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Abstract. The Web encompasses a significant amount of knowledge hidden in
entity-attributes tables. Bridging the gap between these tables and the Web of
Data thus has the potential to facilitate a large number of applications, including
the augmentation of knowledge bases from tables, the search for related tables
and the completion of tables using knowledge bases. Computing such bridges
is impeded by the poor accuracy of automatic property mapping, the lack of
approaches for the discovery of subject columns and the mere size of table corpora.
We propose TAIPAN, a novel approach for recovering the semantics of tables. Our
approach begins by identifying subject columns using a combination of structural
and semantic features. It then maps binary relations inside a table to predicates
from a given knowledge base. Therewith, our solution supports both the tasks of
table expansion and knowledge base augmentation. We evaluate our approach on
a table dataset generated from real RDF data and a manually curated version of
the T2D gold standard. Our results suggest that we outperform the state of the art
by up to 85% F-measure.
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1 Introduction

The Linked Data Web has developed from a mere idea to a set of more than 85 billion
facts distributed across more than 10,000 knowledge bases1 over less than 10 years.
However, the Document Web is also growing exponentially, with a large proportion of
the information contained therein not being available on the Data Web. Consequently, the
gap between the Data Web and the Document Web keeps on growing with the addition
of novel knowledge in either portion of the Web. Devising ways to bridge between
the Document Web and the Linked Data Web has been the purpose of a number of
works from different domains. The unstructured data on the Web is being transformed
to RDF by means of a combination of named entity recognition (see, e.g., [5,14,19]),
entity linking (see, e.g., [2,22]) and relation extraction (see, e.g., [15,6]) approaches.
However, such approaches can only deal with well-formed sentences and do not address
other structures that are commonly found on the Document Web, in particular, tables.
While a few approaches for disambiguating entities in tables have been developed in
the past [27,23,24,1,25], porting the content of tables to RDF has been the subject of a
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limited number of approaches [11,13,16]. These approaches are however limited in the
structure of the tables they can handle. For example, they partly rely on heuristics such
as using the first non-numeric column of a table as subject for the triples that are to be
extracted [10].

We present TAIPAN, a generic approach towards extracting RDF triples from tables.
Given a table and a reference knowledge base, TAIPAN aims to (1) identify the column
that contains the subject of the triples to extract, i.e., the subject column. To this end,
our approach relies on maximizing the likelihood that the elements of a column (1) all
belong to the same class and, (2) once disambiguated, will actually have property values
that correspond to the properties found in the table; (2) detect properties that correspond
to the columns of the tables. Here, TAIPAN maximizes the probability that the columns of
the table will yield property values for the same property given the assumed assignment
of the subject column; (3) facilitate the disambiguation and extraction of RDF from
tables. Hence, the results of TAIPAN can be used to feed any entity disambiguation
system for tables.

The rest of this paper is structured as follows: in section 2 we describe our conceptual
framework. Then, we employ this framework to define the problem tackled by TAIPAN
formally (see section 3). Thereafter, we use the same notation to explain our approach
(see section 4). We clarify implementation details in section 5. In section 6, we evaluate
our approach on a manually curated portion of the T2D benchmark (which we dub
T2D∗) against the approaches proposed in [24] and [16,17]. In particular, we measure
the accuracy of our subject column identification approach as well as the F-measure
achieved by our property mapping approach. Section 7 gives an overview of related work
and section 8 concludes the paper.

2 Preliminary Definitions

In this section, we introduce the notation and definitions required to formalize the subject
column identification and property mapping problems.

2.1 Tabular Data Model

For modeling tabular data we extend the canonical table model described in [4]. Essen-
tially, the canonical table model distinguishes between the header of a table and the data
of the same table (see Figure 1). A table is represented as a tuple, where the header is a
vector and the data is a matrix.

Definition 1. A table T = (H,D) is a tuple consisting of a header H and data D,
where:

– the header H = (h1, h2, . . . , hn) is a vector of size n which contains header
elements hi.

– the data D =

d1,1 d1,2 · · · d1,nd2,1 d2,2 · · · d2,n
...

...
. . .

...

 is a (m,n)-matrix consisting of n columns and

m rows.
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Fig. 1. An example of a table from T2D gold standard with semantics from our table model.

Consequently, we introduce the concept of table projections, where the data of a
table is represented as a one-dimensional vector of value vectors.

