
WOMBAT– A Generalization Approach
for Automatic Link Discovery

Mohamed Ahmed Sherif1, Axel-Cyrille Ngonga Ngomo1,2, and Jens Lehmann3,4

1 R&D Department II, Computing Center, University of Leipzig, 04109 Leipzig, Germany
{sherif|ngonga}@informatik.uni-leipzig.de

2 Data Science Group, University of Paderborn, Pohlweg 51 33098 Paderborn, Germany
ngonga@upb.de

3 Computer Science Institute, University of Bonn, Römerstr. 164, 53117 Bonn, Germany
jens.lehmann@cs.uni-bonn.de

4 Fraunhofer IAIS, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
jens.lehmann@iais.fraunhofer.de

Abstract. A significant portion of the evolution of Linked Data datasets lies in
updating the links to other datasets. An important challenge when aiming to up-
date these links automatically under the open-world assumption is the fact that
usually only positive examples for the links exist. We address this challenge by
presenting and evaluating WOMBAT, a novel approach for the discovery of links
between knowledge bases that relies exclusively on positive examples. WOM-
BAT is based on generalisation via an upward refinement operator to traverse the
space of link specification. We study the theoretical characteristics of WOMBAT

and evaluate it on 8 different benchmark datasets. Our evaluation suggests that
WOMBAT outperforms state-of-the-art supervised approaches while relying on
less information. Moreover, our evaluation suggests that WOMBAT’s pruning al-
gorithm allows it to scale well even on large datasets.

1 Introduction

The Linked Open Data Cloud has grown from a mere 12 datasets at its beginning to a
compendium of more than 9,000 public RDF data sets.5 In addition to the number of the
datasets published growing steadily, we also witness the size of single datasets growing
with each new edition. For example, DBpedia has grown from 103 million triples de-
scribing 1.95 million things (DBpedia 2.0) to 583 million triples describing 4.58 million
things (DBpedia 2014) within 7 years. This growth engenders an increasing need for
automatic support when maintaining evolving datasets. One of the most crucial tasks
when dealing with evolving datasets lies in updating the links from these data sets to
other data sets. While supervised approaches have been devised to achieve this goal,
they assume the provision of both positive and negative examples for links [1]. How-
ever, the links available on the Data Web only provide positive examples for relations
and no negative examples, as the open-world assumption underlying the Web of Data
suggests that the non-existence of a link between two resources cannot be understood

5 http://lodstats.aksw.org

http://lodstats.aksw.org

as stating these two resources are not related. Consequently, state-of-the-art supervised
learning approaches for link discovery can only be employed if the end users are willing
to provide the algorithms with information that is generally not available on the Linked
Open Data Cloud, i.e., with negative examples.

We address this drawback by proposing the first approach for learning links based
on positive examples only. Our approach, dubbed WOMBAT, is inspired by the concept
of generalisation in quasi-ordered spaces. Given a set of positive examples we aim to
find a classifier that covers a large number of positive examples (i.e., achieves a high
recall on the positive examples) while still achieving a high precision. We use Link
Specifications (LS, see Section 2) as classifiers [1,7,14]. We are thus faced with the
challenge of using various similarity metrics, acceptance thresholds and nested logical
combinations of those when learning. The contributions of this paper are: 1) We provide
the first approach for learning LS that is able to learn links from positive examples
only. 2) Our approach is based on an upward refinement operator for which we analyse
its theoretical characteristics. 3)We use the characteristics of our operator to devise a
pruning approach and improve the scalability of WOMBAT. 4) We evaluate WOMBAT
on 8 benchmark datasets and show that in addition to needing less training data, it also
outperforms the state of the art in most cases.

2 Preliminaries

The aim of link discovery (LD) is to discover the set {(s, t) ∈ S × T : Rel(s, t)} provided
an input relation Rel and two sets S (source) and T (target) of RDF resources. To achieve
this goal, declarative LD frameworks rely on LS, which describe the conditions under
which Rel(s, t) can be assumed to hold for a pair (s, t) ∈ S × T . Several grammars have
been used for describing LS in previous works [15,6,19]. In general, these grammars
assume that LS consist of two types of atomic components: similarity measures m,
which allow comparing property values of input resources and operators op, which can
be used to combine these similarities to more complex LS. Without loss of generality,
we define a similarity measure m as a function m : S × T → [0, 1]. An example of
a similarity measure is the edit similarity dubbed edit6 which allows computing the
similarity of a pair (s, t) ∈ S × T with respect to the properties ps of s and pt of t. We
use mappings M ⊆ S × T to store the results of the application of a similarity function
to S × T or subsets thereof. We denote the set of all mappings asM and the set of all
LS as L. We define a filter as a function f (m, θ). We call a specification atomic when
it consists of exactly one filtering function. A complex specification can be obtained by
combining two specifications L1 and L2 through an operator that allows merging the
results of L1 and L2. Here, we use the operators u, t and \ as they are complete and
frequently used to define LS. An example of a complex LS is given in Figure 1.

We define the semantics [[L]]M of a LS L w.r.t. a mapping M as given in Figure 1.
Those semantics are similar to those used in languages like SPARQL, i.e., they are
defined extensionally through the mappings they generate. The mapping [[L]] of a LS L
with respect to S ×T contains the links that will be generated by L. A LS L is subsumed

6 We define the edit similarity of two strings s and t as (1 + lev(s, t))−1, where lev stands for the
Levenshtein distance.

by L′, denoted by L v L′, if for all mappings M, we have [[L]]M ⊆ [[L′]]M . Two LS are
equivalent, denoted by L ≡ L′ iff L v L′ and L′ v L. Subsumption (v) is a partial order
over L.

