
UPSP: Unique Predicate-based Source Selection for
SPARQL Endpoint Federation

Ethem Cem Ozkan1, Muhammad Saleem2, Erdogan Dogdu1, and Axel-Cyrille Ngonga
Ngomo2

1 TOBB University of Economics and Technology
{cozkan,edogdu}@etu.edu.tr

2 Universität Leipzig, IFI/AKSW, PO 100920, D-04009 Leipzig
{lastname}@informatik.uni-leipzig.de

Abstract. Efficient source selection is one of the most important optimization
steps in federated SPARQL query processing as it leads to more efficient query
execution plan generation. An over-estimation of the data sources will generate ex-
tra network traffic by retrieving irrelevant intermediate results. Such intermediate
results will be excluded after performing joins between triple patterns. Conse-
quently an over-estimation of sources may result in increased query execution
time. Devising triple patterns join-aware source selection approaches has shown
to yield great improvement potential. In this work, we present UPSP, a new source
selection approach for SPARQL query federation over multiple SPARQL end-
points. UPSP makes use of the subject-subject, subject-object, object-subject, and
object-object joins information stored in an index structure to perform efficient
triple patterns join-aware source selection. Our evaluation results on FedBench
shows that UPSP outperforms state-of-the-art source selection approaches by
selecting smaller number of sources (without losing recall) and reducing the query
execution times.

Keywords: source pruning, linked data, federated query, HiBISCuS

1 Introduction

Federated SPARQL query engines mostly perform triple pattern-wise source selection
(TPWSS) for SPARQL query federation over multiple SPARQL endpoints (data sources
or only sources for short) [3,5,6,12,13,9,8,2]. The main goal of TPWSS is to find the
relevant data sources for each triple pattern in the query. However, it is possible that
the sources selected by TPWSS may not contribute to the final result of the query since
the results from certain data sources may be excluded after join operations with the
results from other data sources in the same query [8]. These overestimated sources
increase the network traffic and the overall query processing time by retrieving irrelevant
intermediate results. The join-aware source selection approaches [8,1] aim to select those
triple pattern-wise sources that contribute to the triple pattern results as well as to the
final result of the query. If the source selection could be done better by eliminating those
unneeded sources, more efficient query execution plans can be achieved [8].

HiBISCuS [8], a join-aware approach to TPWSS, was proposed with the aim of
only selecting those sources that actually contribute to the final result set of the query.

This approach makes use of the different URI authorities3 to prune irrelevant sources
during the source selection. While HiBISCuS can significantly remove irrelevant sources
[8], it fails to prune those sources that share the same URI authority. For example, all
Bio2RDF4 sources contain the same URI authority bio2rd.org, therefore it is not
possible for the HiBISCuS (based on distinct URIs authorities) to perform efficient
join-aware source selection .

In this paper, we propose an index-assisted join-aware source selection approach
called Unique Predicate Source Pruning (UPSP). A unique predicate is a predicate that
can only be found in one data source and does not participate in subject-subject, subject-
object, object-subject, object-object joins between triple patterns. UPSP algorithm is
developed as an extension of HiBISCuS [8] to overcome the limitation of the same
URI authorities from different data sources. We improve the existing HiBISCuS index
by adding the unique predicates information and using this information in an efficient
source pruning algorithm (UPSP). Overall, our contributions are as follows:

– We present a new source pruning algorithm called Unique Predicate Source Pruning
(UPSP) as an extension of HiBISCuS,

– We extend the existing HiBISCuS index structure with unique predicate information,
– We implemented UPSP on two existing HiBISCuS distributions, which are imple-

mented on two state-of-the-art federated SPARQL query engines, namely SPLEN-
DID [3] and FedX [12],

– We evaluated UPSP algorithm by comparing its performance against the plain
HiBISCuS implementations. Our evaluation results shows that we improved the
original HiBISCuS source selection method in 4 out of 25 queries in the FedBench
dataset and improved query execution time up to 93%.

The structure of this paper is as follows: first we give an overview of the federated
query engines and the related work in section 2. Our proposal, UPSP algorithm, and
its index creation algorithm are explained in detail in section 4. Then, we present
the evaluation results of USPS algorithm against the original HiBISCuS approach in
section 5. We conclude and point to future work in section 6.

2 Related Work

The source selection approaches for SPARQL query federation over multiple dataset
endpoints can be divided into three main categories [7]:

Index-only Source Selection: This approach only makes use of an index to perform
source selection. Besides other dataset statistics, the index typically stores the set of
distinct predicates for each each dataset in the federation [6,5]. The source selection
algorithm in this case matches the query triple pattern predicate against the set of distinct
predicates for each dataset recorded in the index. A dataset is selected as relevant for a
triple pattern if it contains the query triple pattern predicate. This approach is in general
fast since it only performs index lookups [7]. However, they are less efficient as the

3 URI: http://tools.ietf.org/html/rfc3986
4 Bio2RDF: http://download.bio2rdf.org/release/2/release.html

http://tools.ietf.org/html/rfc3986
http://download.bio2rdf.org/release/2/release.html

source selection is only based on triple pattern predicates without considering the subject
and object of the triple pattern [7]. In addition, the result completeness (100% recall)
must be ensured by keeping the index up-to-date. Well-known examples of index-only
source selection approaches are DARQ [6] and ADERIS [5].

