation was to address the following questions: (Q1) Does Condor
achieve better runtimes for LSs? (Q2) How much time does Condor spend planning?
(Q3) How do the different sizes of LSs affect Condor’s runtime? To address these ques-
tions, we evaluated our approach against seven data sets. The first four are the bench-
mark data sets for LD dubbed Abt-Buy, Amazon-Google Products, DBLP-ACM and
DBLP-Scholar described in [9]. These are manually curated benchmark data sets col-
lected from real data sources such as the publication sites DBLP and ACM as well as
the Amazon and Google product websites. To assess the scalability of Condor, we cre-
ated three additional data sets (MOVIES, TOWNS and VILLAGES, see Table 3) from
the data sets DBpedia, LinkedGeodata and LinkedMDB. 6 7 Table 3 describes their
characteristics and presents the properties used when linking the retrieved resources.
The mapping properties were provided to the link discovery algorithms underlying our
results. We generated 100 LSs for each dataset by using the unsupervised version of
Eagle, a genetic programming approach for learning LSs [10]. We used this algorithm
because it can detect LSs of high accuracy on the datasets at hand. We configured Eagle
by setting the number of generations and population size to 20, mutation and crossover
rates were set to 0.6. All experiments were carried out on a 20-core Linux Server run-
ning OpenJDK 64-Bit Server 1.8.0.66 on Ubuntu 14.04.3 LTS on Intel Xeon CPU E5-
2650 v3 processors clocked at 2.30GHz. Each experiment was repeated three times. We
report the average runtimes of each of the algorithms. Note that all three planners return
the same set of links and that they hence all achieve 100% F-measure w.r.t. the LS to be
executed. 8

4.2 Results

We compared the execution time of Condor with that of the state-of-the-art algorithm
for planning (Helios [7]) as well as with the canonical planner implemented in Limes.

6 http://www.linkedmdb.org/
7 The new data and a description of how they were constructed are available at http://titan.
informatik.uni-leipzig.de/kgeorgala/DATA/.

8 Our complete experimental results can be found at http://titan.informatik.
uni-leipzig.de/kgeorgala/condor_results.zip. Our open source code can be found
at http://limes.sf.net

http://www.linkedmdb.org/
http://titan.informatik.uni-leipzig.de/kgeorgala/DATA/
http://titan.informatik.uni-leipzig.de/kgeorgala/DATA/
http://titan.informatik.uni-leipzig.de/kgeorgala/condor_results.zip
http://titan.informatik.uni-leipzig.de/kgeorgala/condor_results.zip
http://limes.sf.net
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We chose Limes because it is a state-of-the-art declarative framework for link discov-
ery which ensures result completeness. Figure 4 shows the runtimes achieved by the
different algorithm in different settings. As shown in Figure 4a, Condor outperforms
Canonical and Helios on all datasets. A Wilcoxon signed-rank test on the cumulative
runtimes of the approaches (significance level = 99%) confirms that the differences in
performance between Condor and the other approaches are statistically significant on
all datasets. This observation and the statistical test clearly answer question Q1:
Answer to Q1: Condor outperforms the state of the art in planning by being able to
generate more time-efficient plans than Helios and Canonical.

Fig. 4a shows that our approach performs best on AMAZON-GP, where it can re-
duce the average runtime of the set of specifications by 78% compared to Canonical,
making Condor 4.6 times faster. Moreover, for the same dataset, dynamic planning is
8.04 times more efficient than Helios. Note that finding a better plan than the canonical
plan on this particular dataset is non-trivial (as shown by the Helios results). Here, our
dynamic planning approach pays off by being able to revise the original and altering this
plan at runtime early enough to achieve better results than the Canonical planner and
Helios. The highest absolute difference is achieved on DBLP-Scholar, where Condor
reduces the overall execution time of the Canonical planner on the 100 LSs by approx-
imately 600 s per specification on average. On the same dataset, the difference between
Condor and Helios is approximately 110 s per LS.

The answer to our second question is that the benefits of the dynamic planning strat-
egy are far superior to the time required by the re-planning scheme (as showed by Fig-
ure 4). Condor spends between 0.0005% (DBLP-SCHOLAR) and 0.1% (AMAZON-
GP) of the overall runtime on planning. The specifications computed for the AMAZON-
GP dataset have on average the largest size in contrast to the other datasets. On this
particular dataset, Condor spends less than 10 ms planning. We regard this result as
particularly good, as using Condor brings larger benefits with growing specifications.
Answer to Q2: In our experiments, Condor invests less than 10 ms and outperforms
planning and re-planning.

