
ROCKER – A Refinement Operator for Key Discovery

Tommaso Soru
Institute of Computer Science,

University of Leipzig
tsoru@informatik.uni-

leipzig.de

Edgard Marx
Institute of Computer Science,

University of Leipzig
marx@informatik.uni-

leipzig.de

Axel-Cyrille Ngonga Ngomo
Institute of Computer Science,

University of Leipzig
ngonga@informatik.uni-

leipzig.de

ABSTRACT
The Linked Data principles provide a decentral approach
for publishing structured data in the RDF format on the
Web. In contrast to structured data published in relational
databases where a key is often provided explicitly, finding a
set of properties that allows identifying a resource uniquely
is a non-trivial task. Still, finding keys is of central im-
portance for manifold applications such as resource dedu-
plication, link discovery, logical data compression and data
integration. In this paper, we address this research gap by
specifying a refinement operator, dubbed ROCKER, which
we prove to be finite, proper and non-redundant. We com-
bine the theoretical characteristics of this operator with two
monotonicities of keys to obtain a time-efficient approach
for detecting keys, i.e., sets of properties that describe re-
sources uniquely. We then utilize a hash index to compute
the discriminability score efficiently. Therewith, we ensure
that our approach can scale to very large knowledge bases.
Results show that ROCKER yields more accurate results,
has a comparable runtime, and consumes less memory w.r.t.
existing state-of-the-art techniques.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous; I.2.8 [Computing Methodologies]: Problem Solv-
ing, Control Methods, and Search

Keywords
Semantic Web; Linked Data; link discovery; key discovery;
refinement operators

1. INTRODUCTION
The number of facts published in the Linked Data Web

has grown considerably over the last years [3]. In partic-
ular, large knowledge bases such as LinkedTCGA [20] and
LinkedGeoData [24] encompass more than 20 billion triples
each. The architectural principles behind the Linked Data

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741642.

Web are akin to those on the Web. In particular, the de-
central data publication process leads to facts on the same
real-world entities being published across manifold knowl-
edge bases. For example, information on Austin, Texas is
distributed across several knowledge bases, including DB-
pedia1, LinkedGeoData and GeoNames2. Given the size of
the current Linked Data datasets, providing unique means
to characterize resources within existing datasets would fa-
cilitate the use of these knowledge bases, for example within
the context of entity search, data integration, linked data
compression and link discovery [18]. Especially for the link
discovery task, being provided with unique descriptions of
resources in a knowledge base would allow for the more time-
efficient computation of property matchings for link specifi-
cations, a task that has been pointed out to be particularly
tedious in previous work [4].

In relational databases, keys are commonly either artifi-
cial or sets of columns that allow to describe each resource
uniquely. Previous works [18, 2, 6] adopt this approach for
uniquely describing RDF data and use properties instead of
columns. Several problems occur when trying to detect keys
for RDF data.

1. Resources from the same datasets might not all have
the same properties. For example, in the fragment of
DBpedia 3.9 shown in Figure 1, only 50% of the re-
sources have a :meshNumber. Thus, while the :mesh-

Number is unique, it cannot be used as a key for this
dataset.

2. The inverse problem exists for the :graySubject, which
covers all resources but is not unique as the trigeminal
nerve and the lacrimal nerve have the same :graySub-

ject. For our toy dataset, only keys of size larger that
1 exist (e.g., {:graySubject, :grayPage}).

3. The key discovery problem is exponential in the num-
ber of properties n in the knowledge base, as the solu-
tion space contains 2n − 1 possible sets of keys. Thus,
näıve solutions to the key discovery problem do not
scale.

Moreover, depending on the use case, key discovery ap-
proaches have to be able to detect a single key (e.g., to
link resources within a knowledge base) or to detect all keys
for a resource (e.g., when integrating data across knowledge
bases).

1http://dbpedia.org
2http://www.geonames.org/

http://dbpedia.org
http://www.geonames.org/

:Nerve

:Trigeminal_nerve886

200

A08.800.800.120.760

:grayPage

:graySubject

:meshNumber

rdf:type

:Median_nerve 938

210

:grayPage

:graySubject
rdf:type

:Lacrimal_nerve 887

200

:grayPage

:graySubject

rdf:type

:Olfactory_nerve196

A08.800.800.120.640

:graySubject

:meshNumber

rdf:type

Figure 1: Fragment from a knowledge base on human nerves. The fragment was extracted from DBpedia
3.9.

In this paper, we address the three problems of key discov-
ery within both settings of key discovery (i.e., finding all keys
or almost-keys within a given threshold) by using a refine-
ment operator dubbed ρ. This operator is able to detect sets
of properties that describe any instance of a given class in a
unique manner. By these means, it can generate n-tuples of
property values that can be used as keys for resources which
instantiate a given class. Our operator relies on a scoring
function to compare sets of properties. Based on this com-
parison, it can efficiently detect single keys, all keys and even
predict whether a key can be found in a given dataset. In ad-
dition to being finite, non-redundant and proper, our opera-
tor also scales well and can thus be used on large knowledge
bases. Our contributions are:

• We provide the first refinement operator for key dis-
covery on RDF knowledge bases.

• We prove that our operator is finite, non-redundant,
proper, but not complete.

• We utilize the combination of a hash index to com-
pute the discriminability score, i.e. the ability for a
set of properties to distinguish their subjects, with two
monotonicities of keys to prune the refinement tree and
thus ensure that our operator scales.

• We show that our approach succeeds on datasets where
current state-of-the-art approaches fail.