Index-free Source Selection: This approach does not make use of any pre-stored
index and can thus always computes complete and up-to-date records. The source
selection algorithm is performed by using SPARQL ASK queries, by sending a SPARQL
ASK query for each query triple pattern in the federated query to each of the datasets
(i.e., SPARQL endpoint) and select those datasets that return true for the submitted ASK
queries. This approach is more efficient as compared to previous approach since, beside
predicates, it also matches triple pattern subjects and objects [7]. However, the query
execution time can be larger depending upon the number of SPARQL ASK request used
during the source selection [7]. FedX [12] is a well-known example of index-free source
selection.

Hybrid Source Selection: This approach makes use of both index and SPARQL
ASK queries for source selection. It has the advantages of the previous two approaches.
Well-known examples are HiBISCuS [8], DAW [9], ANAPSID [1], SemaGrow [2],
TopFed [10], SAFE [4], and SPLENDID [3].

All of the above mentioned contributions (except HiBISCuS, ANAPSID) perform
simple triple pattern-wise source selection and do not consider the joins between query
triple patterns during the source selection. Consequently they greatly overestimate the
set of relevant sources that actually contribute to the final resultset of the query [7].
Further, it has be shown that the join-aware source selection (as performed in HiBISCuS,
ANAPSID) has great potential to reduce the network traffic and query execution time.

In this paper, we present a hybrid join-aware source selection algorithm, which is
designed to be an extension of HiBISCuS. Our goal is to improve HiBISCuS hybrid
source selection method. In particular, when the same URI authorities are distributed
among different data sources.

3 Preliminaries

In the following, we present some of the concepts and notation that are used throughout
this paper. We reused some of the definitions and concepts from HiBISCuS [8] for
better understanding. RDF resources are identified by using a Unified Resource Identifier
(URI). Each URI has a generic syntax consists of a hierarchical sequence of components
namely the scheme, authority, path, query, and fragment5. For example, the prefix ns1 =
<http : //auth1/schema/> used in Figure 1 consist of scheme http, authority auth1,
and path schema. The details of the remaining two components are out of the scope of
this paper. In the rest of the paper, we jointly refer to the first two components (path,
authority) as authority of a URI.

The standard for querying RDF is SPARQL6. The result of a SPARQL query is
called its result set. Each element of the result set of a query is a set of variable bindings.

5 URI syntax: http://tools.ietf.org/html/rfc3986
6 http://www.w3.org/TR/rdf-sparql-query/

http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/rdf-sparql-query/

Federated SPARQL queries are defined as queries that are carried out over a set of sources
D = {d1, . . . , dn}. Given a SPARQL query q, a source d ∈ D is said to contribute to
query q if at least one of the variable bindings belonging to an element of q’s result set
can be found in d.

Definition 1 (Relevant source Set). A source d ∈ D is relevant (also called capable)
for a triple pattern tpi ∈ TP if at least one triple contained in d matches tpi.7 The
relevant source set Ri ⊆ D for tpi is the set that contains all sources that are relevant
for that particular triple pattern.

For example, the set of relevant sources for the triple pattern <?s,cp:p2, ?p> is
{d1, d2}. It is possible that a relevant source for a triple pattern does not contribute to
the final result set of the complete query q. This is because the results computed from a
particular source d for a triple pattern tpi might excluded while performing joins with
the results of other triple patterns contained in the query q.

Definition 2 (Optimal source Set). The optimal source setOi ⊆ Ri for a triple pattern
tpi ∈ TP contains the relevant sources d ∈ Ri that actually contribute to computing
the complete result set of the query.

For example, the set of optimal sources for the triple pattern<?s,cp:p2, ?v2> is {d3},
while the set of relevant sources for the same triple pattern is {d1, d2}. Formally, the
problem of TPWSS can then be defined as follows:

Definition 3 (Problem Statement). Given a set D of sources and a query q, find the
optimal set of sources Oi ⊆ D for each triple pattern tpi of q.

Most of the source selection approaches [3,5,6,12,13] used in SPARQL endpoint
federation systems only perform TPWSS, i.e., they find the set of relevant sources Ri for
individual triple patterns of a query and do not consider computing the optimal source
sets Oi. In this paper, we present an index-assisted approach for (1) the time-efficient
computation of relevant source set Ri for individual triple patterns of the query and
(2) the approximation of Oi out of Ri. HiBISCuS approximates Oi by determining
and removing irrelevant sources from each of the Ri. We denote our approximation
of Oi by RSi. HiBISCuS and our extended approach UPSP relies on directed labelled
hypergraphs (DLH) to achieve this goal. In the following, we present our formalization of
SPARQL queries as DLH. Subsequently, we show how we make use of this formalization
to approximate Oi for each tpi.