Fig. 1: Example of a complex LS. The
filter nodes are rectangles while the
operator nodes are circles. :socID
stands for social security number.

f (edit(:socId,:socId), 0.50)

f (trigrams(:name,:label), 0.50)

t

Table 1: Link Specification Syntax and
Semantics

LS [[LS]]M

f (m, θ) {(s, t)|(s, t) ∈ M ∧ m(s, t) ≥ θ}
L1 u L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∈ [[L2]]M}

L1 t L2 {(s, t)|(s, t) ∈ [[L1]]M ∨ (s, t) ∈ [[L2]]M}

L1\L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) < [[L2]]M}

3 Constructing and Traversing Link Specifications

The goal of our learning approach is to learn a specification L that generalizes a mapping
M ⊆ S × T which contains a set of pairs (s, t) for which Rel(s, t) holds. Our approach
consists of two main steps. First, we aim to derive initial atomic specifications Ai that
achieve the same goal. In a second step, we combine these atomic specifications to the
target complex specification L by using the operators u, t and \. In the following, we
detail how we carry out these two steps.

3.1 Learning Atomic Specifications

The goal here is to derive a set of initial atomic specifications {A1, . . . , An} that achieves
the highest possible F-measure given a mapping M ⊆ S × T which contains all known
pairs (s, t) for which Rel(s, t) holds. Given a set of similarity functions mi, the set of
properties Ps of S and the set of properties Pt of T , we begin by computing the subset
of properties from S and T that achieve a coverage above a threshold τ ∈ [0, 1], where
the coverage of a property p for a knowledge base K is defined as

coverage(p) =
|{s : (s, p, o) ∈ K}|
|{s : ∃q : (s, q, o) ∈ K}|

. (1)

Now for all property pairs (p, q) ∈ Ps × Pt with coverage(p) ≥ τ and coverage(q) ≥ τ,
we compute the mappings Mi j = {(s, t) ∈ S × T : mi j(s, t) ≥ θ j}, where mi j compares s
and t w.r.t. p and q and Mi j is maximal w.r.t. the F-measure it achieves when compared
to M. To this end, we apply an iterative search approach. Finally, we select Mi j as the
atomic mapping for p and q. Thus, we return as many atomic mappings as property pairs
with sufficient coverage. Note that this approach is not quintessential for WOMBAT and
can thus be replaced with any approach of choice which returns a set of initial LS that
is to be combined.

3.2 Combining Atomic Specifications

After deriving atomic LS as described above, WOMBAT computes complex specifica-
tions by using an approach based on generalisation operators. The basic idea behind
these operators is to perform an iterative search through a solution space based on a
score function. Formally, we rely on the following definitions:

Definition 1 ((Refinement) Operator). In the quasi-ordered space (L,v), we call a
function from L to 2L an (LS) operator. A downward (upward) refinement operator ρ is
an operator, such that for all L ∈ L we have that L′ ∈ ρ(L) implies L′ v L (L v L′). L′

is called a specialisation (generalisation) of L. L′ ∈ ρ(L) is usually denoted as L ρ L′.

Definition 2 (Refinement Chains). A refinement chain of a refinement operator ρ of
length n from L to L′ is a finite sequence L0, L1, . . . , Ln of LS, such that L = L0, L′ = Ln

and ∀i ∈ {1 . . . n}, Li ∈ ρ(Li−1). This refinement chain goes through L′′ iff there is an i
(1 ≤ i ≤ n) such that L′′ = Li. We say that L′′ can be reached from L by ρ if there exists
a refinement chain from L to L′′. ρ∗(L) denotes the set of all LS which can be reached
from L by ρ. ρm(L) denotes the set of all LS which can be reached from L by a refinement
chain of ρ of length m.

Definition 3 (Properties of refinement operators). An operator ρ is called (1) (lo-
cally) finite iff ρ(L) is finite for all LS L ∈ L; (2) redundant iff there exists a refinement
chain from L ∈ L to L′ ∈ L, which does not go through (as defined above) some LS
L′′ ∈ L and a refinement chain from L to L′ which does go through L′′; (3) proper iff for
all LS L ∈ L and L′ ∈ L, L′ ∈ ρ(L) implies L . L′. An LS upward refinement operator
ρ is called weakly complete iff for all LS ⊥ @ L we can reach a LS L′ with L′ ≡ L from
⊥ (most specific LS) by ρ.