Definition 2. The column projection of a table T = (H,D) is a table col(T ) =
(H, col(D)) , where col(D) = (c1, c2, . . . , cn), with cn = (d1,n, d2,n, . . . , dm,n).
Similarly, the row projection of a table row(T ) = (H, row(D)) where row(D) =
(l1, l2, . . . , lm), with lm = (dm,1, dm,2, . . . , dm,n)

Hereafter, we will commonly work with the row projections of tables.
Informally, the subject column of a table T is a column that contains labels of

resources that instantiate the main subject of a table. For instance, in a table taken from the
T2D reference dataset [16] with the headerH = (world rank, city, country,
city population, metro population, mayor) (see Figure 1), the main
subject is city. Consequently, the second column is the subject column. In general, we
assume that the subject column is to be connected to every other column in the reference
table via a binary relation. Hence, we adopt the following functional definition:

Definition 3. The subject column s is a column which divides table T into (n − 1)
two-column tables (which we dub atomic tables), where the binary relation ρi between s
and each of the other columns ci in T corresponds to a property in a reference knowledge
base K (e.g., see Figure 2).

Following the definition 3, we define an atomic table as follows:

Definition 4. An atomic table is a table T ′i = (H ′i, D
′
i) such as H ′n = (hs, hi) and

col(D′i) = (s, ci), where hs is a header item of the subject column and s is a subject
column.

For example, in Figure 2, for the left-most atomic table T ′1 = (H ′1, D
′
1), the header

is H ′1 = (city, world rank). The column projection consists of subject column and the
first column of the source table: col(D′1) = (s, c1), where s = (guayaquil, quito,
cairo, alexandria) and c1 = (131, 187, 21, 51).

2.2 Knowledge Base Model

We now introduce the knowledge base model (derived from [4]) underlying our work.
Let U be the set of all URIs, B be the set of all blank nodes, L be the set of all literals
and Γ be the set of all RDF terms with Γ = U ∪ B ∪ L. Furthermore, we make use of
the following notions:
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Fig. 2. Example of a table atomization.

– S is the set of RDF subjects with S ⊆ U ∪ B,
– R is the set of RDF properties (relations) withR ⊆ U ,
– O is the set of RDF objects, with O ⊆ Γ ,
– Π is the set of all triples, defined as Π ⊆ S ×R×O,
– E is the set of all entities, and
– C is the set of all classes, that is the subset of U , which describes the classes of the

entities E in Π .

Our basic assumption is that a binary relation between columns of a table can
correspond to a property inside a knowledge base.

3 Problem Statement

TAIPAN aims to expose the semantics of tabular data. To this end, we address the
following two subproblems.

3.1 Problem 1: Subject Column Identification

The problem of subject column identification can be formalized using previously intro-
duced concepts as follows.

Problem 1. Given a table col(T ) = (H, col(D)), where col(D) = (c1, c2, . . . , cn), find
a column ci such that ci satisfies definition 3, i.e., such that col(T ) can be split into
atomic tables which express the extension of a property r ∈ R or the inverse r−1 of
such a property.

The subject column identification is an important preprocessing step, which has to be
performed with the highest precision possible. Failing to identify subject column will
lead to erroneous atomic tables and thus to less information being ported from T to the
reference knowledge K. For example, for a correctly identified subject column ci = s
dubbed city (see Figure 1), the binary relation ρi between "cairo" and "abdul azim
wazir" (i.e. ρi(”cairo”, ”abdul azim wazir”)) can be mapped to a knowledge base
such as DBpedia, where ρi corresponds to dbo:mayor property. Another important
consequence of subject column identification is the possibility to decompose table into
atomic tables.



3.2 Problem 2: Property Mapping

The property mapping of a table can be defined as a function λ, such as for each binary
relation ρi : s → ci between the subject column s and every other column of a table,
it assigns a property inside a knowledge base. Therefore, for each ρi we have to find a
mapping to a particular r ∈ R. We denoted this mapping by λ and write λ(ρi) = r.

As table semantics are ambiguous, we cannot determine the definite correspondence
between a binary relation in a table and a property inside a knowledge base. Moreover, a
single binary relation can be mapped to several properties. However, relational tables are
likely to have functional binary dependencies, which are mapped to particular functional
properties inside a knowledge base. Therefore, given a single binary relation between
columns and for each property r ∈ R, we can define the probability of r being the
correct binary relation ρi. We denote this probability P (λ(ρi) = r). The problem at
hand can now be reduce to finding the best mapping function λ, i.e., the λ that maximizes
P (λ(ρi) = r) for all ρi.

