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Abstract. We show how to convert OWL Class Expressions to
SPARQL queries where the instances of that concept are with a spe-
cific ABox equal to the SPARQL query result. Furthermore, we im-
plement and integrate our converter into the CELOE algorithm (Class
Expression Learning for Ontology Engineering), where it replaces the
position of a traditional OWL reasoner. This will foster the application
of structured machine learning to the Semantic Web, since most data
is readily available in triple stores. We provide experimental evidence
for the usefulness of the bridge. In particular, we show that we can im-
prove the run time of machine learning approaches by several orders
of magnitude.

1 INTRODUCTION AND MOTIVATION
A growing amount of data from diverse domains is being converted
into RDF3 as demonstrated by the growth of the Linking Open Data
Cloud.4 With this conversion come a significant number of complex
applications which rely on large amounts of data in RDF and OWL5

to perform demanding tasks, such as detecting patients with particular
diseases [11]. While OWL reasoners can provide the required infor-
mation for structured machine learning, they do not scale to large data
sets. On the other hand, the SPARQL query language was developed
specifically to query large amounts of data. By creating a bridge be-
tween SPARQL and OWL, we are able to answer OWL queries on
large amounts of data.

Description Logics is the name of a family of knowledge represen-
tation (KR) formalisms. They emerged from earlier KR formalisms
like semantic networks and frames. Their origin lies in the work of
Brachman on structured inheritance networks [3]. SROIQ is a well-
known description language, as it is the basis for OWL 2. SROQ
is the subset of that language lacking inverse properties. We refer
to [6] for details. For a complete definition of the SPARQL syntax and
semantics, we refer to [1, 10] and the official W3C recommendation.6

2 OWL CLASS EXPRESSION REWRITING
ALGORITHM

Proposition. Given an ABox A, which contains class assertions to
named classes and role assertions, we define I as the canonical inter-
pretation [2]. Then we can show that executing the query converted
from a concept C using τ as given in Tables 1 and 2 over A is the
same as the canonical interpretation of C. Due to space constraints,
please refer to our technical report for the proof.7
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Table 1. Conversion of class expressions into a SPARQL graph pattern.

Class Expression
Ci

Graph Pattern
p = τ(Ci,?var)

A {?var rdf:type A.}
¬C {?var ?p ?o .

FILTER NOT EXISTS { τ (C, ?var)}}
{a1, . . . , an} {?var ?p ?o .

FILTER (?var IN (a1, . . . , an))}
C1 � . . . � Cn {τ (C1, ?var) ∪ . . .∪ τ (Cn, ?var)}
C1 � . . . � Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s.} ∪ τ (C, ?s)
∃ r.{a} {?var r a.}
∃ r.SELF {?var r ?var.}
∀ r.C { ?var r ?s0.

{ SELECT ?var
(count(?s1) AS ?cnt1)

WHERE { ?var r ?s1 . τ(C, ?s1) }
GROUP BY ?var }

{ SELECT ?var
(count(?s2) AS ?cnt2)

WHERE { ?var r ?s2 }
GROUP BY ?var }

FILTER ( ?cnt1 = ?cnt2 ) }
Θn r.C
Θ ∈ {≤,≥,=}

{ ?var r ?s0.
{ SELECT ?var
WHERE { ?var r ?s . τ(C, ?s) }
GROUP BY ?var
HAVING ( count(?s) Θ n ) } }

Table 2. Conversion of property expressions into a SPARQL g.p.

Property
Expression pi

Graph Pattern
p = τ(pi,?var)

p {?var p ?o.}
p−1 {?s p ?var .}
p1 ◦ · · · ◦ pn {?var p1 ?o1.

...
...

