
An Evaluation of Models for Runtime Approximation in Link
Discovery

Kleanthi Georgala
AKSW Research Group, University of

Leipzig
Augustusplatz 10

Leipzig, Germany 04109
georgala@informatik.uni-leipzig.de

Michael Ho�mann
AKSW Research Group, University of

Leipzig
Augustusplatz 10

Leipzig, Germany 04109
mho�mann@informatik.uni-leipzig.

de

Axel-Cyrille Ngonga Ngomo
Paderborn University, Data Science

Group
Pohlweg 51

Pacerborn, Germany D-33098
ngonga@upb.de

ABSTRACT

Time-e�cient link discovery is of central importance to imple-
ment the vision of the Semantic Web. Some of the most rapid Link
Discovery approaches rely internally on planning to execute link
speci�cations. In newer works, linear models have been used to
estimate the runtime of the fastest planners. However, no other
category of models has been studied for this purpose so far. In
this paper, we study non-linear runtime estimation functions for
runtime estimation. In particular, we study exponential and mixed
models for the estimation of the runtimes of planners. To this end,
we evaluate three di�erent models for runtime on six datasets us-
ing 500 link speci�cations. We show that exponential and mixed
models achieve better �ts when trained but are only to be preferred
in some cases. Our evaluation also shows that the use of better
runtime approximation models has a positive impact on the overall
execution of link speci�cations.

CCS CONCEPTS

• Information systems → Information integration; World

Wide Web;

KEYWORDS

Link Discovery, Taylor Series, Runtime Approximation, Link Speci-
�cations

ACM Reference format:

Kleanthi Georgala, Michael Ho�mann, and Axel-Cyrille Ngonga Ngomo.
2017. An Evaluation of Models for Runtime Approximation in Link Discov-
ery. In Proceedings of WI ’17, Leipzig, Germany, August 23-26, 2017, 8 pages.
DOI: 10.1145/3106426.3106428

1 INTRODUCTION

Link discovery frameworks are of utmost importance during the
creation of Linked Data [1]. This is due to their being the key to-
wards the implementation of the fourth Linked Data principle, i.e.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
WI ’17, Leipzig, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4951-2/17/08. . . $15.00
DOI: 10.1145/3106426.3106428

the provision of links between datasets.1 Two main challenges need
to be addressed by Link Discovery frameworks [13, 14]. First, they
need to address the accuracy challenge, i.e., they need to generate
correct links. A plethora of approaches have been developed for
this purpose and contain algorithms ranging from genetic program-
ming to probabilistic models. In addition to addressing the need
for accurate links, link discovery frameworks need to address the
challenge of time e�ciency. This challenge comes about because of
the mere size of knowledge bases that need to be linked. In particu-
lar, large knowledge bases such as LinkedTCGA [17] contain more
than 20 billion triples.

One of the approaches to improving the scalability of link dis-
covery frameworks is to use planning algorithms in a manner akin
(but not equivalent to) their use in databases [14]. In general, plan-
ners rely on cost functions to estimate the runtime of particular
portions of link speci�cations. So far, it has been assumed that this
cost function is linear in the parameters of the planning, i.e., in
the size of the datasets and the similarity threshold. However, this
assumption has never been veri�ed. In this paper, we address ex-
actly this research gap and study how well other models for runtime
approximation perform. In particular, we study linear, exponential
and mixed models for runtime estimation. The contributions of this
paper are thus as follows: (1) We present three di�erent models
for runtime approximation in planning for Link Discovery. (2) We
compare these models on six di�erent datasets and study how well
they can approximate runtimes of speci�cations as well as with
respect to how well they generalize across datasets. (3) We integrate
the models with the Helios planner for Link Discovery as described
in [14] and compare their performance using 500 speci�cations.

The rest of the paper is structured as follows: In Section 2, we
present the concept and notations necessary to understand this
work. The subsequent section, Section 3, presents the runtime ap-
proximation problem and how it can be addressed by di�erent
models. We then delve into a thorough evaluation of these models
in Section 4 and compare the expected runtimes generated by the
models at hand with the real runtimes of the Link Discovery frame-
work. We also study the transferability of the results we achieve
and their performance when planning whole link speci�cations.
Finally, we recapitulate our results and conclude.

1https://www.w3.org/DesignIssues/LinkedData.html

https://www.w3.org/DesignIssues/LinkedData.html

WI ’17, August 23-26, 2017, Leipzig, Germany Kleanthi Georgala, Michael Ho�mann, and Axel-Cyrille Ngonga Ngomo

2 PRELIMINARIES

In this section, we present the necessary concepts and notations to
understand the rest of the paper. We begin by giving a description
of a knowledge base K and Link Discovery (LD), we continue by
providing a formal de�nition of a link speci�cation (LS) and its se-
mantics and we �nish our preliminary section with an explanatory
presentation of a plan, its components and its relation to a LS.

Knowledge Base. A knowledge base K is a set of triples (s,p,o) ∈
(R ∪B) ×P × (R ∪B∪L), where R is the set of all RDF resources,
P ⊆ R is the set of all RDF properties, B is the set of all RDF blank
nodes and L is the set of all literals.

Link Discovery. Given two (not necessarily distinct) sets of RDF
resources S and T and a relation R (e.g, directorOf, owl:sameAs),
the main goal of LD is to discover the set (mapping) {(s, t) ∈ S ×T :
R (s, t)}. Given that this task can be very tedious (especially when
S and T are large), LD frameworks are commonly used to achieve
this computation.