We designed two different operators for combining atomic LS to complex specifi-
cations: The first operator takes an atomic LS and uses the three logical connectors to
append further atomic LS. Assuming that (A1, . . . , An) is the set of atomic LS found, ϕ
can be defined as follows:

ϕ(L) =

⋃n

i=1 Ai if L = ⊥(⋃n
i=1 L t Ai

)
∪

(⋃n
i=1 L u Ai

)
∪

(⋃n
i=1 L\Ai

)
otherwise

This naive operator is not a refinement operator (neither upward nor downward). Its
main advantage lies in its simplicity allowing for a very efficient implementation. How-
ever, it cannot reach all specifications, e.g., a specification of the form (A1tA2)u (A3t

A4) cannot be reached. Examples of chains generated by ϕ are as follows:

1. ⊥ ϕ A1 ϕ A1 t A2 ϕ (A1 t A2) \ A3
2. ⊥ ϕ A2 ϕ A2 u A3 ϕ (A2 u A3) \ A4

The second operator, ψ, uses a more sophisticated expansion strategy in order to
allow learning arbitrarily nested LS and is shown in Figure 2. Less formally, the operator
works as follows: It takes a LS as input and makes a case distinction on the type of LS.
Depending on the type, it performs the following actions:

ψ(L) =

{Ai1 \ A j1 u · · · u Aim \ A jm | Aik , A jk ∈ A
for all 1 ≤ k ≤ m} if L = ⊥

{L t Ai \ A j | Ai ∈ A, A j ∈ A} if L = A (atomic)
{L1} ∪ {L t Ai \ A j | Ai ∈ A, A j ∈ A} if L = L1 \ L2

{L1 u · · · u Li−1 u L′ u Li+1 u · · · u Ln | L′ ∈ ψ(Li)}
∪ {L t Ai \ A j | Ai ∈ A, A j ∈ A} if L = L1 u · · · u Ln(n ≥ 2)

{L1 t · · · t Li−1 t L′ t Li+1 t · · · t Ln | L′ ∈ ψ(Li)}
∪ {L t Ai \ A j | Ai ∈ A, A j ∈ A} if L = L1 t · · · t Ln(n ≥ 2)

Fig. 2: Definition of the refinement operator ψ.

– The ⊥ LS is refined to the set of all combinations of \ operations. This set can be
large and will only be built iteratively (as required by the algorithm) with at most
approx. n2 refinements per iteration (see the next section for details).

– In LS of the form A1 \ A2, ψ can drop the second part in order to generalise.
– If the LS is a conjunction or disjunction, the operator can perform a recursion on

each element of the conjunction or disjunction.
– For LS of any type, a disjunction with an atomic LS can be added.

Below are two example refinement chains of ψ:

1. ⊥ ψ A1 \ A2 ψ A1 ψ A1 t A2 \ A3

2. ⊥ ψ A1 \ A2 u A3 \ A4 ψ A1 u A3 \ A4 ψ A1 u A3 ψ (A1 u A3) t (A5 \ A6)

ψ is an upward refinement operator with the following properties.

Proposition 1. ψ is an upward refinement operator.

Proof. For an arbitrary LS L, we have to show for any element L′ ∈ ψ(L) that L v L′

holds. The proof is straightforward by showing that L′ cannot generate less links than
L via case distinction and structural induction over LS:

– L = ⊥: Trivial.
– L is atomic: Adding a disjunction cannot result in less links (this also holds for the

cases below).
– L is of the form L1 \ L2: L′ = L1 cannot result in less links.
– L is a conjunction / disjunction: L′ cannot result in less links by structural induction.

�

Proposition 2. ψ is weakly complete.

Proof. To show this, we have to show that an arbitrary LS L can be reached from the ⊥
LS. First, we convert everything to negation normal form by pushing \ inside, e.g. LS
of the form L1 \ (L2 u L3) are rewritten to (L1 \ L2) t (L1 \ L3) and LS of the form

L1 \ (L2 t L3) are rewritten to (L1 \ L2)u (L1 \ L3) exhaustively. We then further convert
the LS to conjunction normal including an exhaustive application of the distribute law,
i.e., conjunctions cannot be nested within disjunctions. The resulting LS is dubbed L′

and equivalent to L. We show that L′ can always be reached from ⊥ via induction over
its structure:

– L′ = ⊥: Trivial via the empty refinement chain.
– L′ = A (atomic): Reachable via ⊥ ψ A \ A′ ψ A.
– L′ = A1 \ A2 (atomic negation): Reachable directly via ⊥ ψ A1 \ A2.
– L′ is a conjunction with m elements: ⊥ ψ Ai1 \ A j1 u · · · u Aim \ A jm where an

element Aik \A jk is chosen as follows: Let the k-th element of conjunction L′ be L′′.
• If L′′ is an atomic specification A, then Aik = A (A jk can be arbitrarily).
• If L′′ is an atomic negation A1 \ A2, then Aik = A and A jk = A2.
• If L′′ is a disjunction, the first element of this disjunction falls into one the

above two cases and Aik and A jk can be set as described there.
Each element of L′′ is then further refined to L′ as follows:
• If L′′ is an atomic specification A: A \ A jk is refined to A.
• If L′′ is an atomic negation A1 \ A2: No further refinements are necessary.
• If L′′ is a disjunction. The first element of the disjunction is first treated ac-

cording to the two cases above. Subsequent elements of the disjunction are
either atomic LS or atomic negation and can be added straightforwardly as the
operator allows adding disjunctive elements to any non-⊥ LS.

Please note that the case distinction is exhaustive as we assume L′ is in conjunctive
negation normal form, i.e., there are no disjunctions on the outer level, negation is
always atomic, conjunctions are not nested within other conjunction and elements of
disjunctions within conjunctions cannot be conjunctions. �

Proposition 3. ψ is finite, not proper and redundant.

Proof. Finiteness: There are only finitely many atomic LS. Hence, there are only finitely
many atomic negations and, consequently, finitely many possible conjunctions of those.
Consequently, ψ(⊥) is finite. The finiteness of ψ(L) with L , ⊥ is straightforward.