• We evaluate our operator on the OAEI instance match-
ing benchmark datasets as well as on DBpedia classes
with large populations. In particular, we measure the
overall runtime, the memory consumption and the re-
duction ratio of our approach. Our results suggest that
we outperform the state of the art w.r.t. correctness
and memory consumption. Moreover, our results sug-
gest that our approach terminates within an accept-
able time frame even on very large datasets.

The rest of this paper is structured as follows: We be-
gin by defining the problem at hand formally. Thereafter,
we present our operator and prove its theoretical character-
istics. After a discussion of related work, we evaluate our

operator on synthetic and real data. We then conclude and
present some future work.

2. PRELIMINARIES
In the following, we formalize the definition of keys that

underlie this paper. This definition is used by our refinement
operator to efficiently detect keys.

2.1 Keys
Let K be a finite RDF knowledge base containing in-

stances which belong to a given class and their Concise
Bounded Description (CBD).3 K can be regarded as a set
of triples (s, p, o) ∈ (R ∪ B)× P × (R ∪ L ∪ B), where R is
the set of all resources, B is the set of all blank nodes, P the
set of all predicates and L the set of all literals. We call two
resources r1, r2 ∈ R distinguishable w.r.t. a set of properties
P = {p1, . . . pn} iff ∃p ∈ {p1, . . . pn} : ¬((r1, p, o)∧ (r2, p, o)).
Given a knowledge base K, the idea behind key discovery is
to find one or all sets of properties which make their respec-
tive subjects distinguishable in K.

Definition 1 (Key). We call a set of properties P ⊆ P a
key for a knowledge base K (short: key, denoted key(P,K))
if all resources in K are distinguishable w.r.t. P .

Definition 2 (Minimal key). We call P a minimal key
(short: mkey) iff P is a key but none of its subsets is. For-
mally,

mkey(P,K)⇒ key(P,K) ∧ (¬∃P ′ ⊂ P : key(P ′,K)). (1)

2.2 Discriminability
A key for an RDF knowledge base and a primary com-

posite key for a database share the same aim. RDF prop-
erties represent the projection of database fields into the
RDF paradigm, as well as each resource represents a tuple.
However, while a tuple element has only one single value, a
property might link a resource to more than one RDF ob-
jects. Therefore, two resources are distinguishable from each
other w.r.t. a set of properties P if their sets of objects are
different for at least one p ∈ P .

3For the definition of CBD, see http://www.w3.org/
Submission/CBD/.

http://www.w3.org/Submission/CBD/
http://www.w3.org/Submission/CBD/

To the best of our knowledge, this particular feature of
keys was not taken into account by previous works on key
discovery for RDF data [18, 6, 2]. For instance, [18, 6] con-
sider two resources r and r′ as not distinguishable w.r.t. P
if for each p ∈ P they share at least one object.

Figure 2 shows an example of RDF data, as reported in
[6]. Here, the authors claim that P = {p1} = {:hasActor}
is not a key because "G.Clooney" is the object of more than
one instance of :Film. We would instead consider P as a
key, since every film is linked with a different set of objects
(sobj), i.e.:

sobj(:f1, p1) = {"B.Pitt", "J.Roberts"}
sobj(:f2, p1) = {"G.Clooney", "B.Pitt", "J.Roberts"}
sobj(:f3, p1) = {"B.Pitt", "G.Clooney"}
sobj(:f4, p1) = {"G.Clooney", "N.Krause"}
sobj(:f5, p1) = {"F.Potente"}
sobj(:f6, p1) = ∅

Note that :f6 is still distinguishable from the other re-
sources w.r.t. P , since no other instance of :Film in the
knowledge base has 0 actors. This particular case was not
considered, for example, by the authors of [2].

2.3 Properties of a key
Keys abide by several monotonicities [18]. The first is the

so-called key monotonicity, which is given by

key(P,K)⇒ ∀P ′ : P ⊆ P ′ ⇒ key(P ′,K). (2)

The reciprocal monotonicity is called the non-key mono-
tonicity, which is given by

¬key(P,K)⇒ (∀P ′ ⊆ P : ¬key(P ′,K)). (3)

In other words, adding a property to a key yields another
key, whilst removing a property to a non-key yields another
non-key. In this paper, we present a key discovery approach
based on refinement operators.

3. A REFINEMENT OPERATOR FOR KEY
DISCOVERY

In this section, we present our refinement operator for key
discovery and prove some of its theoretical characteristics.
Our formalization is based on that presented in [8].

Let P ⊆ P. Moreover, let score : 2P → [0, 1] be a function
that maps each subset P of P to the fraction of subject
resources from K that are distinguishable by using P .

Theorem 1 (Induced quasi-ordering). The score function
induces a quasi-ordering � over the set P, which we define
as follows:

P1 � P2 ⇔ min
p∈P1

score(p) ≤ min
q∈P2

score(q). (4)

The reflexivity and transitivity of� are direct consequences
of the reflexivity and transitivity of ≤ in R. Note that � is
not antisymmetric as two sets of properties P1 and P2 can
be different and contain the property with the lowest score,
leading to P1 � P2 and P2 � P1.

Definition 3 (Refinement Operator). Given a quasi-ordered
space (S, op) an upward refinement operator r is a mapping
from S to 2S such that ∀s ∈ S : s′ ∈ r(s) ⇒ op(s, s′). s′ is
then called a generalization of s.

∅

{p1} {p2} {p3}

{p1, p2} {p1, p3} {p2, p3}

{p1, p2, p3}

Figure 3: Complete refinement graph for P =
{p1, p2, p3}. The nodes of the graph are subsets of
P. A directed edge (a, b) means b ∈ ρ(a).