...
?o_n-1 pn ?o_n.}

3 LEARNING PROBLEM AND ALGORITHM
We consider supervised machine learning from positive and negative
examples. All our experiments are binary classification tasks. The
CELOE algorithm (Class Expression Learning for Ontology Engi-
neering) iteratively generates class expressions and evaluates their
performance on the positive and negative examples [8]. CELOE relies

3 http://www.w3.org/TR/rdf11-concepts/
4 http://lod-cloud.net/
5 http://www.w3.org/TR/owl2-overview/
6 http://www.w3.org/TR/sparql11-query/
7 http://svn.aksw.org/papers/2016/ECAI_SPARQL_Learner/tr_public.pdf
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Table 3. Data set characteristics.

data/object
number of triples classes properties expressivity

carcinogenesis 74,567 142 15 4 ALC(D)
mutagenesis 62,067 86 6 5 AL(D)
mammograms 6,809 19 2 3 AL(D)
TCGA-A 35,329,868 24 113 48 AL(D)

on a top-down algorithm based on refinement operators. We use the
refinement operator defined in [9].

4 EVALUATION
We implemented the SPARQL querying method according to Sec-
tion 2 as an extension to the DL-Learner [7] framework in the place of
an OWL API reasoner.8 We use four data sets to compare the SPARQL
induction to OWL reasoners. The Carcinogenesis and Mutagenesis
data sets are moderately-sized data sets converted from data provided
by the Oxford University Machine Learning group.9 The mutagene-
sis data set is based on the results of [4]. The Mammographic Mass
data set (Mammograms) was published in [5].10 Additionally, we
evaluated our approach on an excerpt from the cancer patient data in
LinkedTCGA11 (35 million triples). This data set has not previously
been possible to use with DL-Learner due to its size.

In Table 3, the main characteristics of the data sets are described.
The number of RDF triples describes the total size of the data set.
Furthermore, the total number of classes and data as well as object
properties (across all classes) is indicated. The expressivity refers to
the description logic language features that are used in the data set as
customary in description logics.

The approaches are evaluated using three different access options
inside the DL-Learner framework. We tested the popular HermiT,12

Pellet[12] and FaCT[13] OWL reasoners. For SPARQL, the data was
loaded into an in-memory Jena13 model with OWL/Lite inference
rules14 as well as a pre-computed model, in which case the SPARQL
back-end acts as a pure graph database. In our evaluation setup, 22
seconds (mutagenesis), 36 seconds (carcinogenesis), 7 seconds (mam-
mograms) were spent on pre-computing all inferences externally
beforehand. We loaded the LinkedTCGA data set15 into a SPARQL
endpoint running OpenLink Virtuoso16 7.1. All experiments were run
on an AMD Opteron 6376 @ 2.3GHz with 256 GB system memory,
of which the DL-Learner framework used 32 GB. The algorithm itself
is single-threaded.

The configuration files to reproduce our experiment can be found
in the DL-Learner repository.17

5 CONCLUSION
The SPARQL approaches were nearly two orders of magnitude faster
as can be seen in Tables 4 and 5. However, for the moment we have
excluded the pressing lack of inference support for larger data sets.

8 http://owlapi.sourceforge.net/reasoners.html
9 http://www.cs.ox.ac.uk/activities/machlearn/applications.html
10 http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass
11 http://aksw.org/Projects/LinkedTCGA
12 http://www.hermit-reasoner.com/
13 https://jena.apache.org/
14 https://jena.apache.org/documentation/inference/
15 https://code.google.com/p/bigrdfbench/
16 http://virtuoso.openlinksw.com/
17 https://github.com/AKSW/DL-Learner/tree/sparql-comparison/test/

sparql-comparison

Table 4. Number of concept tests within 4000 seconds (mean average in ten
runs).

SPARQL SPARQL
Precomp. Micro-rule HermiT Pellet

carcinogenesis 162,430 60,527 87 93
mutagenesis 11,713 4,552 timeout 176
mammograms 26,036 12,260 28 173

Table 5. Run time (seconds) until top accuracy.

Precomp. Micro-rule HermiT Pellet FaCT

carcinogenesis 95 1,380 timeout timeout 713
mutagenesis 1 3 timeout 159 -
mammograms 286 647 494 365 -
TCGA-A 1,243 timeout timeout timeout -
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