Link Speci�cation. Declarative LD frameworks use link speci�-
cations (LSs) to describe the conditions for which R (s, t) holds for
a pair (s, t) ∈ S ×T . A LS consists of two basic components:

• similarity measures which allow the comparison of prop-
erty values of resources found in the input datasets S and
T . We de�ne an atomic similarity measure m ∈ M as a
function m : S ×T × P2 → [0, 1]. We write m(s, t ,ps ,pt)
to signify the similarity of s and t w.r.t. their properties ps
resp. pt .

• operators op ∈ {t,u, \} that allow the combination of two
similarity measures.

An atomic LS consists of one similarity measure and has the form
(m(ps ,pt),θ) where θ ∈ [0, 1]. A complex LS L = op (L1,L2) con-
sists of two LS, L1 and L2. We call L1 the left sub-speci�cation and
L2 the right sub-speci�cation of L. We denote the semantics (i.e., the
results of a LS for given sets of resources S andT) of a LS L as [[L]]
and call it a mapping. We begin by assuming the natural semantics
of the combinations of measures. Filters are pairs (f ,τ), where (1) f
is either empty (denoted ϵ) or a combination of similarity measures
by means of speci�cation operators and (2) τ is a threshold. Note
that an atomic speci�cation can be regarded as a �lter (f ,τ ,X) with
[[X]] = S ×T . We will thus use the same graphical representation
for �lters and atomic speci�cations. We call (f ,τ) the �lter of L and
denote it with φ (L). For our example L in Fig. 1, φ (L) = (ϵ, 0.7). We
denote the operator of a LS L with op (L). For L = (f ,τ ,ω (L1,L2)),
op (L) = ω. The operator of the LS shown in our example is t. The
semantics of LSs are then as shown in Table 1.

Execution Plan. To compute the mapping [[L]] (which corre-
sponds to the output of L for a given pair (S,T)), LD frameworks
implement (at least partly) a generic architecture consisting of a
rewriter (optional), a planner (optional) and an execution engine
(necessary). The rewriter performs algebraic operations to trans-
form the input LS L into a LS L′ (with [[L]] = [[L]]′) that is poten-
tially faster to execute. The most common planner is the canonical
planner (dubbed Canonical), which simply traverses L in post-
order and has its results computed in that order by the execution

engine.2 For the LS shown in Fig. 1, the execution plan returned by
Canonical would thus foresee to �rst compute the mapping M1 =
[[(trigrams(:title, :title), 0.48)]] of pairs of resources whose
property title has a cosine similarity greater or equal to 0.48. The
computation of M2 = [[(levenSim(:label, :label), 0.46)]] would
follow. Step 3 would be to compute M3 = M1uM2 while abiding by
the semantics described in Table 1. Step 4 would be to obtain M4 by
�ltering the results and keeping only the pairs that have a similarity
above 0.5. Step 5 would be M5 = [[(cosine(:name, :name), 0.78)]]
and Step 6 would be to compute M6 = M4 t M5. Finally, Step 7
would be to �lter out the pairs of links in M6 that have a similarity
less than 0.8. Given that there is a 1-1 correspondence between LS
and the plan generated by the canonical planner, we will reuse the
representation of LS devised above for plans. The sequence of steps
for such a plan is then to be understood as the sequence of steps
that would be derived by Canonical for the LS displayed.

Table 1: Semantics of link speci�cations

L [[L]]

(m,θ) {(s, t ,m(s, t)) ∈ S ×T :m(s, t) ≥ θ }

(f ,τ ,X)

{(s, t , r) ∈ [[X]] : r ≥ τ } if f = ϵ
{(s, t , r) ∈ [[X]] : f (s, t) ≥ τ } else.

u(L1,L2) {(s, t , r) | (s, t , r1) ∈ [[L1]] ∧ (s, t , r2) ∈ [[L2]] ∧ r = min(r1, r2)}

t(L1,L2)

(s, t , r) |

r = r1 if ∃(s, t , r1) ∈ [[L1]] ∧ ¬(∃r2 : (s, t , r2) ∈ [[L2]]),
r = r2 if ∃(s, t , r2) ∈ [[L2]] ∧ ¬(∃r1 : (s, t , r1) ∈ [[L1]]),
r = max(r1, r2) if (s, t , r1) ∈ [[L1]] ∧ (s, t , r2) ∈ [[L2]].

\(L1,L2) {(s, t , r) | (s, t , r) ∈ [[L1]] ∧ ¬∃r ′ : (s, t , r ′) ∈ [[L2]]}
∅(L) [[L]]

(ϵ, 0.8) t cosine (:name, :name), 0.78

(ϵ, 0.5) u levSim(:label, :label), 0.46

triдrams (:title, :title), 0.48

Figure 1: Graphical representation of an example LS

3 RUNTIME ESTIMATION

In general, planners aims to estimate the cost of the leaves of a plan,
i.e., the runtime of atomic link speci�cations. So far, linear models
[14] have been used for this purpose but the appropriateness of
other models has never been evaluated. Hence, in this work, we
compare non-linear models with linear models to approximate the
runtime of of atomic link speci�cations. Like in previous works,
we follow a sampling-based approach. First, given a particular simi-
larity measure m (e.g., Levenshtein) and an implementation of the
said measure (e.g., Ed-Join [21]), we begin by collecting sample of
runtimes for a given measure with varying values of |S |, |T | and
θ .3 These samples can be regarded as the output of a function that
can predict the runtime of the implementation ofm for which we
2Note that the planner and engine are not necessarily distinct in existing
implementations.
3We also experimented with the number of trigrams contained in S and T but found
that they do not a�ect the models we considered. An exploration of other parameters
remains future work.

An Evaluation of Models for Runtime Approximation in Link Discovery WI ’17, August 23-26, 2017, Leipzig, Germany

were given samples. The major question that is to be answered is
hence what is the shape of the runtime evaluation function?