We define our refinement operator over the space (P,�).
First, we begin by ordering the elements of P according to
their score in ascending order, i.e., ∀pi, pj ∈ P, i ≤ j ⇒
score(pi) ≤ score(pj). Then, we can define our operator as
follows:

ρ(P) =

{
P iff P = ∅,
{P ∪ {p1}, . . . , P ∪ {pi}} where pj ∈ P ⇒ i < j.

(5)
For example, the complete refinement graph for P = {p1, p2, p3}
is given in Figure 3. We use this operator in an iterative
manner by only expanding the node with the highest score
in the refinement graph. The intuition behind this approach
to searching for key is that by ordering properties by their
score, we can easily detect and expand the most promising
sets of properties without generating redundant nodes. To
prove some of the characteristics of ρ, we need to explicate
the concept of a refinement chain:

Definition 4 (Refinement chain). A set P2 ∈ P belong to
the refinement chain of P1 ∈ P iff ∃k ∈ N : P2 ∈ ρk(P1),

where ρk(P) =

{
P iff k = 0,

ρ(ρk−1(P)) else .

For example, a refinement chain exists between {p3} and
{p1, p2, p3} in the example shown in Figure 3. There is yet
no refinement chain between {p1} and {p2} in the same ex-
ample.

A refinement operator r over the quasi-ordered space (S, op)
can abide by the following criteria.

Definition 5 (Finiteness). r is finite iff r(s) is finite for all
s ∈ S.

Definition 6 (Properness). r is proper if ∀s ∈ S, s′ ∈
r(s)⇒ s 6= s′.

Definition 7 (Completeness). r is said to be complete if
for all s and s′, op(s′, s) implies that there is a refinement
chain between s and s′.

Definition 8 (Redundancy). A refinement operator r over
the space (S, op) is redundant if two different refinement
chains can exist between s ∈ S and s′ ∈ S.

In the following, we show that ρ is finite, proper and non-
redundant but not complete.

Theorem 2. ρ is finite when applied to a finite knowledge
base K.

Figure 2: Example of RDF data, as reported in Symeonidou et al., 2014.

Proof. The finiteness of ρ is a direct result of K being finite.
The upper bound of the number of properties in K is the
number of triples in K. Thus, |K| < ∞ ⇒ |P| < ∞. Per
definition, |ρ(P)| ≤ |P|. Thus, we can conclude that ∀P ∈
P : |ρ(P)| <∞.

Theorem 3. ρ is proper.

Proof. The properness of ρ also results from the definition of
ρ. As we always add exactly a property to P when comput-
ing ρ(P), we know that |ρ(P)| = |P | + 1. Thus, ρ(P) 6= P
must hold.

Theorem 4. ρ is not complete.

Proof. The incompleteness of ρ follows from the definition
of ρ(∅). Let P = {p1, . . . , pn}. Then {p1} � {pn}. Yet,
there is clearly no refinement chain between {pn} and {p1}
as any subset of P connected to pn via a refinement chain
must have a magnitude larger than one. Yet, the magnitude
of {p1} is 1, which shows that {p1} cannot be connected to
{pn} via a refinement chain.

Theorem 5. ρ is not redundant.

Proof. ρ being redundant would mean that a pair of prop-
erty sets (P, P ′) exist, where P is linked to P ′ by two distinct
refinement chains C1 and C2. Given that these two chains
begin and end at the same node, there must be a node N
that is common to the two chains but has two distinct fathers
N1 and N2 that are such that N1 belongs to C1 and not to
C2 while N2 belong to C2 but not to C1. Now, N1 being the
father of N means ∃pi ∈ P : N = N1 ∪ pi. Conversely, N2

being the father of N also means that ∃pj ∈ P : N = N2∪pj .
Now if N1 6= N2, then we can assume wlog that i < j. For
N ∈ ρ(N2) to hold, j resp. i must be less than the index of
any element of N2 resp. N1. Moreover, for N1∪pi = N2∪pj
to hold, pi would have to already be a element of N2. How-
ever, by virtue of the construction of ρ, this means that
(N2∪{pj}) /∈ ρ(N2) given that pi ∈ N2 and i < j. Thus, we
can conclude that there cannot be any to distinct refinement
pairs between two subsets of P.

4. APPROACH
In this section, we present ROCKER, a refinement operator

approach for key discovery. Our approach was designed with
scalability in mind. To this end, it implements a scalable ver-
sion of the discriminability score function based on a hash

index. Moreover, we use the monotonicities of keys to check
for the existence of keys as well as decide on nodes that need
not be refined.

4.1 Implementation
In order to increase the scalability of our operator, we

chose an hybrid approach using both in-memory and disk
storage database. The following tasks are then performed
by ROCKER:

1. the knowledge base model is built using the Apache
Jena library;

2. for each class, its instances and properties are extracted;

3. this information is stored and indexed over a B-tree
structure, whereas the instance URI is used as a key;

4. object values are sorted alphabetically, imploded into a
string, indexed using hash codes, and stored into each
tuple element;

5. the refinement operator starts from the empty-set node;

6. at each node, the discriminability score is computed
by performing a query to the database;

7. the computation terminates according to some rule.

4.2 Definition of the score function
We firstly define the set of subjects of the knowledge base,

i.e. the instances of a given class.

S = {s : ∃(s, p, o) ∈ K} (6)

We then provide the definition of discriminability for two
resources w.r.t. a set of properties P .

discr(s, s′, P)⇔ (7)

∀s ∈ S ∀p ∈ P @s′ ∈ S : sobj(s, p) ≡ sobj(s′, p) (8)

where sobj is the “set of objects” function introduced in Sec-
tion 2.2. Finally, we define the score of P (denoted score(P))
as the number of subject resources of K that are distinguish-
able w.r.t. P by using the following formula:

score(P) =
|{s ∈ S : ∀s′ ∈ S s 6= s′ ⇒ discr(s, s′, P)}|

|S| .

