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Abstract. A major research challenge is to perform scalable analysis of large-
scale knowledge graphs to facilitate applications like link prediction, knowledge
base completion and reasoning. Analytics methods which exploit expressive struc-
tures usually do not scale well to very large knowledge bases, and most analytics
approaches which do scale horizontally (i.e., can be executed in a distributed
environment) work on simple feature-vector-based input. This software framework
paper describes the ongoing Semantic Analytics Stack (SANSA) project, which
supports expressive and scalable semantic analytics by providing functionality for
distributed computing on RDF data.

1 Introduction

In this paper, we introduce SANSA,5 an open-source6 structured data processing engine
for performing distributed computation over large-scale RDF datasets. It provides data
distribution, scalability, and fault tolerance for manipulating large RDF datasets, and
applying analytics on the data at scale by making use of cluster-based big data processing
engines. It comes with: (i) specialised serialisation mechanisms and partitioning schemata
for RDF, using vertical partitioning strategies, (ii) a scalable query engine for large RDF
datasets and different distributed representation formats for RDF, namely graphs, tables
and tensors, (iii) an adaptive reasoning engine which derives an efficient execution and
evaluation plan from a given set of inference rules, (iv) several distributed structured
machine learning algorithms that can be applied on large-scale RDF data, and (v) a
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Fig. 1. The SANSA framework combines distributed analytics (left) and semantic technologies
(right) into a scalable semantic analytics stack (top). The colours encode what part of the two
original stacks influence which part of the SANSA stack. A main vision of SANSA is the belief
that the the characteristics of each technology stack (bottom) can be combined and retain the
respective advantages.

framework with a unified API that aims to combine distributed in-memory computation
technology with semantic technologies.

To achieve the goal of storing and manipulating large RDF datasets, we leverage
existing big data frameworks like Apache Spark7 and Apache Flink,8 which have matured
over the years and offer a proven and reliable method for general-purpose processing of
large-scale data.

The remainder of the paper is structured as follows: section 2 depicts a new vision of
combining distributed computing frameworks with the semantic technology stack and an
overview of the SANSA architecture. We present some of the use cases demonstrating
a variety of applications of the SANSA framework in detail in section 3. We discuss
related work in section 4 and conclude in section 5 along with directions for future work.

2 Vision and Architecture

Research efforts in the areas of distributed analytics and semantic technologies have so
far been mostly isolated. As illustrated in Figure 1, we see several core aspects in which
both areas have complementary strengths and weaknesses.
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State-of-the-art distributed in-memory analytics frameworks, such as Apache Spark
and Apache Flink, provide some graph-based analytics [1] but do not support semantic
technology standards. The application of these approaches on heterogeneous data sources
faces many limitations, in particular due to non-standardised input formats and the need
for manual data integration. This can lead to large amounts of time and effort being spent
on pre-processing data rather than performing the actual data analytics task. Semantic
technologies are W3C-standardised and have the potential to significantly alleviate the
pre-processing overhead: although the initial effort for modelling input data in RDF
may be higher, the repeated later reuse of the datasets in various analytics tasks can
lead to a reduction of overall effort. Moreover, there are many connectors from existing
data sources to RDF (e.g. via the R2RML standard) and they provide sophisticated data
integration, e.g. via link discovery and fusion approaches for RDF. We want to go a
step further and use this modelling standard as a basis for machine learning and data
analytics. The layered architecture of SANSA is a direct consequence of this vision and
is depicted at the top of Figure 1. We will now discuss the different layers and currently
implemented functionality in SANSA.

Knowledge Distribution & Representation Layer9 10 This is the lowest layer on
top of the existing distributed frameworks (Apache Spark or Apache Flink). It provides
APIs to load/store native RDF or OWL data from HDFS or a local drive into the
framework-specific data structures, and provides the functionality to perform simple
and distributed manipulations on the data. Moreover, it allows to compute the dataset
statistics described in [6] in a distributed manner. For the representation of OWL axioms
we are also investigating data structures that allow an efficient, distributed computation
of light-weight reasoning tasks like inferring the closure w.r.t. sub class relations.

Query Layer11 Querying an RDF graph is the primary method for searching,
exploring, and extracting information from the underlying RDF data. SPARQL12 is the
W3C standard for querying RDF graphs. Our aim is to have cross-representational trans-
formations and partitioning strategies for efficient query answering. We are investigating
the performance of different data structures (e.g., graphs, tables, tensors) in the context
of different types of queries and workflows. SANSA provides APIs for performing
SPARQL queries directly in Spark and Flink programs. It also features a W3C standard
compliant HTTP SPARQL endpoint server component for enabling externally querying
the data that has been loaded using its APIs. These queries are eventually transformed
into lower-level Spark/Flink programs executed on the Distribution & Representation
Layer. At present, SANSA implements flexible triple-based partitioning strategies on
top of RDF (such as predicate tables with sub-partitioning by datatypes), which will be
complemented with sub-graph based partitioning strategies. Based on the partitioning
and the SQL dialects supported by Spark and Flink, SANSA provides an infrastructure
for the integration of existing SPARQL-to-SQL rewriting tools. This bears the potential
advantage of leveraging the optimizers of both the rewriters as well as those of the
underlying frameworks for SQL. Currently, the Sparqlify13 implementation serves as the
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baseline. Query results can then be further processed by other modules in the SANSA
Framework.