Properness: The refinement chain ⊥ ∗ψ A1 u A2
∗
ψ (A1 t A2) u A2 is a coun-

terexample.
Redundancy: The two refinement chains A1 u A3

∗
ψ (A1 t A2) u A3

∗
ψ (A1 t

A2) u (A3 t A4) and A1 u A3
∗
ψ A1 u (A3 u A4) ∗ψ (A1 t A2) u (A3 t A4) are a

counterexample. �

Naturally, the restrictions of ψ (being redundant and not proper) raise the question
whether there are LS refinement operators satisfying all theoretical properties:

Proposition 4. There exists a weakly complete, finite, proper and non-redundant re-
finement operator in L.

Proof. Let C be the set of LS in L in conjunctive negation normal form without any LS
equivalent to ⊥. We define the operator α as α(⊥) = C and α(L) = ∅ for all L , ⊥. α is
obviously complete as any LS has an equivalent in conjunctive negation normal form. It
is finite as S can be be shown to the finite with an extended version of the argument in
the finiteness proof of ψ. α is trivially non-redundant and it is proper by definition. �

The existence of an operator which satisfies all considered theoretical criteria of a
refinement operator is an artifact of only finitely many semantically inequivalent LS
existing in L. This set is however extremely large and not even small fractions of it can
be evaluated in all but very simple cases. For example, the operator α as α(⊥) = C and
α(L) = ∅ for all L , ⊥ is trivially non-redundant and it is proper by definition. Such
an operator α is obviously not useful as it does not help structuring the search space.
Providing a useful way to structure the search space is the main reason for refinement
operators being successful for learning in other complex languages as it allows to grad-
ually converge towards useful solutions while being able to prune other paths which
cannot lead to promising solutions (explained in the next section). This is a reason why
we sacrificed properness and redundancy for a better structure of the search space.

4 The WOMBAT Algorithm

We have now introduced all ingredients necessary for defining the WOMBAT algo-
rithms. The first algorithm, which we refer to as simple version, uses the operator ϕ,
whereas the second algorithm, which we refer to as complete, uses the refinement op-
erator ψ. The complete algorithm has the following specific characteristics: First, while
ψ is finite, it would generate a prohibitively large number of refinements when applied
to the ⊥ concept. For that reason, those refinements will be computed stepwise as we
will illustrate below. Second, as ψ is an upward refinement operator it allows to prune
parts of the search space, which we will also explain below. We only explain the imple-
mentation of the complex WOMBAT algorithm as the other is a simplification excluding
those two characteristics.

Algorithm 1 shows the individual steps of WOMBAT complete. Our approach takes
the source dataset S , the target dataset T , examples E ⊆ S × T as well as the property
coverage threshold and the set of considered similarity functions as input. In Line 3, the
property matches are computed by optimizing the threshold for properties that have the
minimum coverage (Line 7) as described in Section 3.1. The main loop starts in Line 13
and runs until a termination criterion is satisfied, e.g. 1) a fixed number of LS has
been evaluated, 2) a certain time has elapsed, 3) the best F-score has not changed for a
certain time or 4) a perfect solution has been found. Line 14 states that a heuristic-based
search strategy is employed. By default, we employ the F-score directly. More complex
heuristics introducing a bias towards specific types of LS could be encoded here. In
Line 15, we make a case distinction: Since the number of refinements of ⊥ is extremely
high and not feasible to compute in most cases, we perform a stepwise approach: In
the first step, we only add simple LS of the form Ai \ A j as refinements (Line 17). In
Line 22, we add more complex conjunctions if the simpler forms are promising. Apart
from this special case, we apply the operator directly. Line 24 updates the search tree
by adding the nodes obtained via refinement. For redundancy elimination, we only add
those nodes to the search tree which are not already contained in it.

The subsequent part starting from Line 26 defines our pruning procedure: Since ψ
is an upward refinement operator, we know that the set of links generated by a child
node is a superset of or equal to the set of links generated by its parent. Hence, while
both precision and recall can improve in subsequent refinements, they cannot rise ar-

Algorithm 1: WOMBAT Learning Algorithm
Input: Sets of resources S and T ; examples E ⊆ S × T ; property coverage threshold τ; set

of similarity functions F
1 A←− null (the list of initial atomic metrics);
2 i←− 1 ;
3 foreach property ps ∈ S do
4 if coverage(ps) ≥ τ then
5 foreach property pt ∈ T do
6 if coverage(pt) ≥ τ then
7 Find atomic metric m(ps, pt) that leads to highest F-measure;
8 Optimize similarity threshold for m(ps, pt) to find best mapping Ai;
9 Add Ai to A;

10 i←− i + 1;

11 Γ ←− ⊥ (initiate search tree Γ to the root node ⊥);
12 Fbest ←− 0, Lbest ←− null;
13 while termination criterion not met do
14 Choose the node with highest scoring LS L in Γ;
15 if L == ⊥ then
16 foreach Ai, A j ∈ A, where i , j do
17 Only add refinements of form Ai \ A j;

18 else
19 Apply operator to L;
20 if L is a refinement of ⊥ then
21 foreach Ai, A j ∈ A, where i , j do
22 In addition to refinements, add conjunctions with specifications of the

form Ai \ A j as siblings;