(9)
The set P is a key if score(P) = 1, i.e., if P covers all subject
resources from K and all resources are distinguishable w.r.t.
P .

Basing the refinement on this scoring function has the ad-
vantage of allowing ROCKER to cover not only keys but
also k-almost-keys [6], which are defined as follows: P is
a k-almost-key if ∃X ⊆ S : |X| ≤ k ∧ ∀s, s′ ∈ S\X :
discr(s, s′, P). Consider for example the data shown in Fig-
ure 2. If :f2 did not have "J. Roberts" in the list of its
actors, then it would not be distinguishable from :f3. In
this case, the set {hasActor} would be 2-almost-key. We
can derive a minimal score α for a k-almost-key by simply
using the maximal magnitude of X within score(P):

|X| ≤ k → score(P) ≥ |S| − k|S| = α. (10)

Note that a key is a 0-almost-key. Moreover, every k-almost-
key with k ≥ 0 is also a (k + 1)-almost-key.

In our implementation, the score function for P is thus
calculated by querying the class table for the columns as-
sociated with the properties in P . For each row, the re-
turned values are then concatenated and added to a sorted
set, where duplicates are discarded automatically by virtue
of the definition of set. The size of this final set represents
the numerator for Equation 10.

4.3 Refinement Operator
The pseudo code of ROCKER’s refinement operator is

shown in Algorithm 1. Given a set of triples K and a set
of properties P, we begin by checking whether our ρ-based
approach is able to find a key at all. This can be done by
computing score(P). If the score is less than 1 (i.e., if P
is not a key), then we know no key exists by virtue of the
non-key monotonicity. We can thus terminate and return
∅, unless a threshold α < 1 is given. Under this setting, we
terminate if score(P) < α. Now if P is a key, then some of its
subsets might be minimal keys. We then begin by sorting the
elements of P w.r.t. their score. This heuristic tries to make
the refinement operator discover keys earlier, so that their
descendants can be pruned from the refinement tree, thus
decreasing the number of score calculations. A maximal-
priority queue is then initialized, where the priority of an
element is its score. The queue is initialized with the empty
set with a priority of 0. We then take the element P of
the queue with the highest priority iteratively and remove
it from the queue. Thank to the non-redundancy of ρ, there
is no need to check whether P has been seen before. P is
refined to P ′, whose elements p are then checked iteratively.
We thus evaluate the scores of all elements of P ′. If their
score is less than 1, then they are added to the queue. If
their score is 1, then we add them to the solution and do not
add them to the queue, as they do not need to be refined any
further by virtue of the key monotonicity. We then return
the set of all keys.

Our approach has several advantages due to the theoreti-
cal characteristics of ρ and the key monotonicities:

1. It terminates quickly if there is no key by virtue of
using the non-key monotonicity.

2. It is guaranteed to find all existing minkeys by virtue
of the key monotonicity.

3. Using a sorted queue, it encourages node pruning by
evaluating the most promising nodes first.

4. It never visits the same node twice due to the non-
redundancy of ρ.

5. It is ensured to find all existing keys.

Algorithm 1 ROCKER’s algorithm for detecting all keys.
The algorithm for detecting a single key does not require
the solution variable. Instead, it returns the first P having
score(P) = 1 it finds.

Require: Set of triples K
1: P = {p : ∃s, p with (s, p, o) ∈ K}
2: if score(P) < 1 then
3: return ∅;
4: end if
5: P = sortByScore(P);
6: MaxPriorityQueue q = new Queue();
7: Set solution = new Set();
8: q.add(∅, 0); // add ∅ with priority 0
9: while ¬q.isEmpty() do

10: P ′ = q.getF irst();
11: q.removeF irst();
12: P = ρ(P ′);
13: for all p ∈ P do
14: σ = score(p);
15: if σ == 1 then
16: solution.add(p);
17: else
18: q.add(p, σ);
19: end if
20: end for
21: end while
22: return solution;

4.4 Search Strategy
As already mentioned in [18], the number of nodes to visit

in the key discovery problem is exponential w.r.t. the num-
ber of properties considered. More precisely, given n proper-
ties, the computational complexity of our algorithm is O(2n)
in the worst case, i.e. when there exists one only key formed
by all properties. We tackle this issue by introducing a fast
search strategy, which can be enabled to speed up the com-
putation. Within this optional setting, whenever a key is
found, at the next iteration all branches containing parts of
the key are pruned from the refinement tree. This strategy
tries to improve the runtime while fostering diversity among
the discovered keys. Moreover, we consider properties whose
atomic candidate keys have a score greater than a thresh-
old τ . This lets the algorithm discard properties that alone
distinguish less instances, thus having a lower probability to
be part of a key.

5. RELATED WORK
Key discovery is a rather new research field within the

domain of Linked Data, although the issue of finding keys
among fields has been inherited from relational databases.
However, relational databases do not consider semantics (e.g.,
subsumption relations) which belong to the core of Linked
Data. Previous work on key discovery for the Semantic Web
can be found in [18, 2, 6]. For instance, KD2R is an auto-
matic discovery tool for composite keys in RDF data sources
that may conform to different schemata [18]. It relies on
the creation of prefix trees, which serve for finding maximal
undetermined keys and non-keys. However, state-of-the-art

approaches as Linkkey and SAKey have shown to outper-
form KD2R on runtime and number of generated keys [2,
6]. To the best of our knowledge, not only is ROCKER the
first refinement-operator-based approach for key discovery,
it is also the first machine-learning-based approach for key
discovery.