3.1 Queries as Directed Labelled Hypergraphs (DLH)

The basic intuition behind HiBISCuS, and also our extended approach UPSP, is that
each of the Basic Graph Pattern (BGP)8 in a query can be executed separately. Thus,
in the following, we will mainly focus on how the execution of a single BGP can be

7 The concept of matching a triple pattern is defined formally in the SPARQL specification found
at http://www.w3.org/TR/rdf-sparql-query/

8 BGP: http://www.w3.org/TR/sparql11-query/#BasicGraphPatterns

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/#BasicGraphPatterns

optimized. The representation of a query as Directed Labelled Hypergraphs (DLH) is
the union of the representations of its BGPs. Note that the representations of BGPs are
kept disjoint even if they contain the same nodes to ensure that the BGPs are processed
independently. The DLH representation of a BGP is formally defined as follows [8]:

Definition 4. Each Basic Graph Pattern BGPi of a SPARQL query can be represented
as a DLH HGi = (V,E, λe, λvt), where

1. V = Vs ∪ Vp ∪ Vo is the set of all vertices of HGi, Vs is the set of all subjects in
HGi, Vp the set of all predicates in HGi and Vo the set of all objects in HGi;

2. E ={e1,. . . , et}⊆ V 3 is a set of directed hyperedges (short: edge). Each edge e=
(vs,vp,vo) emanates from the triple pattern <vs, vp, vo> in BGPi. We represent
these edges by connecting the head vertex vs with the tail hypervertex (vp, vo). In
addition, we use Ein(v) ⊆ E and Eout(v) ⊆ E to denote the set of incoming and
outgoing edges of a vertex v;

3. λe : E 7→ 2D is a hyperedge-labelling function. Given a hyperedge e ∈ E, its edge
label is a set of sources Ri ⊆ D. We use this label to the sources that should be
queried to retrieve the answer set for the triple pattern represented by the hyperedge
e;

4. λvt is a vertex-type-assignment function. Given an vertex v ∈ V , its vertex type can
be ’star’, ’path’, ’hybrid’, or ’sink’ if this vertex participates in at least one join. A

’star’ vertex has more than one outgoing edge and no incoming edge. ’path’ vertex
has exactly one incoming and one outgoing edge. A ’hybrid’ vertex has either more
than one incoming and at least one outgoing edge or more than one outgoing and at
least one incoming edge. A ’sink’ vertex has more than one incoming edge and no
outgoing edge. A vertex that does not participate in any join is of type ’simple’.

An example of the DLH representation of a query can be found in Figures 2 to
5. Consider the query given in Figure 2, containing two triple patterns <?s1 cp : p1
?v1 > and <?s1 cp : p4 ?v2 >. Dataset d1 is the single relevant source for the first
triple pattern and datasets d1, d2, d3 which can be found in Figure 1 are the relevant
sources for the second triple pattern. These triple patterns form a subject-subject join
on variable ?s1. Consider the first triple pattern (represented as hyperedge (s1, {cp:p1,
v1})), s1 is the head of the hyperedge and {cp : p1, v1} (represented in a box) is the tail
of the hyperedge. The relevant source, i.e., dataset d1 is the label of the hyperedge. Note
the vertex s1 represent a ”star” node because it has only outgoing hyperedges and no
incoming hyperedge. We can now formally define our problem statement as follows:

Definition 5 (Problem Re-definition). Given a query q represented as a set of hyper-
graphs {HG1, . . . ,HGx} (each HG representing a BGP in q), find the labelling of the
hyperedges of each hypergraph HGi that leads to an optimal source selection.

4 Unique Predicate Source Pruning (UPSP)

In this section, we explain our approach for source selection called Unique Predicate
Source Pruning (UPSP) in detail.

Fig. 1: Unique Predicate Motivating Example

4.1 Unique Predicates

Unique predicate is a predicate that can only be found in one data source, and further
is not involved in subject-subject, subject-object, object-subject, object-object relations
(explained below). Accordingly, there are four types of unique predicates. These are
explained below using examples in Figure 1.

– Subject-Subject: If a predicate is unique and the subjects of the predicate are not used
in other datasets as subjects then this predicate is a subject-subject unique predicate.
For example in Figure 1 predicate cp:p1 is a subject-subject unique predicate. This
is because cp:p1 is only found in dataset d1 and its subjects, which are ns1:s1 and
ns1 1:s2, are not used as subjects in other datasets.

– Subject-Object: If a predicate is unique and the subjects of the predicate are not used
in other datasets as objects then this predicate is a subject-object unique predicate.
For example in Figure 1 predicate cp:p3 is a subject-object unique predicate. This
is because cp:p3 is only found in dataset d1 and its subjects, which are ns2:s3 and
ns1 1:s1, are not used as objects in other datasets. However predicate cp:p3 is not
subject-subject unique because subject ns2:s3, which is one of its subjects, is used
as subject in dataset d2. Therefore cp:p3 is not subject-subject unique.