23 foreach refinement L′ do
24 if L′ is not already in the search tree Γ then
25 Add L′ to Γ as children of the node containing L;

26 Update Fbest and Lbest;
27 if Fbest has increased then
28 foreach subtree t ∈ Γ do
29 if Fbest > Fmax(t) then
30 Delete t;

31 Return Lbest;

bitrarily. Precision is bound as false positives cannot disappear during generalisation.
Furthermore, the achievable recall rmax is that of the most general constructable LS, i.e.,
A =

⋃
Ai This allows to compute an upper bound on the achievable F-score. In order to

do so, we first build a set S ′ with those resources in S occurring in the input examples
E as well as a set T ′ with those resources in T occurring in E. The purpose of those
is to restrict the computation of F-score to the fragment S ′ × T ′ ⊆ S × T relevant for

example set E. We can then compute an upper bound of precision of a LS L as follows:

pmax(L) =
|E|

|E| + |{(s, t) | (s, t) ∈ [[L]], s ∈ S ′ or t ∈ T ′} \ E|

Fmax is then computed as the F-measure obtained with recall rmax and precision pmax,
i.e., Fmax =

2pmaxrmax
pmax+rmax

. It is an upper bound for the maximum achievable F-measure
of any node reachable via refinements. We can disregard all nodes in the search tree
which have a maximum achievable F-score that is lower than the best F-score already
found. This is implemented in Line 28. The pruning is conservative in the sense that no
solutions are lost. In the evaluation, we give statistics on the effect of pruning. WOMBAT
ends by returning Lbest as the best LS found, which is the specification with the highest
F-score. In case of ties, we prefer shorter specifications over long ones. Should the tie
persist, then we prefer specifications that were found early.

Proposition 5. WOMBAT is complete, i.e., it will eventually find the LS with the highest
F-measure within L.

Proof. This is a consequence of the weak completeness of ψ and the fact that the algo-
rithm will eventually generate all refinements of ψ. For the latter, we have to look at the
refinement of ⊥ as a special case since otherwise a straightforward application of ψ is
used. For the refinements of ⊥ it is easy to show via induction over the number of con-
junctions in refinements that any element in ψ(⊥) can be reached via the algorithm. (The
pruning is conservative and only prunes nodes never leading to better solutions.) �

5 Evaluation

We evaluated our approach using 8 benchmark datasets. Five of these benchmarks were
real-world datasets while three were synthetic. The real-world interlinking tasks used
were those in [9]. The synthetic datasets were from the OAEI 2010 benchmark7. All
experiments were carried out on a 64-core 2.3 GHz PC running OpenJDK 64-Bit Server
1.7.0 75 on Ubuntu 14.04.2 LTS. Each experiment was assigned 20 GB RAM.

For testing WOMBAT against the benchmark datasets in both its simple and com-
plete version, we used the jaccard, trigrams, cosine and qgrams similarity
measures. We used two termination criteria: Either a LS with F-measure of 1 was found
or a maximal depth of refinement (10 resp. 3 for the simple resp. complete version) was
reached. This variation of the maximum refinement trees sizes between the simple and
complete version was because WOMBAT complete adds a larger number of nodes to its
refinement tree in each level. The coverage threshold τ was set to 0.6. A more complete
list of evaluation results are available at the project web site.8 Altogether, we carried
out 6 sets of experiments to evaluate WOMBAT.

In the first set of experiments, we compared the average F-Measure achieved by
the simple and complete versions of WOMBAT to that of four other state-of-the-art

7 http://oaei.ontologymatching.org/2010/
8 https://github.com/AKSW/LIMES/tree/master/evaluationsResults/
wombat

http://oaei.ontologymatching.org/2010/
https://github.com/AKSW/LIMES/tree/master/evaluationsResults/wombat
https://github.com/AKSW/LIMES/tree/master/evaluationsResults/wombat

Table 2: 10-fold cross validation F-Measure results.

Dataset
WOMBAT WOMBAT EUCLID EUCLID EUCLID

EAGLE
Simple Complete Linear Conjunction Disjunction

Person 1 1.00 1.00 0.64 0.97 1.00 0.99
Person 2 1.00 0.99 0.22 0.78 0.96 0.94
Restaurants 0.98 0.97 0.97 0.97 0.97 0.97
DBLP-ACM 0.97 0.98 0.98 0.98 0.98 0.98
Abt-Buy 0.60 0.61 0.06 0.06 0.52 0.65
Amazon-GP 0.70 0.67 0.59 0.71 0.73 0.71
DBP-LMDB 0.99 1.00 0.99 0.99 0.99 0.99
DBLP-GS 0.94 0.94 0.90 0.91 0.91 0.93

Average 0.90 0.90 0.67 0.80 0.88 0.90

LS learning algorithms within a 10-fold cross validation setting. The other four LS
learning algorithms were EAGLE [15] as well as the linear, conjunctive and disjunctive
versions of EUCLID [16]. EAGLE was configured to run 100 generations. The mutation
and crossover rates were set to 0.6 as in [15]. To address the non-deterministic nature of
EAGLE, we repeated the whole process of 10-fold cross validation 5 time and present
the average results. EUCLID’s grid size was set to 5 and 100 iterations were carried out
as in [16]. The results of the evaluation are presented in Table 2. The simple version
of WOMBAT was able to outperform the state-of-the-art approaches in 4 out of the 8
data sets and came in the second position in 2 datasets. WOMBAT complete was able
to achieve the best F-score in 4 data sets and achieve the second best F-measure in 3
datasets. On average, both versions of WOMBAT were able to achieve an F-measure
of 0.9, by which WOMBAT outperforms the three version of EUCLID by an average of
11%. While WOMBAT was able to achieve the same performance of EAGLE in average,
WOMBAT is still to be preferred as (1) WOMBAT only requires positive examples and
(2) EAGLE is indeterministic by nature.