Independently on the application domain, the key discov-
ery problem is a sub-problem of Functional Dependencies
(FDs), as every element is distinguishable only by its at-
tributes. Keys or FDs are widely used in ontology alignment,
as well as in data mining [10], reverse engineering [5], and
query optimization [9, 7]. In particular, blocking methods
such as [12] utilize approximate keys to reduce the compu-
tational complexity of dataset joins. Unsupervised learning
approaches aim at finding links among datasets by compar-
ing datatype values of properties contained into minimal
keys [22]. The so-called collective or global approaches of
data linking use keys to generate identity links between in-
stance joins for the final scope of enriching the ontology with
the collected information [19, 1].

As previously mentioned, one of the main application ar-
eas of ROCKER is link discovery. Several approaches have
been developed in previous works to detect matching prop-
erties and using them for link discovery. For example, [16]
relies on the hospital-residents problem to detect property
matches. Other approaches based on genetic programming
(e.g., [17]) detect matching properties while learning link
specifications, which currently implements several time-efficient
approaches for link discovery. [15] proposes an approach
based on the Cauchy-Schwarz inequality that allows discard-
ing a large number of superfluous comparisons. HYPPO [13]
and HR3 [14] rely on space tiling in spaces with measures
that can be split into independent measures across the di-
mensions of the problem at hand. In particular, HR3 was
shown to be the first approach that can achieve a relative re-
duction ratio r′ less or equal to any given relative reduction
ratio r > 1. In the ACIDS approach, similarity measures are
performed on property values in order to yield features for
machine-learning classifiers as support vectors machines [23].
Amongst other link discovery approaches, RDF-AI [21] re-
lies on a five-step method that comprises the preprocessing,
matching, fusion, interlink and post-processing of data sets.

6. EVALUATION

6.1 Experimental Setup
We evaluated ROCKER w.r.t. four characteristics: its

runtime, RAM consumption, key extraction quality, and re-
duction ratio RR [18] between visited and total nodes.

RR(α) = 1− |vnodes(α)|
2|P|

. (11)

Our approach was evaluated on data from twelve differ-
ent datasets. The first two datasets were chosen in or-
der to evaluate ROCKER on an existing artificial bench-
mark. Both Restaurant 1 and 2 belong to the Ontology
Alignment Evaluation Initiative (OAEI) benchmark. We
then evaluated the scalability of ROCKER on ten other
datasets generated from DBpedia. We built the datasets
using the RDFSlice tool [11], so that each of them con-
tains a class with its instances and their CBD. Accord-

ing to DBtrends4, these classes rank among the top 20 of
the most populated classes in DBpedia 3.9. The domains
vary from geography (Village, ArchitecturalStructure)
to professionals (Artist, SoccerPlayer) and abstract con-
cepts (PersonFunction, CareerStation).

The generation of new evaluation datasets was preferred
over the use of existing datasets due to the following reasons:

1. Datasets from the current state-of-the-art approaches
contain a maximum of 1.6M triples, while ours scale
up to 17.1M triples.

2. Some of the existing datasets were not formatted prop-
erly.

3. To the best of our knowledge, no key discovery bench-
mark has been created to date.

The lack of a manually-annotated gold standard for key
discovery did not only affect the choice of the datasets. This
led us to adopt the number of retrieved keys and the pre-
cision to measure the key extraction quality. In fact, while
calculating the precision of a key discovery algorithm by an-
notating the retrieved keys is a feasible task, the set of all
minimal keys needs to be known in order to compute the
recall.

We compared ROCKER against two state-of-the-art ap-
proaches dubbed Linkkey [2] and SAKey [6]. While Linkkey
is a tool able to retrieve keys, SAKey is more scalable and
able to retrieve also k-almost keys (see Section 4.2).

ROCKER was implemented in Java as part of the link
discovery framework LIMES.5 The datasets and the algo-
rithm source code are also available online.6 We launched
ROCKER with two different settings; the former aims at
finding minimal keys (α = 1), while the latter aims at find-
ing minimal almost-keys (α < 1). Both settings were set to
use the fast search option with τ = 0.001. For the sake of
simplicity, we assigned the same value to α (0.999) for all
datasets when retrieving almost-keys. All experiments were
carried out on a 64-bit Ubuntu Linux machine with 16 GB
of RAM and an octa-core 2.5 GHz CPU.

6.2 Results
Table 1 presents the results we obtained on the twelve

datasets. Runtimes in milliseconds are reported for both
tasks, i.e. “find minimal keys” and “find minimal almost-
keys”. For each dataset, the size in number of triples is also
shown. As seen in table, all the computation runtimes for
the artificial datasets lie within the same magnitude order
of 1,000 milliseconds. Both ROCKER runs were slower than
the other approaches, however this trend has been disproved
by the following results. On the medium-sized datasets
PersonFunction, CareerStation and OrganisationMember,
our approach is the only one which completed all three tasks.
In particular, Linkkey reached the Java heap space on the
first two, while SAKey did not complete on the third one.
On the seven remaining datasets whose size in NTriples for-
mat is larger than 1.5 GB, only our approach was able to fin-
ish the computation. This fact leads to consider ROCKER
as the most scalable approach for key discovery at the state
of the art.