Problem 2. Given a table col(T ) = (H, col(D)), where col(D) = (c1, c2, . . . , cn) and
ck = s, find a mapping function λ, which maximizes the probability of having mapped
each ρi : s→ ci to the correct rj ∈ R.

Note that by these means, we reduce the two tasks to the same core problem formulation.
In the following, we will use this formulation to derive approaches for addressing the
two problems at hand.

4 Approach

In this section we describe our solutions to the subject column identification and property
mapping problems.

4.1 Subject Column Identification

To support column identification we extend an idea from distant supervision learning
[18,12]. Essentially, we boil down the column identification to finding the column ci in
a table that has the most relations to other columns inside the same table. To find such
a column, we begin by selecting m′ rows of the given table T . Then, for each row, we
disambiguate cell values against entities from a given reference knowledge base. Finally,
we apply four triple patterns to find potential relations between each combination of
columns. The approach derives two important features for each column: support and
connectivity.

Definition 5. The support Sti of a column ci in a table T is the ratio between cells with

disambiguated entities inside and total number of cells for a column. Sti =
∑|row(D)|

j=1 ej

|row(D)| ,
where

ej =

{
1, if dij could be disambiguated to some e ∈ E
0, otherwise

(1)



Definition 6. The connectivity Ci of a column ci in a table T is the ratio between
number of connections (i.e., properties) of the column to other columns inside the same
table to the total number of columns.

In our implementation, we evaluated the support of a particular column by using
AGDISTIS [21] to disambiguate the entries dij (disambiguateEntities on line 4 in Algo-
rithm 1) and used DBpedia as reference knowledge base. For example, given the table
in Figure 1, the entry d22 = quito was disambiguated as http://dbpedia.org/
resource/Quito. All entities in the columns c2, c3 and c6 of the example table could
be disambiguated. Hence, their support is 4

4 = 1. In contrast, all numerical columns have
support of 0. Our approach towards computing the support of all columns in a table is
shown in Algorithm 1.

Algorithm 1: TAIPAN Column Support Evaluation. Runs in O(m′n) time.
Data: Table T of size (m,n), m′

Result: St - support vector for the table columns, Et - entity matrix
1 Instantiate St, Et;
2 for row = 1 to m′ do
3 for col = 1 to n do
4 Et[row][col]←− disambiguateEntities(T [row][col]);
5 if |Et[row][col]| > 0 then
6 St[col]← St[col] + 1
7 end
8 end
9 end

10 for col = 1 to n do
11 St[col] = St[col]

m′ · 100%
12 end
13 return St, Et

After the disambiguation, we now employ a set of triple patterns to find potential
properties in a knowledge base as follows.

<%value> ?property <%value>

Listing 1.1. Entity-Entity Triple Pattern (1)

<%value> ?property "%value"@en

Listing 1.2. Entity-Literal Triple Pattern (2a)

<%value> ?property ?o .
FILTER regex(?o, ".*%value.*", "i")

Listing 1.3. Regex Entity-Literal Triple Pattern (2b)

These patterns are a heuristic mean to determine the set of potential properties be-
tween pairs of columns. To this end, we combine the results of the disambiguation step

http://dbpedia.org/resource/Quito
http://dbpedia.org/resource/Quito


with the original cell values (for entries that could not be disambiguated). Correspond-
ingly, %value is instantiated by using either the disambiguated entity from a column
value (patterns 1 and 2a-b) or a column value itself (patterns 2a-b). For instance, to
find relations between city and city population in our example, given that quito was
disambiguated and 1648000 not, the triple patterns (2a-b) are used. In this case triple
pattern (2b) will be instantianed as follows.