We tried �tting functions of di�erent shapes to the previously
measured runtimes in order to compare their performance when
planning the execution of link speci�cations. Formally, these func-
tions are mappingsϕ : N×N×(0, 1] 7→ R, whose value at (|S |, |T |,θ)
is an approximation of the runtime for the link speci�cation with
these parameters. If ~R = (R1, . . . ,Rn) are the measured runtimes
for the parameters ~S = (|S1 |, . . . , |Sn |), ~T = (|T1 |, . . . , |Tn |) and
~θ = (θ1, . . . ,θn), then we constrain the mapping ϕ to be a local
minimum of the L2-Loss:

E (~S, ~T , ~θ ,~r) := ‖~R − ϕ (~S, ~T , ~θ)‖2, (1)

writing ϕ (~S, ~T , ~θ) = (ϕ (|S1 |, |T1 |,θ1), . . . ,ϕ (|Sn |, |Tn |,θn)).
Within this paper, we consider the following parametrized fami-

lies of functions:

ϕ1 (S,T ,θ) = a + b |S | + c |T | + dθ (2)
ϕ2 (S,T ,θ) = exp (a + b |S | + c |T | + dθ + eθ2) (3)
ϕ3 (S,T ,θ) = a + (b + c |S | + d |T | + e |S | |T |) exp (f θ + дθ2)(4)

The parameters are then determined by

a∗,b∗, · · · = argminE (~S, ~T , ~θ , ~R) (a,b, . . .) (5)

for some local minimum. In the case of ϕ1 and ϕ2 this problem is
linear in nature and we solved it using the pseudo-inverse of the
associated Vandermonde matrix. For ϕ3 we used the Levenberg-
Marquardt Algorithm [11] for nonlinear least squares problems,
using 1 as initial guess for all parameters.

We chose ϕ1 as the baseline linear �t. ϕ2 is the standard log-
linear �t, except for the θ2 term. We included this term during a
grid search for polynomials to perform a log-polynomial �t. Higher
orders of |S | or |T | or θ did not contribute to a better �t. ϕ3 can be
interpreted as an interpolation of ϕ1 and ϕ2 with a constant o�set
a.

To exemplify our approach for ϕ2, assume we have measured ~S =

(458, 458, 358, 58), ~T = (512, 404, 317, 512) and ~θ = (0.5, 0.9, 0.6, 0.7).
Inserting into eq. (1) and taking the logarithm, one arrives at the
optimization problem

min
a,b,c,d,e

‖

*....
,

1 458 512 0.5 0.52
1 458 404 0.9 0.92
1 358 317 0.6 0.62
1 58 512 0.7 0.72

+////
-

*......
,

a
b
c
d
e

+//////
-

−

*....
,

log(67)
log(4)
log(4)
log(1)

+////
-

‖2

The solution to this least squares problem also is the unique solution
of its normal equations:

*......
,

1 1 1 1
458 458 358 58
512 404 317 512
0.5 0.9 0.6 0.7
0.52 0.92 0.62 0.72

+//////
-

*....
,

1 458 512 0.5 0.52
1 458 404 0.9 0.92
1 358 317 0.6 0.62
1 58 512 0.7 0.72

+////
-

*......
,

a
b
c
d
e

+//////
-

=

*......
,

1 1 1 1
458 458 358 58
512 404 317 512
0.5 0.9 0.6 0.7
0.52 0.92 0.62 0.72

+//////
-

*....
,

log(67)
log(4)
log(4)
log(1)

+////
-

By multiplying and inverting matrices, we arrive at the linear equa-
tion

*......
,

a
b
c
d
e

+//////
-

=

*....
,

1 458 512 0.5 0.52
1 458 404 0.9 0.92
1 358 317 0.6 0.62
1 58 512 0.7 0.72

+////
-

+

*....
,

log(67)
log(4)
log(4)

0

+////
-

,

where A+ denotes the Moore-Penrose pseudo inverse of A [5]. Mul-
tiplying the matrices, we arrive at

*......
,

a
b
c
d
e

+//////
-

=

*......
,

−1.028
0.009
0.010
9.821
−9.053

+//////
-

.

Thus we have found the coe�cients of the �t function.

4 EVALUATION

4.1 Experimental Setup

We evaluated the three runtime estimation models using six datasets.
The �rst three are the benchmark datasets for LD dubbed Amazon-
Google Products, DBLP-ACM and DBLP-Scholar described in [10].
We also created two larger additional datasets (MOVIES and VIL-
LAGES, see Table 2) from the datasets DBpedia, LinkedGeodata
and LinkedMDB. 4 5 The sixth dataset was the set of all English
labels from DBpedia 2014. Table 2 describes the characteristics of
the datasets and presents the properties used when linking the
retrieved resources for the �rst four datasets. The mapping proper-
ties were provided to the link discovery algorithms underlying our
results.

Each of our experiments consisted of two phases: During the
training phase, we trained each of the models independently. For
each model, we computed the set of coe�cients for each of the
approximation models that minimized the root mean squared error
(RMSE) on the training data provided. The aim of the subsequent
test phase was to evaluate the accuracy of the runtime estimation
provided by each model and the performance of the currently best
LD planner, Helios [14], when it relied of each of the three models
for runtime approximations. Throughout our experiments, we used
the algorithms Ed-Join [22] (which implements the Levenshtein
string distance) and PPJoin+ [23] (which implements the Jaccard,
Overlap, Cosine and Trigrams string similarity measures) to execute
atomics speci�cations. As thresholds θ we used random values
between 0.5 and 1.