4http://dbtrends.aksw.org/
5http://limes.sf.net
6http://github.com/AKSW/rocker/

http://dbtrends.aksw.org/
http://limes.sf.net
http://github.com/AKSW/rocker/

As can be read in [2], Linkkey was evaluated on datasets
smaller than all the DBpedia datasets we generated. We
thus integrated the evaluation carried out by Linkkey’s au-
thors by running the tool on our new datasets. At the same
time, the largest dataset SAKey was evaluated on is compa-
rable with our medium-sized datasets [6]. Results shown in
Table 1 are thus compatible with the evaluations performed
by the respective state-of-the-art algorithms.

The node reduction ratio (RR) is shown in Table 2. RR
expresses the rate of the number of nodes that were dis-
carded by pruning subtrees, thus avoiding to compute their
scores. The number of properties (i.e., the size of P) and
the number of visited nodes are also reported.

Table 3 reports the key extraction quality results. For
each dataset we show the number of outcomes and the per-
centage of keys and minimal keys among them (i.e., preci-
sion). Many datasets have been omitted as no keys were
found by any approach, or simply because the approach
failed during the discovery (cf. Table 1). The most in-
teresting results appear on the two OAEI datasets, where
Linkkey was not able to recognise any key. On the other
hand, SAKey was able to recognise all 3 minimal keys on
Restaurant 2, yet it returned also 4 non-keys. SAKey was
also able to find 2 out of 3 minimal keys, 3 non-minimal
keys and 3 non-keys on Restaurant 1. Among the other
datasets, 3 keys were found on Village by ROCKER only.

Table 3: Key extraction quality results.

Dataset ROCKER Linkkey SAKey

Restaurant 1 3 (100%, 100%) 0 (0%, 0%) 8 (62%, 25%)
Restaurant 2 3 (100%, 100%) 0 (0%, 0%) 7 (42%, 42%)
Village 3 (100%, 100%) - -

Namespace prefixes and the sets of almost-keys found for
DBpedia ArchitecturalStructure resp. DBpedia Village,
using a threshold for the discriminability score α = 0.999
are shown below. Reported are 10 almost-keys that were
found on DBpedia ArchitecturalStructure and the first 20
almost-keys that were found on DBpedia Village. As can
be seen, the algorithm found six atomic almost-keys. After
these had been removed from the maximal-priority queue,
the refinement operator followed a path of 109 refinements
through the same branch of the refinement tree. Its climb
ended on a node having a discriminability score greater than
α, as well as a size of 110 properties. After removing this
node and its descendants from the queue, the refinement re-
sumed from the bottom of the graph, where ROCKER found
13 more almost-keys composed by 2 properties each. As our
algorithm found 84 almost-keys for DBpedia Village, the
big size of most of the almost-keys may be the reason for
the longest computation.

Prefix Namespace

dbo: http://dbpedia.org/ontology/
dbp: http://dbpedia.org/property/

dcterms: http://purl.org/dc/terms/
rdfs: http://www.w3.org/2000/01/rdf-schema#
geo: http://www.w3.org/2003/01/geo/wgs84 pos#
foaf: http://xmlns.com/foaf/0.1/
prov: http://www.w3.org/ns/prov#

Size Properties Score

4 [foaf:name, geo:long, dbo:location,
dbp:hasPhotoCollection]

0.99905

4 [foaf:name, geo:long, dbp:hasPhotoCollection,
foaf:homepage]

0.99905

4 [foaf:name, geo:long, dbo:elevation,
dbp:hasPhotoCollection]

0.99905

4 [foaf:name, geo:long, dbp:hasPhotoCollection,
dbo:runwayLength]

0.99905

4 [foaf:name, geo:long, dbo:openingYear,
dbp:hasPhotoCollection]

0.99905

4 [dbo:height, foaf:name, geo:long,
dbp:hasPhotoCollection]

0.99905

4 [dbo:river, foaf:name, geo:long,
dbp:hasPhotoCollection]

0.99905

4 [dbo:buildingStartYear, foaf:name, geo:long,
dbp:hasPhotoCollection]

0.99905

4 [foaf:name, geo:long, dbp:hasPhotoCollection,
dbo:part]

0.99905

4 [foaf:name, geo:long, dbp:hasPhotoCollection,
dbo:primaryFuelType]

0.99905

1 [dbo:wikiPageID] 0.99995
1 [rdfs:label] 0.99995
1 [prov:wasDerivedFrom] 0.99995
1 [dbp:hasPhotoCollection] 0.99995
1 [foaf:isPrimaryTopicOf] 0.99995
1 [dbo:wikiPageRevisionID] 0.99995

110 [geo:lat, dbp:postalCode, dbp:imageFlag,
dbp:northeast, . . . , dbp:arname]

0.99997

2 [foaf:name, rdfs:comment] 0.99958
2 [geo:long, rdfs:comment] 0.99973
2 [geo:lat, rdfs:comment] 0.99968
2 [rdfs:comment, dbp:name] 0.99955
2 [dbo:wikiPageWikiLink, rdfs:comment] 0.99914
2 [rdfs:comment, dbp:wikiPageUsesTemplate] 0.99911
2 [dbo:isPartOf, rdfs:comment] 0.99901
2 [dbo:wikiPageLength, rdfs:comment] 0.99973
2 [rdfs:comment, dbo:wikiPageExternalLink] 0.99909
2 [rdfs:comment, dcterms:subject] 0.99902
2 [dbp:longd, rdfs:comment] 0.99904
2 [rdfs:comment, dbp:latd] 0.99900
2 [rdfs:comment, dbo:wikiPageOutDegree] 0.99900

7. DISCUSSION
As presented in the previous section, ROCKER improves

the state of the art w.r.t. correctness and memory consump-
tion. Other approaches Linkkey and SAkey have shown to
require much more memory than ours, as they could not re-
turn any result on bigger datasets. In particular, the heap
space of 16 GB was reached on 8 and 9 DBpedia datasets,
respectively. Unlike the other approaches, ROCKER man-
aged to remain below the heap space by storing the hash
index on disk. In fact, in-memory-based algorithms Linkkey
and SAKey were not able to handle indexes for datasets
having more than 10 million triples.