For the second set of experiments, we implemented an evaluation protocol based on
the assumptions made at the beginning of this paper. Each input dataset was split into
10 parts of the same size. Consequently, we used 3 parts (30%) of the data as training
data and the rest 7 parts (70%) for testing. This was to implement the idea of the dataset
growing and the specification (and therewith the links) for the new version of the dataset
having to be derived by learning from the old dataset. During the learning process, the
score function was the F-measure achieved by each refinement of the portion of the
training data related to S × T selected for training (dubbed S ′ × T ′ previously). The
F-measures reported are those achieved by LS on the test dataset. We used the same
settings for EAGLE and EUCLID as in the experiments before. The results (see Table 3)
show clearly that our simple operator outperforms all other approaches in this setting.
Moreover, the complete version of WOMBAT reaches the best F-measure on 2 datasets
and the second-best F-measure on 3 datasets. This result of central importance as it
shows that WOMBAT is well suited for the task for which it was designed. Interestingly,

Table 3: A comparison of WOMBAT F-Measure against 4 state-of-the-art approaches on
8 different benchmark datasets using 30% of the original data as training data.

Dataset
WOMBAT WOMBAT EUCLID EUCLID EUCLID

EAGLE
Simple Complete Linear Conjunction Disjunction

Person 1 1.00 1.00 0.95 0.96 0.99 0.92
Person 2 0.99 0.79 0.80 0.82 0.88 0.69
Restaurants 0.97 0.88 0.87 0.84 0.89 0.88
DBLP-ACM 0.95 0.91 0.88 0.89 0.91 0.85
Abt-Buy 0.44 0.40 0.29 0.29 0.29 0.27
Amazon-GP 0.54 0.41 0.31 0.30 0.32 0.32
DBP-LMDB 0.98 0.98 0.97 0.96 0.97 0.89
DBLP-GS 0.91 0.74 0.83 0.76 0.74 0.69

Average 0.85 0.76 0.74 0.73 0.75 0.69

our approach also outperforms the approaches that rely on negative examples (i.e. EU-
CLID and EAGLE). The complete version of WOMBAT seems to perform worse than the
simple version because it can only explore a tree of depth 3. However, this limitation
was necessary to test both implementations using the same hardware.

In the third set of experiments, we measured the effect of increasing the amount of
training data on the precision, recall and F-score achieved by both simple and complete
versions of WOMBAT. The results are presented in Figure 3. Our results suggest that
the complete version of WOMBAT is partly more stable in its results (see ABT-Buy and
DBLP-Google Scholar) and converges faster towards the best solution that it can find.
This suggests that once trained on a dataset, our approach can be used on subsequent
versions of real datasets, where a small number of novel resources is added in each new
version, which is the problem setup considered in this paper. On the other hand, the
simple version is able to find better LS as it can explore longer sequences of mappings.

In the fourth set experiments, we measured the learning time for each of the bench-
mark datasets. The results are also presented in Figure 3. As expected, the simple ap-
proach is time-efficient to run even without any optimization. While the complete ver-
sion of WOMBAT without pruning is significantly slower (up to 1 order of magnitude),
the effect of pruning can be clearly seen as it reduces the runtime of the algorithm while
also improving the total space that the complete version of WOMBAT can explore. These
results are corroborated by our fifth set of experiments, in which we evaluated the prun-
ing technique of the complete version of WOMBAT. In those experiments, for each of
aforementioned benchmark datasets we computed what we dubbed as pruning factor.
The pruning factor is the number of searched nodes (search tree size plus pruned nodes)
divided by the maximum size of the search tree (which we set to 2000 nodes in this set
of experiments). The results are presented in Table 5. Our average pruning factor of
2.55 shows that we can discard more than 3000 nodes while learning specifications.

In a final set of experiments, we compared the two versions of WOMBAT against
the 2 systems proposed in [8]. To be comparable, we used the same evaluation protocol
in [8], where 2% of the gold standard was used as training data and the remaining 98%

20% 40% 60% 80% 100%
102

103

104

105

0

0.2

0.4

0.6

0.8

1

(a) Person 1
20% 40% 60% 80% 100%

101

102

103

104

0

0.2

0.4

0.6

0.8

1

(b) Person 2
20% 40% 60% 80% 100%

101

102

103

104

0

0.2

0.4

0.6

0.8

1

(c) Restaurants

20% 40% 60% 80% 100%
103

104

105

106

107

0

0.2

0.4

0.6

0.8

1

(d) ABT–Buy
20% 40% 60% 80% 100%

103

104

105

106

0

0.1

0.2

0.3

0.4

0.5

(e) Amazon–Google Products
20% 40% 60% 80% 100%

102

103

104

105

106

107

0

0.2

0.4

0.6

0.8

1

(f) DBLP–ACM

20% 40% 60% 80% 100%
102

103

104

0

0.2

0.4

0.6

0.8

1

(g) DBpedia–LinkedMDB
20% 40% 60% 80% 100%

103

104

105

106

107

0

0.2

0.4

0.6

0.8

1

(h) DBLP–Google Scholar

Time for WOMBAT simple
Time for WOMBAT complete with pruning
Time for WOMBAT complete without pruning
F-Measure for WOMBAT simple
F-Measure for WOMBAT complete