The aim of our evaluation was to answer the following set of
questions regarding the performance of the three models exp, linear
and mixed: 6

• Q1: How do our models �t each class separately? To answer
this question, we began by splitting the source and target
data of each of our datasets into two non-overlapping parts
of equal size. We used the �rst half of each source and each
target for training and the second half for testing. Training:

4http://www.linkedmdb.org/
5The new datasets as well as a description of how they were constructed are available
at http://titan.informatik.uni-leipzig.de/kgeorgala/DATA/.
6For Q1 and Q2 we did not conduct experiments using the dataset derived from
DBPedia english labels, since it includes labels from multiple classes.

http://www.linkedmdb.org/
http://titan.informatik.uni-leipzig.de/kgeorgala/DATA/

WI ’17, August 23-26, 2017, Leipzig, Germany Kleanthi Georgala, Michael Ho�mann, and Axel-Cyrille Ngonga Ngomo

We trained the three models on each dataset. For each
model, dataset and mapper, we a) selected 15 source and 15
target random samples of random sizes from the �rst half
of a dataset (Amazon-Google Products, DBLP-ACM, DBLP-
Scholar, MOVIES and VILLAGES) and b) compared each
source sample with each target sample 3 times. Note that
we used the same samples across all models for the sake of
fairness. Overall, we ran 675 training experiments to train
each model on each dataset. Testing: To test the accuracy of
each model, we ran the corresponding algorithm (Ed-Join
and PPJoin+) with a random threshold between 0.5 and
1 and recorded the real runtime of the approach and the
runtimes predicted by our three models. Each approach
was executed 100 times against the whole of the second
half of the same dataset.

• Q2: How do our models generalize across classes, i.e., can
a model trained on data from one class be used to predict
runtimes accurately on another class? Training: We trained
each model in the same manner as for Q1 on exactly the
same �ve datasets with the sole di�erence that the samples
were selected randomly from the whole dataset. Testing:
Like in the previous series of experiments, we ran Ed-Join
and PPJoin+ with a random threshold between 0.5 and 1.
Each of the algorithms was executed 100 times against the
remaining four datasets.

• Q3: How do our models perform when trained on a large
dataset? Training: We trained in the same fashion as to
answer Q1 with the sole di�erences that (1) we used 15
source and 15 target random samples of various sizes be-
tween 10, 000 and 100, 000 from (2) the English labels of
DBpedia to train our model. Testing: We learned 100 LSs
for the Amazon-GP, DBLP-ACM, MOVIES and VILLAGES
datasets using the unsupervised version of the EAGLE algo-
rithm [12]. We chose this algorithm because it was shown
to generate meaningful speci�cations that return high-
quality links in previous works. For each dataset, we ran
the set of 100 speci�cations learned by EAGLE on the given
dataset by using each of the models during the execution
in combination with the HELIOS planning algorithm [14],
which was shown to outperforms the canonical planner
w.r.t. runtime while producing exactly the same results.

Throughout our experiments, we con�gured Eagle by setting
the number of generations and population size to 20, mutation and
crossover rates were set to 0.6. All experiments for all implementa-
tions were carried out on the same 20-core Linux Server running
OpenJDK 64-Bit Server 1.8.0_74 on Ubuntu 14.04.4 LTS on Intel(R)
Xeon(R) CPU E5-2650 v3 processors clocked at 2.30GHz. Each train
experiment and each test experiment for Q3 was repeated three
times. As evaluation measure, we computed root mean square error
(RMSE) between the expected runtime and the average execution
runtime required to run each LS. We report all three numbers for
each model and dataset.

4.2 Results

To address Q1, we evaluated the performance of our models when
trained and tested on the same class. We present the results of this

series of experiments in Table 3. For PPJoin+ (in particular the tri-
grams measure), the mixed model achieved the lowest error when
tested upon Amazon-GP and DBLP-Scholar, whereas the linear
model was able to approximate the expected runtime with higher
accuracy on the MOVIES and VILLAGES datasets. On average, lin-
ear model was able to achieve a lower RMSE compared to the other
two models. For the Ed-Join, the mixed model outperformed linear
and exp in the majority of datasets (DBLP-Scholar, MOVIES and
VILLAGES) and obtained the lowest RMSE on average. As we ob-
serve in Table 3, for both measures, the exp model retrieved the
highest error on average and is thus the model less suitable for
runtime approximations. Especially, for the Ed-Join, exp had the
worst performance in four out of the �ve datasets and retrieved the
highest RMSE among the di�erent test datasets for VILLAGES. This
clearly answers our �rst questions: the linear and mixed approxi-
mation models are able achieve the smallest error when trained on
the class on which they are tested.

To continue withQ2, we conducted a set of experiments in order
to observe how well each model could generalize among the di�er-
ent classes included in our evaluation data. Tables 4, 5, 6, 7 and 8
present the results of training on one dataset and testing the result-
ing models on the set of the remaining classes. tab:exp2AmazonThe
highest RMSE error was achieved when both measures were tested
using the exp model in all datasets but VILLAGES. However, Table 8
shows that the �tting error when trained on VILLAGES is relatively
low among all three models. Additionally, we observe that the exp
model’s RMSE increased exponentially as the quantity of the train-
ing data decreased, which constitutes this model as inadequate and
unreliable for runtime approximations. By observing Tables 5 and 6,
we see that the RMSE of the exp model increased by 38 orders of
magnitude for Ed-Join.

For both measures, the linear model outperformed the other
two models on average when trained on the Amazon-GP, DBLP-
ACM and DBLP-Scholar datasets and achieved the lowest RMSE
when trained on MOVIES for Ed-Join compared to exp and mixed.
Both linear and mixed achieved minuscule approximation errors
compared to exp, but linear was able to produce at least 35% less
RMSE compared to mixed. Therefore, we can answer Q2 by stating
that the linear model is the most suitable and su�cient model that
can generalize among di�erent classes.