Runtime results showed that SAKey is the fastest ap-
proach on small datasets, being 1.5 to 3 times faster than
the others. This could be explained by the fact that the in-
dex creation task is quicker for in-memory-based algorithms.
Moreover, the outcome analysis presented in Table 3 con-
firmed that Linkkey and SAKey found candidates that obey
their respective key definitions. As mentioned before, the
key definition introduced in this work is more correct. A
stricter definition leads ROCKER to a farther exploration
of the knowledge graph, whereas the other approaches stop.
Thus, the runtime is affected. Nevertheless, as can be seen,
the runtime is compensated by a substantial improvement
in the quality of the results.

In order to analyse how the key discovery task varies w.r.t.
the threshold α, we ran ROCKER on one chosen dataset
DBpedia Monument. Figure 4 shows the number of minimal
almost-keys found for values of α within the interval [0.95, 1]

Table 1: Runtime results in milliseconds for ROCKER, Linkkey and SAKey on all datasets.

Dataset Triples ROCKER(1.0) ROCKER(0.999) Linkkey SAKey

OAEI 2011 Restaurant 1 1.1K 1,880 2,170 1,698 1,028
OAEI 2011 Restaurant 2 7.5K 2,424 2,833 2,278 885
DBpedia PersonFunction 383K 14,565 11,626 OutOfMemory 6,221
DBpedia CareerStation 3.0M 79,964 118,632 OutOfMemory 2,199,854
DBpedia OrganisationMember 3.9M 1,075,679 1,130,640 227,336 OutOfMemory
DBpedia Album 11.4M 1,948,767 366,147 OutOfMemory OutOfMemory
DBpedia Artist 12.0M 203,764 168,049 OutOfMemory OutOfMemory
DBpedia Village 12.9M 4,224,338 18,872,456 OutOfMemory OutOfMemory
DBpedia Animal 13.7M 8,565,772 3,426,372 OutOfMemory OutOfMemory
DBpedia SoccerPlayer 13.9M 314,853 317,285 OutOfMemory OutOfMemory
DBpedia ArchitecturalStructure 13.3M 541,054 1,010,347 OutOfMemory OutOfMemory
DBpedia MusicalWork 17.1M 2,524,120 2,634,869 OutOfMemory OutOfMemory

Table 2: Reduction ratios for the two settings of ROCKER on all datasets.

Dataset # properties vnodes(1.0) vnodes(0.999) RR(1.0) RR(0.999)

OAEI 2011 Restaurant 1 4 6 6 60.00% 60.00%
OAEI 2011 Restaurant 2 4 6 6 60.00% 60.00%
DBpedia PersonFunction 2 3 3 0.00% 0.00%
DBpedia CareerStation 3 4 4 42.86% 42.86%
DBpedia OrganisationMember 20 378 378 99.96% 99.96%
DBpedia Album 103 753 753 ∼100.00% ∼100.00%
DBpedia Artist 205 928 928 ∼100.00% ∼100.00%
DBpedia Village 116 1387 1700 ∼100.00% ∼100.00%
DBpedia Animal 131 1188 1188 ∼100.00% ∼100.00%
DBpedia SoccerPlayer 88 528 528 ∼100.00% ∼100.00%
DBpedia ArchitecturalStructure 698 1622 3693 ∼100.00% ∼100.00%
DBpedia MusicalWork 136 1201 1201 ∼100.00% ∼100.00%

with a step of 0.005. As can be seen, values are not in
scale, i.e. a minimal almost-key for α0 does not necessarily
belong to the set of minimal almost-keys for α1 < α0. This
is because threshold α can “block” the computation before
the following refinement. For instance, the highest value
was reported for α = 0.955, where 136 minimal almost-keys
were found. Most of these keys are formed by a common
root of two properties, which we call p1 and p2, in the form
{p1, p2, pi} with i = 3, . . . , 96. Since the discriminability
score of {p1, p2} is 0.953, it is not considered as minimal
almost-key for α = 0.955. However for α = 0.95, {p1, p2}
will be a minimal almost-key and its descendants will not
be visited, thus reducing the number of almost-keys and the
runtime (see Table 6(a)).

Figure 4: Number of minimal almost-keys found in
function of threshold α for ROCKER on dataset DB-

pedia Monument.

Table 6(b) shows the memory consumption w.r.t. α. For
α ≥ 0.99, ROCKER required less memory (∼ 2 GB) than on
the other experiments (∼ 5.2 GB), because all the almost-
keys were found before visiting the remaining refinement
tree. The fact that no other almost-key exists is ensured by

evaluating the score for the top element of the refinement
tree, which contains all the remaining properties. Having
this a score less than α, ROCKER ends the computation.

Figure 5: Linkkey showed the best runtime and
RAM consumption performances on DBpedia Monu-

ment, confirming the results in Table 1.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented the first refinement opera-

tor for key discovery. We showed that the operator is non-
redundant, non-complete and finite. We implemented the
operator within the ROCKER approach and showed how
it can be extended to scale even on large knowledge bases.
Our evaluation of ROCKER suggests that it goes beyond
the state of the art with respect to its correctness and mem-
ory efficiency, while achieving comparable runtimes. Future
directions include a study of the run times, number of keys
and visited nodes w.r.t. the input threshold. Then, we will
investigate on optimization by using in-memory storage for
the hash tables, in order to decrease the query runtimes.
Moreover, we will fully integrate the key discovery algorithm
in LIMES and make it available in the next releases. We
will then experiment with combining key discovery with the

(a)

(b)

Figure 6: Run times (6(a)) and Random Access
Memory consumption (6(b)) in function of thresh-
old α for ROCKER on dataset DBpedia Monument.

detection of property alignments and use those alignments
within the context of link discovery.