– Object-Subject: If a predicate is unique and the objects of the predicate are not
used in other data soruces as subjects then this predicate is a object-subject unique
predicate. For example in Figure 1 predicate cp:p5 in dataset d2 is object-subject
unique because cp:p5 is only found in dataset d2 and its object, which is only ns3:o2,
is not used as subject in other datasets.

– Object-Object: If a predicate is unique and the objects of the predicate are not used
in other data sources as objects then this predicate is a object-object unique predicate.
For example in Figure 1 cp:p5, which is only found in dataset d2, is object-object
unique. This is because cp:p5 is only found in dataset d2 and its object, which is
only ns3:o2, is not used as object in other datasets.

Each predicate can be of more than one unique predicate types as seen in the
examples. We propose to utilize unique predicate information for source pruning in

Listing 1.1: UPSP Index Example

a ds : S e r v i c e ;
ds : u r l <h t t p : / / d1 . ecozkan . com / s p a r q l> ;
ds : c a p a b i l i t y

[ds : p r e d i c a t e <h t t p : / / common / schema / p1>;
ds : s b j A u t h o r i t y <h t t p : / / au th1 >, <h t t p : / / au th11> ;
ds : o b j A u t h o r i t y <h t t p : / / au th1 >, <h t t p : / / au th12> ;
ds : s sUnique t r u e ;] ;

.
[] a ds : S e r v i c e ;

ds : u r l <h t t p : / / d2 . ecozkan . com / s p a r q l> ;
ds : c a p a b i l i t y
[ds : p r e d i c a t e <h t t p : / / common / schema / p5>;

ds : s b j A u t h o r i t y <h t t p : / / au th3 >, <h t t p : / / au th12> ;
ds : o b j A u t h o r i t y <h t t p : / / au th3> ;
ds : osUnique t r u e ;
ds : ooUnique t r u e ;] ;

.

federated SPARQL query optimization so that data sources are eliminated from query
processing if they do not contribute to the final result of a query. To be able to decide
whether to prune or not to prune a data source from query processing, we build an
index to store all unique predicate information that is later used in the source pruning
algorithm.

4.2 Index Creation

The index structure we build is based on HiBISCuS index structure, i.e., we store
distinct predicates for each data source. Further, for each distinct predicate we store the
subject and object authorities [8]. We keep the same index structure and extend with the
requirements of our proposed UPSP algorithm, so that both source selection algorithms
will run together.

UPSP extends HiBISCuS index by adding four new fields to store the information
about unique predicate types. These fields are ssUnique, soUnique, osUnique, and
ooUnique; they represent subject-subject, subject-object, object-subject and object-object
unique predicate types respectively. By default these fields’ values are “false” and they
are not kept in the index. They are saved in the index only if they are “true” to keep the
index structure compact. A sample index can be seen in Listing 1.1. As seen in the figure,
only true unique predicate types are listed for each predicate, otherwise they are not
mentioned (considered false). For example, the predicate http://common/schema/p5
is osUnique and ooUnique, but not soUnique and not ssUnique. UPSP source pruning
algorithm checks this index only to find if a unique predicate type is true, otherwise it is
assumed false.

Algorithm 1 shows the unique predicate index building procedure. It checks all
predicates in all dataset endpoints (line 1) and first assumes it is subject-subject, subject-
object, object-subject, and object-object unique (line 2-5). Then, it finds subject and
object authorities of the predicate (line 7-8) and checks if the predicate is unique among
other dataset endpoints (line 9). If it is unique then the algorithm checks the current
predicate against other predicates to find if it is subject-subject, subject-object, object-
subject, and object-object unique (Line 10-24). As explained before, we first compare
the authorities of predicates before actually executing costly queries. If the intersection

Algorithm 1 Unique Predicate Index Creation Algorithm
Require: datasets D // list of available datasets
1: for each di ∈ D do
2: ssUnique = true;
3: soUnique = true;
4: osUnique = true;
5: ooUnique = true;
6: for each pi ∈ predicates(di) do
7: sbjAuthPi = sbjAuth(pi, di)
8: objAuthPi = objAuth(pi, di)
9: if isUnique(pi) then

10: for each dj ∈ D ∧ di 6= dj do
11: for each pj ∈ predicates(dj) do
12: sbjAuthPj = sbjAuth(pj , dj)
13: objAuthPj = objAuth(pj , dj)
14: if sbjAuthPi ∩ sbjAuthPj 6= ∅ then
15: ssUnique = checkSubjectSubjectUnique(pi, pj , di, dj)
16: end if
17: if sbjAuthPi ∩ objAuthPj 6= ∅ then
18: soUnique = checkSubjectObjectUnique(pi, pj , di, dj)
19: end if
20: if objAuthPi ∩ sbjAuthPj 6= ∅ then
21: osUnique = checkObjectSubjectUnique(pi, pj , di, dj)
22: end if
23: if objAuthPi ∩ objAuthPj 6= ∅ then
24: ooUnique = checkObjectObjectUnique(pi, pj , di, dj)
25: end if
26: end for
27: end for
28: end if
29: end for
30: end for

of authorities is not empty, then the algorithm sends the relevant ASK query to find if
the predicates are subject-subject, subject-object, object-subject, object-object unique
between each other. ASK queries are created using SPARQL 1.1 standard. Template
ASK queries used in the algorithm are listed bellow.