For our last question, we tested the performance of the di�erent
models when trained on a bigger and more diverse dataset. Table 9
shows the results of our evaluation, where each model was trained
on DBpedia english labels and tested on the the four evaluation
datasets. The linear model error was 1 order of magnitude less than
the RMSE obtained by exp and 3 orders of magnitude less compared
to the mixed error. In all four datasets, the mixed model produced
the highest RMSE. For the VILLAGES dataset, the mixed model’s
error was 1916 and 214 times higher compared to linear and exp
resp. Figs. 2 and 3 present the plans produces by Helios for the LS
MINUS(AND(levenshtein(x.descr,y.descr)|0.5045, trigrams(x.title,
y.name) |0.4871)|0.2925), OR(levenshtein(x.descr,y.descr)|0.5045, tri-
grams(x.title, y.name) |0.4871)|0.2925) >=0.2925 of the Amazon-GP
dataset, if the planner used the exp model and the linear or themixed
model resp. For the child LS AND(levenshtein(x.descr,y.descr)|0.5045,
trigrams(x.title, y.name)|0.4871)|0.2925, the linear and the mixed

An Evaluation of Models for Runtime Approximation in Link Discovery WI ’17, August 23-26, 2017, Leipzig, Germany

Table 2: Entity matching characteristics of datasets

Dataset Source (S) Target (T) |S | × |T | Source Property Target Property

Amazon-GP Amazon Google 4.40 × 106 product name, description product name, description
Products manufacturer, price manufacturer, price

DBLP-ACM ACM DBLP 6.00 × 106 title, authors title authors
venue year, venue year

DBLP-Scholar DBLP Google 0.17 × 109 title, authors title, authors
Scholar venue, year venue, year

MOVIES DBpedia LinkedMDB 0.17 × 109 dbp:name dc2:title
dbo:director/dbp:name movie:director/movie:director_name
dbo:producer/dbp:name movie:producer/movie:producer_name

dbp:writer/dbp:name movie:writer/movie:writer_name
rdfs:label rdfs:label

VILLAGES DBpedia LGD 6.88 × 109 rdfs:label rdfs:label
dbo:populationTotal lgdo:population

geo:geometry geom:geometry/agc:asWKT

Table 3: Average expected runtime, average execution time and root mean square error for the �rst �ve datasets for training

and testing on the same class. All runtimes are presented in milliseconds.

Measures Model Amazon-GP DBLP-ACM DBLP-Scholar

expected execution RMSE expected execution RMSE expected execution RMSE

PPJoin+
exp 7.33 14.45 2.78 8.36 14.56 2.43 177.02 124.88 8.02

linear 8.37 16.24 3.28 7.45 15.81 2.97 222.55 147.33 9.48
mixed 6.09 13.45 2.70 6.12 16.83 3.56 129.63 149.82 6.69

Ed-Join
exp 22.81 27.33 3.89 34.33 36.84 3.49 428.93 324.79 12.31

linear 17.99 26.04 2.60 25.29 35.85 3.35 354.97 404.06 9.65
mixed 18.34 26.45 2.78 27.68 41.20 3.54 338.55 339.31 7.30

Measures Model MOVIES VILLAGES AVERAGE

expected execution RMSE expected execution RMSE

PPJoin+
exp 134.90 146.39 5.44 211.89 135.53 9.36

PPJoin+
exp 5.61

linear 38.60 33.10 2.95 158.89 131.64 5.23 linear 4.78

mixed 48.45 49.89 3.17 214.15 201.17 8.13 mixed 4.85

Ed-Join
exp 59.57 45.47 3.76 1,225.57 1,556.04 35.23

Ed-Join
exp 11.74

linear 43.02 44.46 3.52 509.71 294.35 22.53 linear 8.33
mixed 45.55 43.26 2.88 377.02 286.91 10.89 mixed 5.48

Table 4: Average expected runtime, average execution time and root mean square error for training on Amazon-GP dataset

and testing on DBLP-ACM, DBLP-Scholar, MOVIES and VILLAGES. All runtimes are presented in milliseconds.

Measures Model DBLP-ACM DBLP-Scholar AVERAGE

expected execution RMSE expected execution RMSE

PPJoin+
exp 18.24 64.02 8.61 1.84E+17 1,609.71 1.84E+16

linear 25.42 87.68 12.23 409.98 474.82 20.59
PPJoin+

exp 8.42E+35
mixed 44.67 137.54 18.72 270.33 339.06 20.02

linear 24.68

Ed-Join
exp 62.62 142.76 15.67 5.34E+19 834.11 5.34E+18

mixed 90.07
linear 37.19 131.68 19.26 663.07 837.88 27.30
mixed 38.36 140.25 16.87 770.51 861.72 21.91

Measures Model MOVIES VILLAGES

expected execution RMSE expected execution RMSE

PPJoin+
exp 8.79E+05 95.28 8.79E+04 3.37E+37 352.77 3.37E+36

linear 133.06 202.34 11.32 853.58 331.61 54.62
Ed-Join

exp 8.43E+41
mixed 136.17 98.58 6.37 3,507.19 360.03 315.15

linear 28.01

Ed-Join
exp 1.26E+07 143.93 1.26E+06 9.75E+42 6,108.37 9.75E+41

mixed 54.49
linear 209.13 142.45 9.14 1,379.12 864.31 56.32
mixed 332.13 145.46 19.83 7,258.82 5,973.70 159.37

model chose to execute only trigrams(x.title, y.name)|0.4871) and use the other child as a �lter. Moreover, the plan retrieved by

WI ’17, August 23-26, 2017, Leipzig, Germany Kleanthi Georgala, Michael Ho�mann, and Axel-Cyrille Ngonga Ngomo

Table 5: Average expected runtime, average execution time and root mean square error for training on DBLP-ACM dataset and

testing on Amazon-GP, DBLP-Scholar, MOVIES and VILLAGES. All runtimes are presented in milliseconds.