Inference Layer14 Both RDFS and OWL contain schema information in addition
to assertions or facts. The core of the forward chaining inference process is to iteratively
apply inference rules on existing facts in a knowledge base to infer new facts. This process
is helpful for deriving new knowledge and for detecting inconsistencies. Currently,
SANSA supports efficient algorithms for the well-known reasoning profiles RDFS (with
different subsets) and OWL-Horst, future releases will contain others like OWL-EL,
OWL-RL and OWL-LD. In addition, SANSA contains a premiliminary version of an
adaptive rule engine that can derive an efficient execution plan from a given set of
inference rules by generating, analysing and transformation of a rule-dependency graph.
By using SANSA, applications will be able to fine tune the rules they require and – in
case of scalability problems – adjust them accordingly.

Machine Learning Layer15 While the majority of machine learning algorithms
use feature vectors as input, the machine learning algorithms in SANSA exploit the graph
structure and semantics of the background knowledge specified using the RDF and OWL
standards. This enables the algorithms to exploit the expressivity of semantic knowledge
structures and attain either better performance [8,15] or more human-understandable
results. At the moment, the machine learning layer contains algorithms for tensor factori-
sation (those can be used for computing knowledge graph embeddings and are applicable
in link prediction and curation scenarios), association rule mining, decision trees and
clustering RDF data. Effectively and efficiently distributing data structures in potentially
complex machine learning approaches is a major challenge in this layer.

3 Use Cases and Deployment

The main goal of the SANSA framework is to build a generic stack which can work with
large amounts of linked data, offering algorithms for scalable, i.e. horizontally distributed,
semantic data analysis. To validate this, we develop use cases implementations in several
domains and projects.

Life Sciences – Open PHACTS The Open Pharmacological Concepts Triple
Store (Open PHACTS)16 Discovery Platform provides open access to pharmaceutical
data which is gathered and structured through multiple efforts, e.g. Uniprot, GOA,
ChEMBL, OPS Chemical Registry, DisGeNET, OPS Identity Mappings, WikiPathways,
Drugbank, ConceptWiki and ChEBI, with 2.8 billion triples [17]. Even though this data
can potentially fit into the memory of a server (efficient compression techniques in triple
stores can compress it to 100 GB), intermediate results of query joins, inference and
machine learning algorithms do not fit into memory. For example, our initial experiments
have shown that even light-weight inference and analysis for a subset of the used data
sources (specifically UniProt, EggNOG, StringDB) cannot be efficiently performed on
single machines even with 1 TB of main memory. For this reason, distributed approaches
are relevant for Open PHACTS. Specifically, they have developed workflows for key
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questions on the platform [4] which are then used to elaborate API calls that need to
be executed. Open PHACTS is currently investigating SANSA as a scalable alternative
to perform these workflows over their continuously growing datasets. For example,
to answer Question(Q) 6 – “For a specific target family, retrieve all compounds in
specific assays” – the task is to look for a particular target family (from the ChEMBL
protein classification) and retrieve compounds acting on members of that family (from
ChEMBL). SANSA aims to optimise this and similar queries by making use of efficient
distributed indexing/querying techniques. SANSA is also investigated for answering
complex questions for Open PHACTS, which do not even have a workflow e.g. Q2-
“For a given compound, what is its predicted secondary pharmacology?”. Tasks like this
can be solved by using predictive machine learning models integrated with knowledge
graph models, i.e. to search for the primary pharmacology and predicting the associated
secondary pharmacologies.

Big Data Platform – BDE Big Data Europe(BDE)17 [2] is a large Horizon2020
funded EU project which offers an open source big data processing platform allowing
users to install numerous big data processing tools and frameworks. SANSA is a part of
this platform. The platform is being tested and used by the 17 different partners of the
project scattered across Europe and its 7 different use cases cover a variety of societal
challenges like climate, health, weather etc. As a specific example, SANSA can be used
for log analysis in the context of the BDE platform. The mu.semte.ch micro service in
BDE transforms docker events to RDF and stores them in a triple store. Work is also
being done in order to translate HTTP network traffic to RDF. The data from these logs
(events and HTTP traffic) can be then combined with the data for a particular micro
service and its relevant load (CPU/memory usage) on the server. SANSA can then build
a predictive cost model for the micro service calls. This can further be extended for
efficient resource allocation, monitoring and creation of common user profiles.