PREFIX dbpedia: <http://dbpedia.org/resource/>
dbpedia:Quito ?property ?o .
FILTER regex(?o, ".*1648000.*", "i")

Listing 1.4. Example of TP (2b) with instantiated variables

The retrieved properties from triple patterns are stored in a connectivity tensor of
order 3 and of dimensions m′ × n × n (m′ is the sample size for rows and stands for
the number of rows used in the Algorithm 1 as disambiguated entities are used in the
triple patterns). Each entry Cnijk contains the set of properties that were detected by
the approach above for the pair of column entries dij and dik. The connectivity Cj of a
column cj can be inferred from Cn as follows:

Cj =

∑|row(D)|
i=1

∑|col(D)|
k=1 |Cnijk|
|col(D)|

|row(D)|
. (2)

The evaluation of connectivity tensor is shown in Algorithm 2.
For example, the connectivity of column country of our running example (see

Figure 1) can be evaluated as: C3 =
∑4

i=1

∑6
k=1 |Cni3k|

6

4 .

Cni3k =


∅ country ∅ populationTotal ∅ citizen, official
∅ country ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ populationTotal citizen, official
∅ country ∅ ∅ ∅ ∅


(3)

Given Cni3k as in Equation 3, the connectivity evaluates to C3 = 0.375.
After characterizing columns by means of their support and connectivity scores, we

can use binary classifiers to classify columns of a table as being either subject columns or
not. Binary classifiers used in the experiments as well as discussion on their performance
are described in section 6.2.

4.2 Property Mapping

In this section we describe our approach to find an adequate mapping function λ. Our
approach assumes that a subject column has already been identified. As a first step,
we take the header H = (h1, h2, . . . , hn) of the input table T and for each element hi
retrieve seed properties from a reference set of potential properties. Then, the set of seed
properties is ranked according to the property frequency inside the reference knowledge
base K.



Algorithm 2: TAIPAN Column Connectivity Tensor Evaluation. Runs in O(mn2)
time.

Data: Table T of size (m,n), entity matrix Et, m′

Result: Cn, connectivity matrix for table T
1 Instantiate Cn;
2 for row = 1 to m′ do
3 for col = 1 to n do
4 for otherCol = col + 1 to n do
5 Cn[row][col][otherCol], Cn[row][otherCol][col]←−

findRelation(T [row][col], T [row][otherCol], Et)
6 end
7 end
8 end
9 return Cn

Given an identified subject column, a table of size (m,n) is atomized into (n−1) two-
column tables T ′i = (H ′i, D

′
i). Each atomic table represents exactly one binary relation

ρi, which should have a correspondence to a property rj ∈ R inside a knowledge base.
For example, table shown in Figure 1 is decomposed as shown in Figure 2.

While connectivity performs well to identify subject column of a table, the con-
nectivity tensor (i.e. properties found by triple patterns) does not contain the target
properties from a knowledge base. Therefore, for each element hi we retrieve seed prop-
erties in addition to properties extracted via triple patterns. To retrieve seed properties
from a knowledge base, we perform a look up on an index created from the values of
rdfs:label and rdfs:comment. This index is queried with the values of the table
header such as h3 = country.

To rank the properties, we employ a probabilistic model. The probability of a relation
ρi for an atomic table T ′i = (H ′i, D

′
i) to map to a property rj is defined as follows:

Definition 7. A probability of relation ρi to correspond to property rj equals to a
number of pairs (sm, dmi) corresponding to property rj divided by size of a table:

P (λ(ρi) = rj) =
∑|row(D)|

m=1 |(sm,dmi)∈rj |
|row(D)|

For example, for the atomic table shown in Figure 2 we would retrieve two properties
from DBpedia knowledge base such as: dbo:country and dbo:largestCity. Let us assume
the following knowledge base for the sake of simplicity:

City dbo:country dbo:largestCity
guayaquil equador equador
london UK UK
cairo egypt egypt
alexandria egypt N/A

We can calculate probabilities for the properties as: P (h3 = dbo : country) = 3
4 ,

P (h3 = dbo : largestCity) = 2
4 .

The property with the highest probability as defined in definition 7 would be selected,
i.e. dbo:country.



5 Implementation Details

In the implementation, we use DBpedia as a reference knowledge base. The properties
are retrieved from DBpedia with triple patterns as well as from LOV.2 LOV maintains a
reverse index of classes and properties from different ontologies based on rdfs:label
and rdfs:comment. The property ranking is performed as described in section 4.2.
For the property lookups LOV returns a score which quantify the relevance of each
result. The score is based on TF/IDF and field norms.3 To improve the precision of
TAIPAN, we introduce a score threshold (i.e., we only accept properties which have a
score higher than the specified threshold as candidates). As we can see in Figure 3, the
best performance is achieved when the threshold is set to 0.8, which the value we use
throughout our experiments.