Measures Model Amazon-GP DBLP-Scholar AVERAGE

expected execution RMSE expected execution RMSE

PPJoin+
exp 21.51 61.69 9.93 1.29E+16 3,741.58 1.29E+15

linear 15.73 46.13 8.95 346.71 3,674.06 341.87
PPJoin+

exp 3.99E+15
mixed 44.09 120.62 12.82 534.41 1,833.07 139.71

linear 101.82

Ed-Join
exp 85.53 92.78 8.02 2.82E+18 888.50 2.82E+17

mixed 531.95
linear 56.95 90.10 7.91 950.61 883.01 25.97
mixed 58.29 96.63 8.48 1,472.52 881.22 63.72

Measures Model MOVIES VILLAGES

expected execution RMSE expected execution RMSE

PPJoin+
exp 8.05E+05 108.16 8.05E+04 1.47E+37 356.93 1.47E+36

linear 127.07 132.62 7.64 819.98 368.86 48.82
Ed-Join

exp 9.3E+42
mixed 159.36 120.74 8.92 2.14E+04 1,783.72 1,966.38

linear 53.95

Ed-Join
exp 3.58E+07 156.97 3.58E+06 3.72E+44 6,329.54 3.72E+43

mixed 1,105.15
linear 373.99 156.72 23.23 2,440.64 870.15 158.72
mixed 1,246.20 155.42 109.39 4.87E+04 6,411.76 4,239.01

Table 6: Average expected runtime, average execution time and root mean square error for training on DBLP-Scholar dataset

and testing on Amazon-GP, DBLP-ACM, MOVIES and VILLAGES. All runtimes are presented in milliseconds.

Measures Model Amazon-GP DBLP-ACM AVERAGE

expected execution RMSE expected execution RMSE

PPJoin+
exp 79.32 65.28 8.03 47.42 69.70 8.74

linear -364.95 38.47 40.61 173.40 88.48 15.39
PPJoin+

exp 4.56E+04
mixed -41.05 50.27 11.00 -148.99 88.14 26.03

linear 85.07

Ed-Join
exp 113.56 80.90 8.67 113.43 139.78 16.74

mixed 427.54
linear 44.49 79.97 10.67 37.70 144.33 22.36
mixed 40.13 73.76 8.98 40.94 141.33 18.84

Measures Model MOVIES VILLAGES

expected execution RMSE expected execution RMSE

PPJoin+
exp 110.41 94.69 6.31 1.82E+06 1,546.07 1.82E+05

linear 394.74 104.19 29.99 3,158.25 621.84 254.30
Ed-Join

exp 1.10E+04
mixed 66.96 85.61 6.76 1.82E+04 1,591.24 1,666.38

linear 54.57

Ed-Join
exp 341.02 128.33 22.66 4.46E+05 6,069.92 4.41E+04

mixed 82.52
linear 360.47 127.76 24.51 2,418.34 818.14 160.73
mixed 280.77 125.19 16.86 3,670.31 820.85 285.43

Table 7: Average expected runtime, average execution time and root mean square error for training on MOVIES dataset and

testing on Amazon-GP, DBLP-ACM, DBLP-Scholar and VILLAGES. All runtimes are presented in milliseconds.

Measures Model Amazon-GP DBLP-ACM AVERAGE

expected execution RMSE expected execution RMSE

PPJoin+
exp 19.53 71.55 7.89 46.89 127.70 15.90

linear -45.99 42.58 10.51 57.73 120.70 23.93
PPJoin+

exp 8.42E+06
mixed 16.97 39.64 5.84 17.43 66.84 9.77

linear 51.34

Ed-Join
exp 15.57 80.95 9.37 16.24 135.66 17.93

mixed 37.99

linear 1.71 84.53 10.82 3.56 138.18 19.89
mixed 4.33 85.70 10.95 6.99 140.99 19.65

Measures Model DBLP-Scholar VILLAGES

expected execution RMSE expected execution RMSE

PPJoin+
exp 3,636.56 318.89 332.11 3.37E+08 634.17 3.37E+07

linear 372.82 1,315.61 102.21 1,064.96 389.93 68.69
Ed-Join

exp 1.46E+06
mixed 75.49 702.11 67.82 989.17 311.60 68.54

linear 25.91

Ed-Join
exp 4,060.80 811.77 325.48 5.85E+07 767.66 5.85E+06

mixed 42.85
linear 259.61 805.29 57.92 696.29 753.35 15.04
mixed 178.93 796.16 65.09 1,522.63 777 .00 75.74

An Evaluation of Models for Runtime Approximation in Link Discovery WI ’17, August 23-26, 2017, Leipzig, Germany

Table 8: Average expected runtime, average execution time and root mean square error for training on VILLAGES dataset and

testing on Amazon-GP, DBLP-ACM, DBLP-Scholar and MOVIES. All runtimes are presented in milliseconds.