– Subject-Subject:
ASK { SERVICE <e2> {?s <p2> ?o2.} ?s <p1> ?o1.}
This query returns true if the subjects of p1 are used as the subjects of p2.

– Subject-Object:
ASK { SERVICE <e2> {?s1 <p2> ?s.} ?s <p1> ?o1.}
This query returns true if the subjects of p1 are used as the objects of p2.

– Object-Subject:
ASK { SERVICE <e2> {?o1 <p2> ?s.} ?s1 <p1> ?o1.}
This query returns true if the objects of p1 are used as the subjects of p2.

– Object-Object:
ASK { SERVICE <e2> {?s2 <p2> ?o.} ?s1 <p1> ?o.}
This query returns true if the objects of p1 are used as the objects of p2.

In the algorithm, each predicate is checked against other predicates in all dataset
endpoints to find for example if it is subject-subject unique and so on. If it is found
subject-subject unique at the end, then the index field ssUnique is set to true, otherwise
no index entry is put (to save space) for that predicate.

Fig. 2: Star Join Node and Hyper Graph
Model

Fig. 3: Path Join Node and Hyper Graph
Model

We first implemented the index creation algorithm as a single threaded process. This
implementation took 60 hours to run to create the index, which includes both HiBISCuS
original and extended information, against FedBench datasets. We also implemented a
multi-threaded version and the execution time is reduced to 36 hours that can be further
improved with multi-nodes on a cluster. We should also note that this is a one-time
process and rarely changes.

4.3 The Pruning Approach

In order to perform join-aware source selection, UPSP makes use of the four – ’star’,
’path’, ’hybrid’, ’sink’– different types of join nodes, according to the DLH representation
explained in Section 3.1. Below are the examples of the different join types and the
pruning steps we take in UPSP algorithm.

– Star join node: As mentioned before, a star join node has only outgoing hyperedges
and no incoming hyperedge. An example of such a join node is given Figure 2
where the two triple patterns make a join on a common subject (?s1). Only dataset
d1 contributes to the first triple pattern and dataset d1, d2, and d3 contribute to the
second triple pattern. The predicate cp:p1 of the first triple pattern is subject-subject
unique, which means this triple pattern cannot make a subject-subject join with an
external data source (dataset d2 and d3 are external data soruces for dataset d1).
Thus, we can prune the external data sources from the second triple pattern, their
contributing results will not be used in the final join query. As a result of this pruning,
only dataset d1 will be selected and used in the computations of these two triple
patterns.

– Path join node: A path join node contains exactly one incoming hyperedge and one
outgoing hyperedge. An example of a such node is given in Figure 3 where the
object (?p) of the first triple pattern is used as such of the second triple pattern thus
forming a subject-object join. In path join nodes, the UPSP algorithm checks if any
of the predicates is subject-object or object-subject unique and prune the external
data sources from the other triple pattern. In Figure 3, cp:p3 is a subject-object
unique predicate, the UPSP algorithm can prune all external sources, namely dataset

Fig. 4: Sink Join Node and Hyper Graph Model

Fig. 5: Hybrid Join Node and Hyper Graph Model

d2 and d3, from the incoming hyperedeges of ?p node. Thus dataset d1 is the only
source finally selected as capable for both of the triple patterns.

– Sink join node: Sink join nodes only contain incoming hyperedges and no outgoing
hyperedges. Figure 4 depicts a sink join node example. A sink join node is created as
a result of the object-object joins between two triple patterns. If one of the predicates
in sink join is object-object unique, then we can prune all external sources from the
other hyperedeges. This is because if a predicate is object-object unique, it cannot
join with the objects in other datasets. In Figure 4 cp:p1 is an object-object unique
predicate. Therefore, the results of {?v1 cp:p1 ?s} triple pattern cannot join with
the other datasets’ results. The UPSP algorithm simply prunes external sources in
cp:p4’s hyperedge, namely datasets d1 and d2.

– Hybrid join node: A node which has at least one incoming and more than one outgo-
ing hyperedge or at least one outgoing and more than one incomoing hyperedges is
called hybrid node. Figure 5 depicts a hybrid node. A hybrid join is a combination
of sink, path, and/or star queries. Algorithm basically applies the same rules applied
to sink, path, and star queries. In Figure 5 predicate cp:p6 is object-object and
object-subject unique. Therefore, we can prune all external sources from outgoing
and incoming edges, namely datasets d1 and d2. Only the dataset d3 is selected as
the only capable source for the three triple patterns. It is important to note that if a
query does not contain unique predicates then the UPSP source selection results in
the same source selection as performed by HiBISCuS.