Fig. 3: Runtime and F-measure results of WOMBAT. The x-axis represents the fraction
of positive examples from the gold standard used for training. The left y-axis repre-
sents the learning time in milliseconds with time out limit of 107 ms, processes running
above this upper limit were terminated, all time plots are in log scale. The right y-axis
represents the F-measure values.

of the gold standard as test data. The results (presented in Table 4) suggests that WOM-
BAT is capable of achieving better or equal performance in 4 out of the 6 evaluation data
sets. While WOMBAT achieved inferior F-measures for the other 2 data sets, it should be
noted that the competing systems are optimised for a low number of examples and they
also get negative examples as input. Overall, these results suggest that our approach can
generalise a small number of examples to a sensible LS.

Overall, our results show that ψ and ϕ are able to learn high-quality LS using only
positive examples. When combined with our pruning algorithm, the complete version
of ψ achieves runtimes that are comparable to those of ϕ. Given its completeness, ψ can
reach specifications that simply cannot be learned by ϕ (see Figure 4 for an example of
such a LS). However, for practical applications, ϕ seems to be a good choice.

Table 4: Comparison of WOMBAT F-Measure against the approaches proposed in [8]
on 6 benchmarks using 2% of the original data as training data.
Dataset Pessimistic Re-weighted Simple Complete

Persons 1 1.00 1.00 1.00 1.00
Persons 2 0.97 1.00 0.80 0.84
Restaurants 0.95 0.94 0.98 0.88
DBLP-ACM 0.93 0.95 0.94 0.94
Amazon-GP 0.39 0.43 0.53 0.45
Abt-Buy 0.36 0.37 0.37 0.36

Average 0.77 0.78 0.77 0.74

Table 5: The pruning factor of the benchmark datasets.

Dataset 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Person 1 1.57 2.13 1.85 2.13 2.13 2.13 2.13 2.13 2.13 2.13
Person 2 1.29 1.29 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57
Restaurant 1.17 1.45 1.17 1.45 1.45 1.45 1.45 1.45 1.45 1.45
DBLP-ACM 6.23 5.58 6.79 6.85 6.85 6.85 6.79 6.79 6.93 6.79
Abt-Buy 3.38 3.00 3.00 3.39 3.39 3.39 1.79 3.39 3.39 3.39
Amazon-GP 1.14 1.38 1.33 1.37 1.38 1.45 1.54 1.59 1.60 1.60
DBP-LMDB 1.00 1.86 2.86 1.86 1.86 2.33 2.36 2.36 2.36 2.36
DBLP-GS 1.79 1.93 2.01 2.36 2.45 1.66 2.44 2.26 1.97 2.05

6 Related Work

There is a significant body of related work on positive only learning, which we can only
briefly cover here. The work presented by [13] showed that logic programs are learn-
able with arbitrarily low expected error from positive examples only. [18] introduced
an algorithm for learning from labeled and unlabeled documents based on the combi-
nation of Expectation Maximization (EM) and a naive Bayes classifier. [2] provides an
algorithm for learning from positive and unlabeled examples for statistical queries. The
pLSA algorithm [24] extends the original unsupervised probabilistic latent semantic
analysis, by injecting a small amount of supervision information from the user.

For learning with refinement operators, significant previous work exists in the area
of Inductive Logic Programming and more generally concept learning which we only
briefly sketch here. A milestone was the Model Inference System in [20]. Shapiro de-
scribes how refinement operators can be used to adapt a hypothesis to a sequence of
examples. Afterwards, refinement operators became widely used as a learning method.
In [23] some general results regarding refinement operators in quasi-ordered spaces
were published. In [3] and later [4], algorithms for learning in description logics (in
particular for the language ALC) were created which also make use of refinement
operators. Recent studies of refinement operators include [11,12] which analysed prop-

f (cosine(:title,:title), 0.66)

f (jaccard(:title,:authors), 0.43)

t

(a) WOMBAT simple LS

f (jaccard(:title,:title), 0.53)

f (trigrams(:venue,:year), 1.00)\

f (jaccard(:title,:authors), 0.43)

f (trigrams(:title,:year), 1.00)

\

t

(b) WOMBAT complete LS

Fig. 4: Best LS learned by WOMBAT for the DBLP-GoogleScholar data set.

erties of ALC and more expressive description logics. A constructive existence proof
for ideal operators in the lightweight EL description logics has been shown in [10].
DEER [21] uses refinement operators for automatic datasets enrichment.

Most LD approaches for learning LS developed are supervised. One of the first
approaches to target this goal was presented in [5]. While this approach achieves high
F-measures, it also requires large amounts of training data. Hence, methods based on
active learning have also been developed (see, e.g., [7,17]). In general, these approaches
assume some knowledge about the type of links that are to be discovered. For example,
unsupervised approaches such as PARIS [22] aim to discover exclusively owl:sameAs
links. Newer unsupervised techniques for learning LS include approaches based on
probabilistic models [22] and genetic programming [19,16], which all assume that a
1-to-1 mapping is to be discovered. To the best of out knowledge, this paper presents
the first LD approach designed to learn from positive examples only.