Measures Model Amazon-GP DBLP-ACM AVERAGE

expected execution RMSE expected execution RMSE

PPJoin+
exp 93.41 67.44 5.08 35.07 62.53 8.36

linear -192.27 24.57 21.87 -133.03 61.10 21.09
PPJoin+

exp 10.16

mixed 16.37 32.66 3.40 41.57 61.83 9.20
linear 22.91

Ed-Join
exp 68.00 53.36 4.50 326.05 143.84 26.53

mixed 30.59
linear -123.44 55.03 18.20 -677.4 133.63 82.36
mixed 231.61 50.46 18.51 136.49 139.30 15.95

Measures Model DBLP-Scholar MOVIES

expected execution RMSE expected execution RMSE

PPJoin+
exp 92.10 272.40 21.78 56.74 82.92 5.43

linear -39.98 277.56 34.10 -54.33 84.08 14.57
Ed-Join

exp 21.59

mixed 84.22 451.80 40.04 -26.91 651.50 69.71
linear 54.56

Ed-Join
exp 316.66 784.7 49.85 138.63 114.50 5.46

mixed 32.75
linear 159.75 753.00 61.23 -438.84 122.89 56.44
mixed 1,737.75 945.09 81.94 255.96 116.42 14.61

using the exp model for runtime approximations aims to execute
both children LSs, which results into an overhead in the execution
of the LS. It is obvious that the linear model achieved by far the
lowest RMSE on average compared to the other two models, which
concludes the answer to Q3.

(ϵ, 0.2925) \

(ϵ, 0.2925)

u

trigrams(x .title,y.name), 0.4871

levenshtein(x .descr ,y.descr), 0.5045

(ϵ, 0.2925) t

trigrams(x .title,y.name), 0.4871

levenshtein(x .descr ,y.descr), 0.5045

Figure 2: Plan returned from Helios using the exp model.

(ϵ, 0.2925)

\

(ϵ, 0.2925)

levenshtein(x .descr ,y.descr), 0.5045

trigrams(x .title,y.name), 0.4871

(ϵ, 0.2925) t

trigrams(x .title,y.name), 0.4871

levenshtein(x .descr ,y.descr), 0.5045

Figure 3: Plan returned from Helios using the linear and

mixed model.

5 RELATEDWORK

The task of e�cient query execution in database systems is similar
to the task of execution optimization using runtime approximations
in LD frameworks. E�cient and scalable data management has been
of central importance in database systems [6]. Over the past few
years, there has been an extensive work on query optimization in

databases that is based on statistical information about relations
and intermediate results [18]. The author of [3] gives an analytic
overview regarding the procedure of query optimization and the
di�erent approaches used at each step of the process.

A novel approach in this �eld was presented by [7], in which
the proposed approach introduced the concept of parametric query
optimization. In this work, the authors provided the necessary
formalization of the aforementioned concept and conducted a set of
experiments using the bu�er size as parameter. In order to minimize
the total cost of generating all possible alternative execution plans,
they used a set of randomized algorithms. On a similar manner, the
authors of [19] introduced the idea of Multi-Objective Parametric
query optimization (MPQ), where the cost of plan is associated with
multiple cost functions and each cost function is associated with
various parameters. Their experimental results showed however
that the MPQ method performs an exhaustive search of the solution
space which addresses this approach computationally ine�cient.

Another set of approaches in the �eld of query optimization have
focused on creating dynamic execution plans. Dynamic planning is
based on the idea that the execution engine of a framework knows
more than the planner itself. Therefore, information generated by
the execution engine is used to re-evaluate the plans generated by
the optimizer. There has been a vast amount of approaches towards
dynamic query optimization such as query scrambling for initial
delays [20], dynamic planning in compile-time [4], adaptive query
operators [9] and re-ordering of operators [2].

Moreover, the problem addressed in this work focus on iden-
tifying scalable and time-e�cient solutions towards LD. A large
number of frameworks were developed to assist this issue, such
as SILK [8], Limes [13], KnoFuss [15] and Zhishi.links [16]. SILK
and KnoFuss implement blocking approaches in order to achieve
e�cient linking between resources. SILK framework incorporates
a rough index pre-match, whereas KnoFuss blocking technique is
highly in�uenced from databases systems techniques. To this end,
the only LD framework that provides both theoretical and practical
guarantees towards scalable and accurate LD is Limes. As we men-
tioned throughout this work,Limes execution strategy incorporates

WI ’17, August 23-26, 2017, Leipzig, Germany Kleanthi Georgala, Michael Ho�mann, and Axel-Cyrille Ngonga Ngomo

Table 9: Average expected runtime, average execution time and root mean square error for training on DBPedia english labels

and testing on Amazon-GP, DBLP-ACM, MOVIES and VILLAGES. All runtimes are presented in milliseconds.

Model Amazon-GP DBLP-ACM AVERAGE

expected execution RMSE expected execution RMSE

exp 5,242.09 3,618.99 3,164.86 308.14 365.46 126.42
linear 300.51 3,043.97 966.99 8.07 361.53 192.12

exp 4,577.58mixed -7.27E+06 4,512.82 6.78E+05 -7.26E+04 310.49 4.38E+04
linear 512.35Model Amazon-GP DBLP-ACM

mixed 9.82E+05expected execution RMSE expected execution RMSE

exp 584.27 1,061.67 160.05 4.61E+04 3,775.54 1.48E+04
linear 323.04 995.04 258.55 2,626.41 3,832.52 631.72
mixed -3,417.80 1,600.81 2,042.45 7.15E+06 3,891.05 3.20E+06

the Helios planner [14] which is (to the best of our knowledge) the
�rst execution optimizer in LD. Helios is able to provide accurate
runtime approximations, which we have extended in this work, and
is able to �nd the least costly execution plan for a LS, consuming a
minute portion of the overall execution runtime.

6 CONCLUSION

In this paper, we studied approximation functions that allow predict-
ing the runtime of link speci�cations. We showed that on average,
linear models are indeed the approach to chose to this end as they
seem to over�t the least. Still, mixed models also perform in a sat-
isfactory manner. Exponential models either �t very well or not
at all and are thus not to be used. In future work, we will study
further models for the evaluation of runtime and improve upon
existing planning mechanisms for the declarative LD. In particular,
we will consider other features when approximation runtimes, e.g.,
the distribution of characters in the strings to compare.