The UPSP algorithm is listed in Algorithm 2. Algorithm loops over each hypergraph
and all of its nodes in the query. However, as mentioned before, the pruning is performed

Algorithm 2 Unique Predicate Source Pruning (UPSP) Algorithm
Require: DHG // Hypergraph of query
1: for each HG ∈ DHG do
2: for each v ∈ vertices(HG) do
3: if isStarNode(v) then
4: for each e ∈ v.outEdge do
5: if e.predicate is ssUnique then
6: pruneExternal(e, v.outEdge)
7: end if
8: end for
9: else if isPathNode(v) then

10: eOut = v.outEdge[0]
11: eIn = v.inEdge[0]
12: if eOut.predicate is soUnique then
13: pruneExternal(e, v.inEdge)
14: end if
15: if eIn.predicate is osUnique then
16: pruneExternal(e, v.outEdge)
17: end if
18: else if isSinkNode(v) then
19: for each e ∈ v.inEdge do
20: if e.predicate is ooUnique then
21: pruneExternal(e, v.inEdge)
22: end if
23: end for
24: else if isHybridNode(v) then
25: for each eIn ∈ v.inEdge do
26: if eIn.predicate is osUnique then
27: pruneExternal(eIn, v.outEdge)
28: end if
29: if eIn.predicate is ooUnique then
30: pruneExternal(eIn, v.inEdge)
31: end if
32: end for
33: for each eOut ∈ v.outEdge do
34: if eOut.predicate is soUnique then
35: pruneExternal(eOut, v.inEdge)
36: end if
37: if eOut.predicate is ssUnique then
38: pruneExternal(eOut, v.outEdge)
39: end if
40: end for
41: end if
42: end for
43: end for

at join nodes only. If a node is a star node and if one of the outgoing predicates of
the star node is a subject-subject unique predicate, then it prunes all external sources
from the other outgoing hyperedeges (lines 3-8). If a node is a path node and if the
outgoing node is a subject-object unique predicate, then it prunes all external sources
from the incoming hyperedeges (lines 9-14). And for the path node, if the incoming
node is an object-subject unique predicate, then the algorithm prunes all external sources
from the outgoing hyperedge (lines 15-17). If a node is a sink node and if one of the
incoming nodes is an object-object unique predicate, then it prunes all external sources
from the incoming hyperedge (line 18-23). If a node is a hybrid node and if an incoming
node is an object-subject unique predicate, then it prunes all external sources from the
outgoing hyperedeges (line 24-28). If an incoming node of the hybrid node is object-
object unique, then it prunes external sources from the incoming hyperedeges (line
29-31). If an outgoing node of the hybrid node is subject-object unique, then it prunes
all external sources from the incoming hyperedeges (line 34-36). If an outgoing node

of the hybrid node is subject-subject unique, then it prunes external sources from the
outgoing hyperedeges (line 37-39).

5 Evaluation

In this section we first describe our test environment. Then, we present our evaluation
results in detail.

5.1 Experimental Setup

We used FedBench [11] dataset for evaluation. We loaded all 9 of FedBench datasets
on virtual machines created on Amazon Web Services (AWS) EC2 Virtual Server
Hosting9. AWS EC2 offers dynamic server configuration. All experiments are executed
on m3.xlarge type server instances, each having Intel Xenon x5 4-core CPUs and
15GB main memory. Since our tests are executed among AWS servers, the network
communication cost was negligible. Each Fedbech query is executed 5 times and the
execution times are averaged after the minimum and the maximum execution times are
removed.

We extended two federated query engines with UPSP algorithm, namely FedX [12]
and SPLENDID [3] with HiBISCuS extensions already implemented. We compared
our results with the original HiBISCuS system in Index-Dominant and ASK-Dominant
modes [8]. For each query we measured: (1) the total number of triple pattern-wise
(TPW) sources selected, (2) the average source selection time (msec), and (3) the average
query execution time (msec).

5.2 Experimental Results

FedX and SPLENDID implementations of UPSP are tested with FedBench dataset and
the results are presented in Tables 1 and 2. Bold printed results show the results for the
queries where UPSP has improved the execution time (#UET column) and pruned more
sources (#US column).

FedX. We compared UPSP with the original HiBISCuS algorithmn. We run our tests in
both Index-Dominant and ASK-Dominant modes. We improved source selection in LS5,
LS7, LD6, and LD11 queries (Table 1). We also improved execution time substantially
in LD6 and LD7 queries. LS5 and LS7 shows no impromevent in execution time even
though their source selection improved (1 datasource eliminated in each). This is because
the eliminated endpoints are not too many. On the other hand, for queries LD6 and
LD11, 3 and 2 datasources are pruned, respectively. The execution time is improved
substantially, especially for LD11 the execution time is reduced by one third. In these
experiments for FedX, UPSP algorithm improved HiBISCuS source selection in 4 out
of 25 queries (16%). Execution time results are not available in query LS6 because the