9. ACKNOWLEDGMENTS
This research is part of the GeoKnow

project, funded by the European Com-
mission with the 7th Framework Pro-
gramme (Grant Agreement No. 318159).

10. REFERENCES
[1] A. Arasu, C. Ré, and D. Suciu. Large-scale

deduplication with constraints using dedupalog. In
Data Engineering, 2009. ICDE’09. IEEE 25th
International Conference on, pages 952–963. IEEE,
2009.

[2] M. Atencia, J. David, and J. Euzenat. Data
interlinking through robust linkkey extraction. In
T. Schaub, G. Friedrich, and B. O’Sullivan, editors,
ECAI, pages 15–20, 2014.

[3] S. Auer, J. Lehmann, and A.-C. N. Ngomo.
Introduction to linked data and its lifecycle on the
web. In Reasoning Web, pages 1–75, 2011.

[4] M. Cheatham and P. Hitzler. String similarity metrics
for ontology alignment. In The Semantic Web–ISWC
2013, pages 294–309. Springer, 2013.

[5] R. H. Chiang, T. M. Barron, and V. C. Storey.
Reverse engineering of relational databases:
Extraction of an eer model from a relational database.
Data & Knowledge Engineering, 12(2):107–142, 1994.

[6] N. P. Danai Symeonidou, Vincent Armant and F. Säıs.
Sakey: Scalable almost key discovery in rdf data. In
ISWC 2014, 2014.

[7] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and
A. Aboulnaga. CORDS: automatic discovery of
correlations and soft functional dependencies. In
SIGMOD, pages 647–658. ACM, 2004.

[8] J. Lehmann and P. Hitzler. Concept learning in
description logics using refinement operators. Machine
Learning, 78(1-2):203–250, 2010.

[9] H. Mannila and K.-J. Räihä. Algorithms for inferring
functional dependencies from relations. Data &
Knowledge Engineering, 12(1):83–99, 1994.

[10] H. Mannila and H. Toivonen. Levelwise search and
borders of theories in knowledge discovery. Data Min.
Knowl. Discov., 1(3):241–258, 1997.

[11] E. Marx, T. Soru, S. Shekarpour, S. Auer, A.-C.
Ngonga Ngomo, and K. Breitman. Towards an efficient
RDF dataset slicing. IJSC, 07(04):455–477, 2013.

[12] M. Michelson and C. A. Knoblock. Learning blocking
schemes for record linkage. In AAAI, pages 440–445.
AAAI Press, 2006.

[13] A.-C. Ngonga Ngomo. A Time-Efficient Hybrid
Approach to Link Discovery. In OM, 2011.

[14] A.-C. Ngonga Ngomo. Link Discovery with
Guaranteed Reduction Ratio in Affine Spaces with
Minkowski Measures. In ISWC, pages 378–393, 2012.

[15] A.-C. Ngonga Ngomo and S. Auer. LIMES - A
Time-Efficient Approach for Large-Scale Link
Discovery on the Web of Data. In IJCAI, pages
2312–2317, 2011.

[16] A.-C. Ngonga Ngomo, J. Lehmann, S. Auer, and
K. Höffner. RAVEN – Active Learning of Link
Specifications. In OM, 2011.

[17] A. Nikolov, M. d’Aquin, and E. Motta. Unsupervised
learning of link discovery configuration. In ESWC,
pages 119–133, 2012.

[18] N. Pernelle, F. Säıs, and D. Symeonidou. An
automatic key discovery approach for data linking.
Web Semantics: Science, Services and Agents on the
World Wide Web, 23:16–30, 2013.

[19] F. Säıs, N. Pernelle, and M.-C. Rousset. Combining a
logical and a numerical method for data reconciliation.
In Journal on Data Semantics XII, pages 66–94.
Springer, 2009.

[20] M. Saleem, S. S. Padmanabhuni, A.-C. Ngonga
Ngomo, J. S. Almeida, S. Decker, and H. F. Deus.
Linked cancer genome atlas database. In ICSC, pages
129–134. ACM, 2013.

[21] F. Scharffe, Y. Liu, and C. Zhou. Rdf-ai: an
architecture for rdf datasets matching, fusion and
interlink. In Proc. IJCAI 2009 workshop on Identity,
reference, and knowledge representation (IR-KR),
Pasadena (CA US), 2009.

[22] D. Song and J. Heflin. Automatically generating data
linkages using a domain-independent candidate
selection approach. In ISWC, pages 649–664. Springer,
2011.

[23] T. Soru and A.-C. Ngonga Ngomo. Active learning of
domain-specific distances for link discovery. In
Proceedings of JIST, 2012.

[24] C. Stadler, J. Lehmann, K. Höffner, and S. Auer.
Linkedgeodata: A core for a web of spatial open data.
Semantic Web, 3(4):333–354, 2012.

	Introduction
	Preliminaries
	Keys
	Discriminability
	Properties of a key

	A Refinement Operator for Key Discovery
	Approach
	Implementation
	Definition of the score function
	Refinement Operator
	Search Strategy

	Related Work
	Evaluation
	Experimental Setup
	Results

	Discussion
	Conclusion and Future Work
	Acknowledgments
	References