7 ACKNOWLEDGMENTS

This work has been supported by the H2020 project HOBBIT (GA
no. 688227), the EuroStars project QAMEL (project no. 01QE1549C)
and the BMWi project SAKE (project no. 01MD15006E).

REFERENCES

[1] Sören Auer, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, and Amrapali Zaveri.
2013. Introduction to linked data and its lifecycle on the web. In Reasoning Web.
Semantic Technologies for Intelligent Data Access. Springer, 1–90.

[2] Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive Query
Processing. In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’00). ACM, New York, NY, USA, 261–272.

[3] Surajit Chaudhuri. 1998. An overview of query optimization in relational systems.
In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems (PODS ’98). ACM, 34–43. DOI:http://dx.doi.org/10.
1145/275487.275492

[4] Richard L. Cole and Goetz Graefe. 1994. Optimization of Dynamic Query Evalu-
ation Plans. In Proceedings of the 1994 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’94). ACM, New York, NY, USA, 150–160.

[5] Pierre Courrieu. 2008. Fast computation of Moore-Penrose inverse matrices.
arXiv preprint arXiv:0804.4809 (2008).

[6] Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. ACM
Comput. Surv. 25, 2 (June 1993), 73–169. DOI:http://dx.doi.org/10.1145/152610.
152611

[7] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. 1992.
Parametric Query Optimization. In Proceedings of the 18th International Confer-
ence on Very Large Data Bases (VLDB ’92). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 103–114.

[8] R. Isele, A. Jentzsch, and C. Bizer. 2011. E�cient Multidimensional Blocking for
Link Discovery without losing Recall. In WebDB.

[9] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Daniel S.
Weld. 1999. An Adaptive Query Execution System for Data Integration. In

Proceedings of the 1999 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’99). ACM, New York, NY, USA, 299–310. DOI:http://dx.doi.
org/10.1145/304182.304209

[10] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. PVLDB 3, 1 (2010), 484–
493.

[11] Jorge J Moré. 1978. The Levenberg-Marquardt algorithm: implementation and
theory. In Numerical analysis. Springer, 105–116.

[12] Axel-Cyrille Ngonga Ngomo and Klaus Lyko. 2012. Eagle: E�cient active learning
of link speci�cations using genetic programming. In The Semantic Web: Research
and Applications. Springer, 149–163.

[13] Axel-Cyrille Ngonga Ngomo. 2012. On Link Discovery using a Hybrid Approach.
Journal on Data Semantics 1, 4 (December 2012), 203 – 217.

[14] Axel-Cyrille Ngonga Ngomo. 2014. HELIOS - Execution Optimization for Link
Discovery. In The Semantic Web - ISWC 2014 - 13th International Semantic Web
Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I. Springer,
17–32.

[15] Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta. 2012. Unsupervised learning
of link discovery con�guration. In 9th Extended Semantic Web Conference (ESWC
2012). http://oro.open.ac.uk/33434/

[16] Xing Niu, Shu Rong, Yunlong Zhang, and Haofen Wang. 2011. Zhishi.links
results for OAEI 2011. In OM.

[17] Muhammad Saleem, Maulik R Kamdar, Aftab Iqbal, Shanmukha Sampath, He-
lena F Deus, and Axel-Cyrille Ngonga Ngomo. 2014. Big linked cancer data:
Integrating linked tcga and pubmed. Web Semantics: Science, Services and Agents
on the World Wide Web 27 (2014), 34–41.

[18] Abraham Silberschatz, Henry Korth, and S. Sudarshan. 2006. Database Systems
Concepts (5 ed.). McGraw-Hill, Inc., New York, NY, USA.

[19] Immanuel Trummer and Christoph Koch. 2014. Multi-objective Parametric
Query Optimization. Proc. VLDB Endow. 8, 3 (Nov. 2014), 221–232. DOI:http:
//dx.doi.org/10.14778/2735508.2735512

[20] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. 1998. Cost-based Query
Scrambling for Initial Delays. In Proceedings of the 1998 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’98). ACM, New York, NY,
USA, 130–141. DOI:http://dx.doi.org/10.1145/276304.276317

[21] Chuan Xiao, Wei Wang, and Xuemin Lin. 2008. Ed-Join: an e�cient algorithm
for similarity joins with edit distance constraints. Proceedings of the VLDB
Endowment 1, 1 (2008), 933–944.

[22] Chuan Xiao, Wei Wang, and Xuemin Lin. 2008. Ed-Join: An E�cient Algorithm
for Similarity Joins with Edit Distance Constraints. Proc. VLDB Endow. 1, 1 (Aug.
2008), 933–944. DOI:http://dx.doi.org/10.14778/1453856.1453957

[23] Chuan Xiao, Wei Wang, Xuemin Lin, and Je�rey Xu Yu. 2008. E�cient Similar-
ity Joins for Near Duplicate Detection. In Proceedings of the 17th International
Conference on World Wide Web (WWW ’08). ACM, New York, NY, USA, 131–140.

http://dx.doi.org/10.1145/275487.275492
http://dx.doi.org/10.1145/275487.275492
http://dx.doi.org/10.1145/152610.152611
http://dx.doi.org/10.1145/152610.152611
http://dx.doi.org/10.1145/304182.304209
http://dx.doi.org/10.1145/304182.304209
http://oro.open.ac.uk/33434/
http://dx.doi.org/10.14778/2735508.2735512
http://dx.doi.org/10.14778/2735508.2735512
http://dx.doi.org/10.1145/276304.276317
http://dx.doi.org/10.14778/1453856.1453957

	Abstract
	1 Introduction
	2 Preliminaries
	3 Runtime Estimation
	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