9 Amazon EC2 https://aws.amazon.com/ec2

Table 1: FedX experimental results. #S: Original number of sources, #HS: Number
of sources after HiBISCuS pruning, #US: Number of sources after UPSP pruning,
HET: HiBISCuS Average Execution Time (msec), UET: UPSP Average Execution Time
(msec), HST: HiBISCuS Average Source Selection Time (msec), UST: UPSP Average
Source Selection Time (msec)

FedX
ASK Dominant Index Dominant

Query #S #HS #US HET UET HST UST #S #HS #US HET UET HST UST
CD1 11 4 4 307 302 73 59 16 12 12 669 681 321 322
CD2 3 3 3 188 189 13 14 7 3 3 373 325 84 81
CD3 12 5 5 304 312 31 33 12 5 5 533 525 125 101
CD4 20 5 5 408 385 56 47 20 5 5 618 618 184 188
CD5 11 4 4 286 278 26 26 11 4 4 435 414 94 77
CD6 10 8 8 860 851 26 25 10 8 8 1088 1121 90 94
CD7 13 6 6 652 642 28 33 13 6 6 914 855 109 83
LS1 1 1 1 394 386 16 16 1 1 1 563 538 39 30
LS2 11 7 7 407 391 70 63 11 7 7 696 733 255 274
LS3 12 5 5 3970 3892 30 34 12 5 5 4205 4088 100 117
LS4 7 7 7 197 195 16 16 7 7 7 313 306 48 43
LS5 10 8 7 1948 1946 26 31 10 8 7 2195 2216 78 102
LS6 9 7 7 - - - - 9 7 7 - - - -
LS7 6 6 5 1793 1823 21 27 6 6 5 1986 2146 65 87
LD1 11 3 3 290 281 24 20 11 3 3 451 416 79 65
LD2 3 3 3 230 226 13 13 3 3 3 372 347 38 36
LD3 19 4 4 277 253 35 28 19 4 4 421 399 104 92
LD4 5 5 5 189 189 14 15 5 5 5 287 282 44 41
LD5 5 3 3 179 182 20 20 5 3 3 258 315 46 66
LD6 14 8 5 314 298 35 36 14 7 5 496 436 112 68
LD7 4 4 4 731 726 17 15 4 4 4 999 988 48 45
LD8 15 5 5 462 463 35 34 15 5 5 655 648 102 104
LD9 3 3 3 164 165 12 13 5 3 3 259 248 46 57
LD10 10 3 3 352 353 25 30 10 3 3 515 489 77 78
LD11 21 7 5 1286 385 38 31 21 7 5 1457 583 122 92

query did not terminate for a long time and therefore manually cancelled, but the source
selection result is reported (no change).

We should also note that even though FedBench results did not show much improve-
ment in execution times after prunings, it is very much dependent on the dataset where
the pruning is executed. This is shown clearly in query LD11, where the execution time
reduced from 1286 msec to 385 msec (reduced to approx. 1/3). Therefore, our proposed
pruning algorithm is very promising for large and diverse datasets in real-life settings.

SPLENDID. We compared UPSP with the original HiBISCuS algorithm for SPLEN-
DID implementation as well. We ran our tests in both Index-Dominant and ASK-
Dominant modes. Results in Table 2 show that we improved source selection in LS5,
LD6, LS7, and LD11 queries. Note this is exactly the same improvement reported in
FedX. The reason for this is that both SPLENDID and FedX select exactly the same
triple pattern-wise sources. For LS7 the query execution did not terminate (therefore,

Table 2: SPLENDID Experimental Results. #S: Original number of sources, #HS: number
of resources after HiBISCuS pruning, #US: Number of sources after UPSP pruning,
HET: HiBISCuS Average Execution Time (msec), UET: UPSP Average Execution Time
(msec), HST: HiBISCuS Average Source Selection Time (msec), UST: UPSP Average
Source Selection Time (msec)

SPLENDID
ASK Dominant Index Dominant

Query #S #HS #US HET UET HST UST #S #HS #US HET UET HST UST
CD1 11 4 4 371 374 129 138 16 12 12 767 729 270 292
CD2 3 3 3 226 240 11 11 7 3 3 344 332 63 55
CD3 12 5 5 340 375 27 26 12 5 5 452 463 82 73
CD4 20 5 5 297 293 43 43 20 5 5 432 441 162 140
CD5 11 4 4 298 322 32 27 11 4 4 427 437 80 67
CD6 10 8 8 8764 8694 21 29 10 8 8 8979 8780 69 66
CD7 13 6 6 2344 2345 34 22 13 6 6 2447 2391 73 73
LS1 1 1 1 387 449 8 10 1 1 1 460 468 21 23
LS2 11 7 7 667 775 99 127 11 7 7 1026 924 263 209
LS3 12 5 5 6090 5964 31 24 12 5 5 6127 6021 89 92
LS4 7 7 7 272 280 17 15 7 7 7 398 380 34 33
LS5 10 8 7 16105 13660 24 29 10 8 7 16033 14040 67 81
LS6 9 7 7 1817 1828 20 26 9 7 7 1983 1977 67 71
LS7 6 6 5 - - - - 6 6 5 - - - -
LD1 11 3 3 334 322 18 21 11 3 3 370 386 60 55
LD2 3 3 3 286 293 12 11 3 3 3 329 330 33 31
LD3 19 4 4 306 300 33 29 19 4 4 378 361 82 62
LD4 5 5 5 261 220 14 14 5 5 5 256 252 31 31
LD5 5 3 3 223 249 14 18 5 3 3 248 267 43 37
LD6 14 7 5 588 662 36 36 14 7 2 743 551 105 75
LD7 4 4 4 8403 8277 14 16 4 4 4 8510 8516 36 35
LD8 15 5 5 968 1223 25 25 15 5 5 945 1001 86 72
LD9 3 3 3 219 219 13 12 5 3 3 240 240 43 42
LD10 10 3 3 276 285 24 29 10 3 3 386 365 58 64
LD11 21 7 5 5578 417 33 33 21 7 5 5823 474 123 64