6 Experiments and Results

The goal of our experiments was to measure how well our column identification and our
property mapping approaches perform. Hence, we compared the recall and precision
achieved by our approach with that of the approaches presented in [24] (subject column
identification) and [16] (property mapping). To the best of our knowledge, these are
the best performing approaches on these tasks at the moment. The data used in our
experiments and the source code of TAIPAN and the annotation interfaces used to curate
T2D are available on Github.4

6.1 Experimental Setup

Hardware The T2K algorithm [16] requires at least 100 GB RAM to run. Therefore,
the experiments for T2K algorithm were performed on a virtual machine running Ubuntu
14.04 with 128 GB RAM and 4 CPU cores. All experiments with TAIPAN were evaluated
on an Ubuntu 14.04 machine with 4 cores i7-2720QM CPU and 16 GB RAM.

Gold Standard We aimed to use T2D entity-level Gold Standard (T2D), a reference
dataset which consists of 1 748 tables and reflects the actual distribution of the data in
the Common Crawl,5 to evaluate our algorithms. However, the analysis of T2D showed
a substantial amount of annotation mistakes such as6:

– Tables containing data about dbo:Plant, dbo:Hospital instances are anno-
tated with the class owl:Thing.

– rdfs:label is used in an inflationary manner. For example, both first and last
name of persons are marked as rdfs:label.

– Columns with country names is annotated with dbo:collectionSize.

2
http://lov.okfn.org/

3
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html

4
https://github.com/aksw/taipan

5
http://webdatacommons.org/webtables/goldstandard.html

6 For a complete analysis, see https://github.com/AKSW/TAIPAN-Datasets/tree/master/T2D
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https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
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– Columns with active drug ingredients is annotated with dbo:commonName.

It is noticeable, that T2D contains 978 tables annotated with owl:Thing class. An analysis
of a random sample (50) of the tables from these 978 showed that all of them contain
annotation mistakes.

To address T2D annotation problems, we asked expert users to annotate both subject
columns and DBpedia properties. For the subject column identification annotation task,
we had 15 expert users annotate 322 randomly picked tables from T2D with 2 annotators
per table. We discarded the tables where the experts did not agree. As a result, the 116
tables that (1) had no subject column at all (4 tables) and (2) which possessed a subject
column upon which the experts agreed (112 tables) were included into our manually
curated dataset, which we dub T2D∗. To assess the quality of T2D∗, we calculated the
F-measure achieved by each annotator as proposed in [7]: F = 2·116

2·116+(322−116) = 0.53.
According to [9], the interval (0.41, 0.60) represents moderate agreement strength. This
hints at how difficult the problem at hand really is.

For the property annotation, we involved 12 Semantic Web experts. All experts were
experienced DBpedia users or contributors. Each user annotated 20 tables (2 annotators
per table). However, to reduce the time per annotation, we also displayed property
suggestions from the LOV search engine. On average, each user spent approximately
30 minutes to complete the task. Out of 116 annotated tables, 90 (77.5%) tables had
properties upon which the experts agreed. Moreover, the experts agreed on 236 (53.5%)
properties for the 441 columns we considered in T2D∗ (subject columns excluded). Out
of 236 annotated properties, the experts identified 104 (44%) properties from DBpedia.
The F-measure for the property annotation task is defined as F = 2·236

2·236+(441−236) =
0.70. According to [9] (0.61, 0.80) interval represents substantial agreement strength.
Note that we shuffled the positions of the columns in the T2D∗ dataset randomly as in
real-life scenarios the subject column can be at any position in a table (in contrast to
most tables in T2D). The same holds for the subsequent dataset.

DBpedia Table Dataset (DBD) We also evaluated TAIPAN using a dataset generated
directly from DBpedia concise bounded descriptions7 (CBDs) dubbed DBD. We selected
200 random classes with at least 100 CBDs in each class. For each class, we generated
5 tables with 20 rows each (i.e. using 20 CBDs). Inside a table, each row corresponds
to a CBD. The subject column was assigned the header label and contained the
rdfs:label of the resource whose CBD was described by the row at hand. The
headers of all other columns were values of rdfs:label of corresponding properties.
The values of the columns are the values of corresponding properties. We selected
only direct property/value pairs for CBDs, ignoring blank nodes. The resulting dataset
contains 1 000 tables. The implementation of the data generator8 as well as the DBD9

are available on Github.