Publishing Sector – Elsevier Semantic technologies are very useful in the pub-
lishing industry. For example, with in-depth medical knowledge and more than 400 000
scientific articles published per year, annotated with more than 8 million entities and
mappings to the Elsevier Merged Medical Taxonomy (EMMeT), Elsevier is building up
and testing a large-scale knowledge graph. Elsevier is currently applying (and approach-
ing the limits of) state-of-the-art matrix and tensor factorisation methods, which will be
distributed and enhanced in SANSA. There are at least three critical application areas for
the methods developed in SANSA: 1.) entity resolution (of author profiles, organisation
profiles, etc.), 2.) semantic querying in complex databases (e.g. Clinical Key) and 3.)
taxonomy construction. At present publishers, and Elsevier specifically, have to resort to
methods which are less accurate than the state of the art due to scalability problems.

Deployment and Education SANSA provides Notebooks18 for an easy local
deployment for development and demonstration purposes. SANSA-Notebooks is an
interactive toolkit on top of Hadoop-Spark-Workbench19 with Apache Zeppelin,20 which
allows copying files from/to HDFS and interactive Spark code execution via a web GUI.
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Fig. 2. SANSA-Notebooks running in Zeppelin.

We utilise SANSA-Notebooks (see Fig. 2) in our Big Data labs at the University of Bonn
as they alleviate the complicated Hadoop/Spark setup and allow the students to focus on
developing distributed algorithms on top of SANSA. Deployment is possible through
a Docker image for the stack (i.e. SANSA-Examples21). Finally, SANSA is readily
available from the Maven Central Repository. Thus it is straightforward to include it in
other projects using Maven or SBT – the most popular build managers for Scala – for
both Spark- and Flink-based setups.

4 Related Work

We give a brief and incomplete account of existing work in distributed RDF querying, in-
ference and machine learning focusing on approaches available as software frameworks.

Querying: SparkRDF [22] and H2RDF+ [14] use RDF dataset statistics to find best
merge-join orders for efficient querying. Huang et al. [11] present a hybrid system
using in-memory retrieval and map-reduce. TriAD [10] is a specialised shared nothing
system that was later [12] improved by using dynamic data exchange for join evaluation.
SANSA partially includes the Spark-based S2RDF [16] querying engine which rewrites
SPARQL queries to SQL. SANSA facilitates the integration of existing engines under a
uniform set of APIs and extends the state of the art in querying through new distributed
indexing and partitioning strategies.

Inference: Different distributed rule-based approaches, optimised for one of the many
language profiles for the semantic web, have been developed in the past. A scalable
distributed reasoning for RDFS entailment rules introduced by Urbani et al. [19], uses
optimal execution ordering of the rules to reduce computation time. The WebPIE [18]
forward chaining reasoner uses a MapReduce approach. QueryPie [20], uses backward
chaining and distributes the schema triples. Cichlid [9] is a distributed reasoning engine,
using the Apache Spark framework. The above systems only support (fragments of) the
OWL RL language profile. SANSA provides a general rule-based reasoning engine that
optimises executions plans for an arbitrary set of rules by taking into account the logical
21
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dependencies between rules, the distribution of the data w.r.t. the rules, and the technical
features of the underlying distributed processing framework.

Machine Learning: There are numerous centralised machine learning frameworks
and algorithms for RDF data. DL Learner [3] is a framework for inductive learning
for the Semantic Web. AMIE [7] learns association rules from RDF data. ProPPR [21]
and TensorLog [5] are recent frameworks for efficient probabilistic inference in first
order logic. Nickel et al. provide a review of statistical relational learning techniques for
knowledge graphs [13]. Scaling up structured machine learning algorithms, which are
mostly iterative convergent in nature, using Bulk Synchronous Parallel frameworks (e.g.
Spark, Flink) is a challenging task.

General: Previous approaches demonstrate specialised efforts related to specific
layers of the SANSA stack. In contrast to this, SANSA provides a unified platform for
distributed machine learning over large-scale knowledge graphs, combined with querying
and rule-based inference. This makes it easier for developers to access its functionality,
move between different implementations and assemble existing functionality into larger
workflows. To the best of our knowledge, SANSA is the only holistic framework for
distributed analytics on large-scale RDF data.

5 Conclusions and Future Work

We presented the SANSA framework, which combines the advantages of distributed
in-memory computing and semantic technologies. Its holistic layered approach leverages
data integration and modelling capabilities provided by semantic technologies with ma-
chine learning functionality and improved horizontal scalability provided by distributed
in-memory frameworks. We believe that SANSA is an important framework for the
semantic technology community as well as those parts of the distributed in-memory de-
velopment community which require more sophisticated data modelling capabilities. In
the future, we will enrich SANSA with algorithms for inference-aware knowledge graph
embeddings, distributed approximate reasoning and further data partitioning strategies.
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