7 Conclusions and Future Work

We presented the (to the best of our knowledge) first approach to learn LS from positive
examples via generalisation over the space of LS. We presented a simple operator ϕ
that aims to achieve this goal as well as the complete operator ψ. We evaluated ϕ and
ψ against state-of-the-art link discovery approaches and showed that we outperform
them on benchmark datasets. We also considered scalability and showed that ψ can be
brought to scale similarly to ϕwhen combined with the pruning approach we developed.
In future work, we aim to parallelize our approach as well as extend it by trying more
aggressive pruning techniques for better scalability.

Acknowledgments This work has been supported by H2020 projects SLIPO (GA no.
731581) and HOBBIT (GA no. 688227) as well as the DFG project LinkingLOD
(project no. NG 105/3-2) and the BMWI Project GEISER (project no. 01MD16014E).

References

1. S. Auer, J. Lehmann, A.-C. Ngonga Ngomo, and A. Zaveri. Introduction to linked data and
its lifecycle on the web. In Reasoning Web, pages 1–90, 2013.

2. F. Denis, R. Gilleron, and F. Letouzey. Learning from positive and unlabeled examples.
Theoretical Computer Science, 348(1):70 – 83, 2005. Algorithmic Learning Theory 2000.

3. F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, and G. Semeraro. Knowledge-intensive
induction of terminologies from metadata. In Proceedings of ISWC 2004. Springer, 2004.

4. L. Iannone, I. Palmisano, and N. Fanizzi. An algorithm based on counterfactuals for concept
learning in the semantic web. Applied Intelligence, 26(2):139–159, 2007.

5. R. Isele and C. Bizer. Learning Linkage Rules using Genetic Programming. In Sixth Inter-
national Ontology Matching Workshop, 2011.

6. R. Isele, A. Jentzsch, and C. Bizer. Efficient Multidimensional Blocking for Link Discovery
without losing Recall. In WebDB, 2011.

7. R. Isele, A. Jentzsch, and C. Bizer. Active learning of expressive linkage rules for the web
of data. In ICWE, pages 411–418, 2012.

8. M. Kejriwal and D. P. Miranker. Semi-supervised instance matching using boosted classi-
fiers. In The Semantic Web. Latest Advances and New Domains. Springer, 2015.

9. H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on real-world
match problems. Proc. VLDB Endow., 3(1-2):484–493, Sept. 2010.

10. J. Lehmann and C. Haase. Ideal downward refinement in the EL description logic. In
Inductive Logic Programming, 19th International Conference, Leuven, Belgium, 2009.

11. J. Lehmann and P. Hitzler. Foundations of refinement operators for description logics. In
ILP, volume 4894 of Lecture Notes in Computer Science, pages 161–174. Springer, 2007.

12. J. Lehmann and P. Hitzler. Concept learning in description logics using refinement operators.
Machine Learning journal, 78(1-2):203–250, 2010.

13. S. Muggleton. Learning from positive data. In Inductive logic programming, pages 358–376.
Springer, 1997.

14. A.-C. Ngonga Ngomo. Link discovery with guaranteed reduction ratio in affine spaces with
minkowski measures. In Proceedings of 11th International Semantic Web Conference, 2012.

15. A.-C. Ngonga Ngomo and K. Lyko. Eagle: Efficient active learning of link specifications
using genetic programming. In Proceedings of ESWC. Springer, 2012.

16. A.-C. Ngonga Ngomo and K. Lyko. Unsupervised learning of link specifications: determin-
istic vs. non-deterministic. In Proceedings of the Ontology Matching Workshop, 2013.

17. A.-C. Ngonga Ngomo, K. Lyko, and V. Christen. Coala – correlation-aware active learning
of link specifications. In Proceedings of ESWC. Springer, 2013.

18. K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and
unlabeled documents using em. Machine learning, 39(2-3):103–134, 2000.

19. A. Nikolov, M. d’Aquin, and E. Motta. Unsupervised learning of link discovery configura-
tion. In The Semantic Web: Research and Applications, pages 119–133. Springer, 2012.

20. E. Y. Shapiro. Inductive inference of theories from facts. In J. L. Lassez and G. D. Plotkin,
editors, Computational Logic: Essays in Honor of Alan Robinson. The MIT Press, 1991.

21. M. Sherif, A.-C. Ngonga Ngomo, and J. Lehmann. Automating RDF dataset transformation
and enrichment. In Proceedings of 12th Extended Semantic Web Conference. Springer, 2015.

22. F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: Probabilistic Alignment of Relations,
Instances, and Schema. PVLDB, 5(3):157–168, 2011.

23. P. R. J. van der Laag and S.-H. Nienhuys-Cheng. Existence and nonexistence of complete
refinement operators. In F. Bergadano and L. D. Raedt, editors, ECML, volume 784 of
Lecture Notes in Artificial Intelligence, pages 307–322. Springer-Verlag, 1994.

24. K. Zhou, X. Gui-Rong, Q. Yang, and Y. Yu. Learning with positive and unlabeled exam-
ples using topic-sensitive plsa. Knowledge and Data Engineering, IEEE Transactions on,
22(1):46–58, Jan 2010.

	Wombat– A Generalization Approach for Automatic Link Discovery