Training and Testing Given that one usually only has a small number of annotated
tables to train an extraction approach, we opted to use an inverse 10-fold cross-validation

7
https://www.w3.org/Submission/CBD/

8
https://github.com/aksw/TAIPAN-DBD-Datagen

9
https://github.com/AKSW/TAIPAN-Synth-Datagen/tree/master/DBpediaTableDataset/
tables

https://www.w3.org/Submission/CBD/
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https://github.com/AKSW/TAIPAN-Synth-Datagen/tree/master/DBpediaTableDataset/tables
https://github.com/AKSW/TAIPAN-Synth-Datagen/tree/master/DBpediaTableDataset/tables


Rule-based Support Connectivity Support-Connectivity
T2D∗ 51.72% 54.31% 36.00% 56.89%
DBD 52.20% 90.80% 80.00% 84.40%

Table 1. Accuracy for subject column identification. Evaluation of support and connectivity
features.

to evaluate TAIPAN. This means that each dataset was subdivided into 10 folds of the
same size. 10 experiments were then ran, within which one fold was used for training
and the 9 other folds for testing.

6.2 Subject Column Identification

According to [24], a simple rule-based approach (pick the left-most column which is not
a number or date) for subject column identification achieves 83% accuracy10, while an
SVM with an RBF kernel with the following 5 features increases accuracy up to 94%:
(1) fraction of cells with unique content, (2) fraction of cells with numeric content, (3)
variance in the number of date tokens in each cell, (4) average number of words in each
cell, and (5) column index from the left.

We recreated the experiment on T2D∗ and DBD. Our experiments (see Table 1) show
that for T2D∗, the rule-based approach (the baseline) achieves only 51.72% accuracy,
while the SVM proposed in [24] achieves 49.52% accuracy in an inverse ten-fold cross-
validation. Note that this performance is different from stipulated by the authors on
their corpus.11 On the other hand, selecting the column that achieves the highest support
(see Table 1) already performs by 5.17% better than the rule-based baseline. While
selecting a column based on connectivity alone performs much worse than baseline, a
linear combination of the support and connectivity features α · Sti + (1− α) · Ci with
α = 0.3 achieves further gain over the baseline (6.04%).

In an effort to check whether more complex models would lead to even better results,
we evaluated TAIPAN feature set with 7 different classifiers (see Table 2).12 TAIPAN
feature set includes all the features proposed by [24] with addition of connectivity and
support. For T2D∗, the best performing method for TAIPAN was based on SVM. This
method achieves 80.74% accuracy in an inverse tenfold cross validation and thus achieves
29.02% gain over the baseline. The further experiments for DBD dataset showed that
decision tree classifier performs the best on average for both T2D∗ and DBD. As a result,
we selected decision tree classifier to be default setting for TAIPAN.

6.3 Property Mapping

We evaluated TAIPAN using our T2D∗ and DBD by comparing it with the state-of-the-
art solution for table to knowledge base mapping T2K described in [16,17]. T2K is
10 Accuracy is defined as a ratio of correctly guessed subject columns to a number of overall guessed subject columns.
11 We contacted the authors to obtain their corpus but were not provided access to it. Still, we followed the specification of

the SVM in their paper exactly.
12 We used the classifier implementations from scikit-learn python library at http://scikit-learn.org/. For more

information on the implementation, please refer to the TAIPAN Github repository at https://github.com/AKSW/
TAIPAN.

http://scikit-learn.org/
https://github.com/AKSW/TAIPAN
https://github.com/AKSW/TAIPAN


T2D∗ DBD

SVM (80.74± 9.17)% (69.64± 19.91)%
KNeighbors (36.94± 15.17)% (87.36± 3.37)%
SGD (34.29± 30.69)% (39.69± 22.46)%
Decision Tree (72.59± 15.04)% (79.50± 5.76)%
Gradient Boosting (75.77± 11.93)% (67.35± 2.29)%
Nearest Centroid (51.11± 9.84)% (59.19± 4.09)%
SGD (perceptron loss function) (37.25± 27.84)% (29.63± 19.88)%

Table 2. Accuracy for subject column identification. TAIPAN.