To answer Q3, we also computed the runtime of LSs depending on their size t (see
Figures 4b and 4c). For LSs of size 1, the execution times achieved by all three plan-
ners are most commonly comparable (difference of average runtimes = 0.02 s) since the
plans produced are straight-forward and leave no room for improvement. For specifi-
cations of size 3, Condor is already capable of generating plans that are 7.5% faster
than the canonical plans on average. The gap between Condor and the state of the art
increases with the size of the specifications. For specifications of sizes 7 and more,
Condor plans only necessitate 30.5% resp. 55.7% of the time required by the plans
generated by Canonical resp. Helios. A careful study of the plan generated by Condor
reveals that the re-use of previously executed portions of a LS and the use of subsump-
tion are clearly beneficial to the execution runtime of large LSs. However, the study
also shows that in a few cases, Condor creates a filter-right or filter-left plan where a
canonical plan would have been better. This is due to some sub-optimal runtime ap-
proximations produced by the r(P) function. We can summarize our result as follows.
Answer to Q3: Condor’s performance gain over the state of the art grows with the size
of the specifications.
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Algorithm 1: plan Algorithm for Condor
Input: a link specification L;
Mapping of executed LS to plans specToPlanMap
Output: Least costly plan P of L

1 P←− ∅
2 if specToPlanMap.contains(L) then
3 P←− specToPlanMap.get(L) //return plan stored in buffer for L

4 else
5 if (L == (m, θ)) then
6 P←− run(m, θ)

7 else
8 L1 = L.le f tChild
9 L2 = L.rightChild

10 P1 ←− plan(L1)
11 P2 ←− plan(L2)
12 if (L.operator == \) then
13 if specToPlanMap.contains(L2) then
14 P←− merge(minus, P1, P2)

15 else
16 Q0 ←− merge(minus, P1, P2)
17 Q1 ←− merge(getReverseFilter(ϕ(L2)), P1)
18 P←− getLeastCostly(Q0,Q1)

19 else if (L.operator == u) then
20 if (specToPlanMap.contains(L1) ∧ specToPlanMap.contains(L2)) then
21 P←− merge(intersection, P1, P2)

22 else if (specToPlanMap.contains(L1) ∧ ¬specToPlanMap.contains(L2))
then

23 Q0 ←− merge(intersection, P1, P2)
24 Q1 ←− merge(ϕ(L2), P1)
25 P←− getLeastCostly(Q0,Q1)

26 else if (¬specToPlanMap.contains(L1) ∧ specToPlanMap.contains(L2))
then

27 Q0 ←− merge(intersection, P1, P2)
28 Q1 ←− merge(ϕ(L1), P2)
29 P←− getLeastCostly(Q0,Q1)

30 else
31 Q0 ←− merge(intersection, P1, P2)
32 Q1 ←− merge(ϕ(L2), P1)
33 Q2 ←− merge(ϕ(L1), P2)
34 P←− getLeastCostly(Q0,Q1,Q2)

35 else
36 P←− merge(union, P1, P2) //last possible operator is t

37 specToPlanMap.put(L, P)

38 Return P
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Algorithm 2: execute Algorithm
Input: a link specification L; mapping specToPlanMap; result buffer results
Output: Mapping M of L

1 M ←− ∅
2 if (specToPlanMap.contains(L) then
3 M ←− results.get(L)
4 get the value for the key L

5 else
6 L′ = checkDependencies(L, results)
7 if L′ , null then
8 M′ ←− results.get(L′)
9 M = f ilter(ϕ(L),M′)

10 else
11 if L = (m, θ) then
12 M ←− run(m, θ)

13 else
14 P←− plan(L)
15 L1 ←− P.getS ubS pec(0)
16 M1 ←− execute(L1)
17 P←− plan(L)
18 if op(P) , ∅ then
19 L2 ←− P(L).getS ubS pec(1)
20 M2 ←− execute(L2)
21 M ←− runOperator(op(P),M1,M2)

22 else
23 if L = ( f , τ, \(L1, L2)) then
24 M ←− f ilter(getReverseFilter(ϕ(L2)),M1)

25 else
26 M ←− f ilter(ϕ(L2),M1)

27 M ←− f ilter(ϕ(L),M)

28 update()
29 results←− results.put(L,M)

30 Return M
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Table 2: Runtime costs for the plans computed for the specification in (Fig. 1) by the
two calls of the plan in lines 14 and 17. All runtimes are presented in seconds. The 1st

column includes the initial runtime approximations of plans. The 2nd column includes
(1) a real runtime value of a plan, if the plan has been executed (�), (2) a 0.0 value
if all the subsequent plans of that plan have been executed previously (•) or have an
estimation of zero cost in the current call of plan (∗), (3) a runtime approximation value,
that includes only runtimes of subsequent plans that have not been executed yet (�).