cancelled) and thus the execution times are not reported. LS5 and LD11 queries show
improvements in execution times, in the case of LD11 quite substantially (93% less)
due to the eliminated datasource sizes being quite large. Again our claim is proven that
data source selection has the potential to improve federated queries quite considerably in
real-life settings with large and diverse datasets.

Overall, UPSP improves (selected fewer sources) HIBISCuS source selection in 4
out of 25 FedBench queries both for FedX and SPLENDID setup. By looking into the
details of HIBISCuS source selection, we have found out that there are 13 out of 25
queries for which the HIBISCuS total triple pattern-wise selected sources is equal to the
number of triple patterns in the query, i.e., a single source is only selected for each query
triple pattern, thus no further source pruning was possible in these queries. To this end,
UPSP improves HIBISCuS in 4 out of 12 queries (i.e., 33%) for which the improvement
was possible.

6 Conclusion and Future Work

In this paper we presented the UPSP algorithm, a unique predicate based source pruning
approach designed to be an extension of HiBISCuS [8]. The UPSP algorithm uses an
extended index structure on top of HiBISCuS and prunes irrelevant data sources accord-
ing to the query and unique predicate type. Our approach improves source selection by
eliminating more data sources than HiBISCuS and experimental results on FedBench
dataset shows that federated query execution times can be reduced up to 93% (LD11
query in SPLENDID implementation). As for future work, we will first improve our
index creation algorithm by using big data technologies like Hadoop. We also intend to
further optimize federated query execution with better methods.

7 Acknowledgments

This article was funded by the EU H2020 HOBBIT (GA No. 688227), Eurostars projects
DIESEL (E!9367), QAMEL (E!9725), and BMWi project SAKE (01MD15006E).

References

1. M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: an adaptive
query processing engine for SPARQL endpoints. In ISWC, 2011.

2. A. Charalambidis, A. Troumpoukis, and S. Konstantopoulos. Semagrow: Optimizing federated
sparql queries. In Proceedings of the 11th International Conference on Semantic Systems,
SEMANTICS ’15, pages 121–128, New York, NY, USA, 2015. ACM.

3. O. Görlitz and S. Staab. Splendid: Sparql endpoint federation exploiting void descriptions. In
COLD at ISWC, 2011.

4. Y. Khan, M. Saleem, A. Iqbal, M. Mehdi, A. Hogan, P. Hasapis, A.-C. N. Ngomo, S. Decker,
and R. Sahay. Safe: Policy aware sparql query federation over rdf data cubes. In SWAT4LS,
2014.

5. S. Lynden, I. Kojima, A. Matono, and Y. Tanimura. Aderis: An adaptive query processor for
joining federated sparql endpoints. In OTM. 2011.

6. B. Quilitz and U. Leser. Querying distributed rdf data sources with sparql. In ESWC, 2008.
7. M. Saleem, Y. Khan, A. Hasnain, I. Ermilov, and A.-C. N. Ngomo. A fine-grained evaluation

of sparql endpoint federation systems. Semantic Web Journal, 2014.
8. M. Saleem and A.-C. N. Ngomo. Hibiscus: Hypergraph-based source selection for sparql

endpoint federation. In ISWC. Springer, 2014.
9. M. Saleem, A.-C. Ngonga Ngomo, J. X. Parreira, H. F. Deus, and M. Hauswirth. Daw:

Duplicate-aware federated query processing over the web of data. In ISWC, 2013.
10. M. Saleem, S. S. Padmanabhuni, A.-C. N. Ngomo, A. Iqbal, J. S. Almeida, S. Decker, and

H. F. Deus. Topfed: Tcga tailored federated query processing and linking to lod. Journal of
Biomedical Semantics, 2014.

11. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. Fedbench: a
benchmark suite for federated semantic data query processing. In ISWC, 2011.

12. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization techniques
for federated query processing on linked data. In ISWC, 2011.

13. X. Wang, T. Tiropanis, and H. C. Davis. Lhd: Optimising linked data query processing using
parallelisation. In LDOW at WWW, 2013.

	UPSP: Unique Predicate-based Source Selection for SPARQL Endpoint Federation