T2D∗ DBD
Recall Precision F-measure Recall Precision F-measure

TAIPAN 72.12% 39.27% 50.85% 84.31% 86.01% 85.15%
T2K 36.54% 48.72% 41.76% 0.002% 0.002% 0.002%

Table 3. Recall, precision and F-measure of TAIPAN and T2K algorithm.
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Fig. 3. Recall, precision and F-measure of TAIPAN as a function of a score threshold.

open-source and available online.13 We do not compare T2K to TAIPAN on T2D due to
substantial amount of annotation mistakes in T2D (see section 6.1).

We calculated the recall achieved by the approaches as the number of correctly
mapped properties divided by the number of properties in a gold standard. The precision
was computed as the number of correctly mapped properties divided by total number of
mapped properties.

The results achieved by both approaches are shown in Table 3. For T2D∗, T2K has
a 9.5% better precision than TAIPAN. However, TAIPAN achieves a 36% better recall,
hence outperforming T2K by 9% F-measure. An error analysis of TAIPAN suggests that
the 39% precision it achieves can be improved significantly by enhancing the ranking of

13
http://dws.informatik.uni-mannheim.de/en/research/T2K

http://dws.informatik.uni-mannheim.de/en/research/T2K


properties with heuristics from the whole table corpus and not only using the information
available in a single table. For example, given the frequency of the header Anglican
Church inside the data corpus Frequency("Anglican Church") = 1, it is
possible that this property is not available in the reference knowledge base.

For DBD, T2K could only match 6 columns correctly, resulting in under 1% F-
measure. TAIPAN achieved 85.15% F-measure, significantly outperforming T2K. TAIPAN
does not achieve a perfect property mapping because the DBD dataset contains columns
homonymous columns from two different namespace, i.e., the ontology and the prop-
erty namespace (for example, http://dbpedia.org/property/birthDate
and http://dbpedia.org/ontology/birthDate). Overall, our results sug-
gest that TAIPAN outperforms the state of the art significantly in both subject column
identification and property mapping.

7 Related Work

In this paper, we focus on the problem of automatic mapping of web tables to ontologies.
Semi-automatic and manual approaches, which rely on user input (e.g. [8], [3]) as
well as ontology alignment (e.g. [20]) are out of scope of this paper. Research on the
topic of web tables is mostly carried out by two communities: Researchers from major
search engines and researchers involved in open projects such as Common Crawl14

and Web Data Commons15. A significant portion of the related work on web tables
is enlisted on the Web Data Commons web site.16 In general, WDC identified four
different applications in the field of web tables: (1) data search, (2) table extension,
(3) knowledge base construction, and (4) table matching. Approaches supporting data
search are represented, for instance, by [23,24,1]. The authors describe creation of a
isA database from webpages via Herst patterns and using it to identify column classes
and relations between columns. In a table extension application, a local table is extended
with additional columns based on the corpus of tables that are published on the Web.

In the table matching applications [11,13,16,17], most approaches perform three
basic steps: (1) column class identification, (2) entity disambiguation and (3) relation
extraction. Only recent work by Ritze et. al [16,17] made the T2D gold standard available.

Subject column identification is addressed to a larger extent by [24,26]. Wang et.
al [26] propose a naive approach, where the subject column is simply the the first column
from the left that satisfies a fixed set of rules. Venetis et. al [24] identify subject column
using a SVM with an RBF kernel. However, they do not open-source their code or their
data. To the best of our knowledge, we outperform both state of the art approaches w.r.t.
the F-measure that we achieve.

8 Conclusions and Future Work

In this paper, we described novel approach for subject column identification and property
mapping for web tables. We improved the T2D gold standard by curating it manually
14

https://commoncrawl.org/
15

http://webdatacommons.org/
16

http://webdatacommons.org/webtables/

https://commoncrawl.org/
http://webdatacommons.org/
http://webdatacommons.org/webtables/


with the help of 20 Semantic Web experts and used this T2D∗ to evaluate our approach
against the state-of-the-art. While we were able to achieve a recall and an F-measure
that were considerably higher than the state-of-the-art, our evaluation also revealed
that the precision of TAIPAN can still be improved. The improvements can be achieved
by supplementing our property ranking with additional heuristics over the whole table
corpus. Moreover, we noticed that a large portion of the columns (56%) in our benchmark
contained meaningful information that can be potentially mapped to other knowledge
bases. We will thus extend our extraction approach to cover such cases in future work.
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