P
r(P)

1st 2nd

(cosine(label, label), 0.4) 1.8 2.0�

(trigrams(name, name), 0.8) 0.5 1.0�

ϕ(cosine(label, label), 0.4) 0.8 0.8�

ϕ(trigrams(name, name), 0.8) 0.6 0.6�

canonical plan: merge(u, (cosine(label, label), 0.4), (trigrams(name, name), 0.8)) 3.5 0.0•

filter-right plan: merge(ϕ(trigrams(name, name), 0.8), (cosine(label, label), 0.4)) 2.6 0.8�

filter-left plan: merge(ϕ(cosine(label, label), 0.4), (trigrams(name, name), 0.8)) 1.5 1.0�

canonical plan: merge(t, (cosine(label, label), 0.4), (trigrams(name, name), 0.8)) 3.5 4.0�

canonical plan for L 6.2 0.0∗

filter-right plan for L (see Fig. 2a) 5.2 1.7�

Table 3: Characteristics of data sets
Data set Source (S) Target (T) |S | × |T | Source Property Target Property
Abt-Buy Abt Buy 1.20 × 106 product name, description product name, description

manufacturer, price manufacturer, price
Amazon-GP Amazon Google 4.40 × 106 product name, description product name, description

Products manufacturer, price manufacturer, price
DBLP-ACM ACM DBLP 6.00 × 106 title, authors title, authors

venue, year venue, year
DBLP-Scholar DBLP Google 0.17 × 109 title, authors title, authors

Scholar venue, year venue, year
MOVIES DBpedia LinkedMDB 0.17 × 109 dbp:name dc2:title

dbo:director/dbp:name movie:director/movie:director name
dbo:producer/dbp:name movie:producer/movie:producer name

dbp:writer/dbp:name movie:writer/movie:writer name
rdfs:label rdfs:label

TOWNS DBpedia LGD 0.34 × 109 rdfs:label rdfs:label
dbo:country/rdfs:label lgdo:isIn
dbo:populationTotal lgdo:population

geo:geometry geom:geometry/agc:asWKT
VILLAGES DBpedia LGD 6.88 × 109 rdfs:label rdfs:label

dbo:populationTotal lgdo:population
geo:geometry geom:geometry/agc:asWKT
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(a) Runtimes on all specifications

(b) Runtimes on specifications with size greater or equal to 3

(c) Runtimes on specifications with size greater or equal to 5

Fig. 4: Mean and standard deviation of runtimes of Canonical, Helios and Condor. The
y-axis shows runtimes in seconds on a logarithmic scale. The numbers on top of the bars
are the average runtimes.



14

5 Related Work

This paper addresses the creation of better plans for scalable link discovery. A large
number of frameworks such as SILK [2], Limes [11] and KnoFuss [12] were developed
to support the link discovery process. These frameworks commonly rely on scalable
approaches for computing simple and complex specifications. For example, a lossless
framework that uses blocking is SILK [2], a tool relying on rough index pre-matching.
KnoFuss [12] on the other hand implements classical blocking approaches derived
from databases. These approaches are not guaranteed to achieve result completeness.
Zhishi.links [13] is another framework that scales (through an indexing-based approach)
but is not guaranteed to retrieve all links. The completeness of results is guaranteed by
the Limes framework, which combines time-efficient algorithms such as Ed-Join and
PPJoin+ with a set-theoretical combination strategy. The execution of LSs in Limes is
carried out by means of the Canonical [11] and Helios [7] planners. Given that Limes
was shown to outperform SILK in [7], we chose to compare our approach with Limes.
The survey of Nentwig et al. [1] and the results of the Ontology Alignment and Evalua-
tion Initiative for 2017 of the OAEI [14],9 provide an overview of further link discovery
systems.

Condor is the first dynamic planner for link discovery. The problem we tackled in
this work bears some resemblance to the task of query optimization in databases [15].
There have been numerous advances which pertain to addressing this question, includ-
ing strategies based on genetic programming [16], cost-based and heuristic optimizers
[17], and dynamic approaches [18]. Dynamic approaches for query planning were the
inspiration for the work presented herein.

6 Conclusion and Future Work

We presented Condor, a dynamic planner for link discovery. We showed how our ap-
proach combines dynamic planning with subsumption and result caching to outperform
the state of the art by up to two orders of magnitude. A large number of questions are
unveiled by our results. First, our results suggest that Condor’s runtimes can be im-
proved further by improving the cost function underlying the approach. Hence, we will
study the use of most complex regression approaches for approximating the runtime of
metrics. Moreover, the parallel execution of plans will be studied in future.
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Portorož, Slovenia, May 28 - June 1, 2017, Proceedings, Part I. (2017) 103–119

7. Ngonga Ngomo, A.C.: HELIOS – Execution Optimization for Link Discovery. In: Proceed-
ings of ISWC. (2014)

8. Georgala, K., Hoffmann, M., Ngomo, A.N.: An Evaluation of Models for Runtime Ap-
proximation in Link Discovery. In: Proceedings of the International Conference on Web
Intelligence. WI ’17, New York, NY, USA, ACM (2017) 57–64
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