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ABSTRACT
Over the last decades many machine learning experiments have
been published, giving benefit to the scientific progress. In order to
compare machine-learning experiment results with each other and
collaborate positively, they need to be performed thoroughly on the
same computing environment, using the same sample datasets and
algorithm configurations. Besides this, practical experience shows
that scientists and engineers tend to have large output data in their
experiments, which is both difficult to analyze and archive properly
without provenance metadata. However, the Linked Data com-
munity still misses a lightweight specification for interchanging
machine-learning metadata over different architectures to achieve
a higher level of interoperability. In this paper, we address this
gap by presenting a novel vocabulary dubbed MEX. We show that
MEX provides a prompt method to describe experiments with a
special focus on data provenance and fulfills the requirements for a
long-term maintenance.

Keywords
Vocabulary, Data Provenance, Interchange Format, Machine Learn-
ing Experiments

1. INTRODUCTION
So far, we have seen a variety of publications on Semantic Web

and Machine Learning (ML) topics, many of them contributing to
the state of the art in their respective fields. However, in the last
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years we experienced a knowledge gap in the standardization of ex-
periment results for scientific publications. This technological gap
can be summed up by the following question: “How to achieve in-
teroperability among machine-learning experiments over different
system architectures?”. In particular, experimental results are of-
ten not delivered in a common machine-readable way, causing the
information extraction and processing to be tricky and burdensome.

Moreover, recurring issues regarding the experiment could ben-
efit from the existence of a public vocabulary. Reviewers of pub-
lications on Machine Learning often need to investigate basic in-
formation on experiments conducted, e.g., which implementation
of an algorithm was used, its configuration or choices for related
hyper-parameters. Several questions may arise during the reviews,
such as “Which kernel method did the authors use?”, “What is the
regularization constant value?”, “How many folds were used for
the cross-validation section?”, “Did they normalize the data?”,
“Which data distribution was used?”, “Have any hypothesis test
been applied?”.

This interpretation and look-up process is time-consuming and
introduces misinterpretations which affect both comparability and
reproducibility of scientific contributions. To address this prob-
lems, several e-Science tools and collaboration platforms have been
developed to provide provenance and other metadata information
for scientific experiments (e.g., Wings [6], OpenTox [18] and My-
Experiment [16]).

However, these approaches were designed to collaborate within
specific domains and are involved in non-generic scenarios (e.g.,
chemistry, bioinformatics, nanotechnology, neuroscience). Despite
their noted achievements, we still do not have a consensus for a
public format to achieve the interoperability for machine-learning
experiments over any system implementation in a lightweight and
simple format. In this sense, Open ML [20] emerges as the most
promising idea. We discuss the current drawback in the Section 2.

The MEX vocabulary has been designed to reuse existing ontolo-
gies (i.e., PROV-O [11, 13], Dublin Core [21], and DOAP [4]). As
previously stated, using a shared vocabulary and providing com-
plete metadata information can help to tackle interoperability is-
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sues, however our aim is not to describe a complete data-mining
domain, which can be modeled by more complex and semantically
refined structures, such as DMOP [9]. The aim of MEX is neither to
re-design the existing scientific workflow approaches nor hold the
whole set of existing scientific variables on its structure, but pro-
vide a simple and lightweight vocabulary for exchanging machine
learning metadata to achieve a higher level of interoperability. In
this context, Noy and McGuiness [14] pointed out that “an ontol-
ogy helps achieving this since it defines a common vocabulary for
researchers who need to share information in a domain”.

Our scientific contributions are: (1) definition of a lightweight
public vocabulary for interchanging basic information regarding
machine-learning experiments over different system implementa-
tions; (2) provision of a minimal set of meta-information needed
to reproduce a (Classification, Regression or Clustering) machine
learning problem; (3) the opportunity to increase collaboration on
existing scientific workflow platforms, which can make use of MEX
for interchange information among them; (4) reduced risk of mis-
interpretation on the design of machine learning experiments that
publish appropriate MEX descriptions.

The paper is structured as follows: In the next section, we present
the related works. Section 3 presents the MEX Vocabulary in more
detailed terms and explicates how it is related with the machine
learning workflow and its iterations. In Section 4, we describe some
implementations as examples for the vocabulary. Finally, we give
a outlook on the further development and possibilities for MEX in
Section 5.

2. RELATED WORKS
The main aim of MEX vocabulary is to provide missing pieces

for researchers to achieve higher levels of interoperability for data
of machine learning experiment.

State-of-the-art workflow approaches have been successfully de-
veloped to face the current problems derived from the experimen-
tal process [10, 16, 18]. Moreover existing provenance information
generated by the experimental process, such as “datasets”, “al-
gorithms and implementations”, “cross-validation and data splits
process”, “versioning”, “hardware and network issues”, “prepro-
cessing” and “features analysis” can be managed into these work-
flow systems.

However, many machine learning experiments are developed us-
ing general purpose programming languages, such as Java, C#,
Python, C++, with or without use of libraries like Weka1, scikit-
learn2 or Shogun3. In this context, one of the requirements is to im-
plement some machine-readable way for interchange results over
complex architecture systems. Examples of state-of-the-art for-
mats and patterns for interchanging are: Comma-Separated Values
(CSV), eXtensible Markup Language (XML), Value-Object (VO),
Data-Transfer-Objects (DTO). However, the drawbacks here are
threefold: (1) the technology dependence for the implementation
of the certain design pattern; (2) the possible lack of schema in-
formation on the implementation of certain format; (3) the lack of
semantic information in both cases. Table 1 sums up the described
related works on provenance meta-data for scientific experiments,
whereas Table 2 shows the related works on data mining ontology.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://scikit-learn.org/stable/
3http://www.shogun-toolbox.org

Table 1: The state-of-the-art platforms for e-science workflows

Platform Description

MyExperiment [16] It is a collaborative environment where
scientists can publish their workflows
and experiment plans

Wings [6] A Semantic Approach to creating very
large scientific workflows

OpenTOX [18] An interoperable predictive toxicology
framework

Open ML [20] A frictionless, collaborative environ-
ment for exploring machine learning

Table 2: The related (heavy-weight) ontologies for data mining and
their respective conceptualizations

Platform Description

The Data Mining OPtimization
Ontology (DMOP) [9]

It supports informed decision-
making at various choice points
of the data mining process

OntoDM-KDD [15] Ontology for representing the
knowledge discovery process

Exposé [19] An ontology for data mining
experiments used in conjunc-
tion with experiment databases
(ExpDBs [2])

2.1 Boundaries
Despite the peculiarity and different characteristic of each do-

main representation, we provide a simple quantity indicator (num-
ber of existing classes), comparing the number of classes existing
on each related ontology as follows. Currently, 402 classes are rep-
resented by three MEX layers. Further, a complete experiment (ma-
chine learning execution) can be fully represented by MEX by im-
plementing 7 main classes for mexalgo, 14 for mexcore and finally
5 classes of mexperf (considering the representation of a classifi-
cation problem, for instance), totaling 26 referenced classes. The
architecture of each layer is described in the Section 3.

However, it is worth noting the that lower coverage of MEX
to provide data mining contexts. Accordingly, MEX provides a
lightweight format for machine learning iterations instead of pro-
viding support for all decision-making steps that have an impact
on the outcome of the knowledge discovery process. Thus, many
additional machine learning issues are not covered. A discussion is
introduced as following:

402

778

858

757

MEX

ONTO-DM
Exposé

DMOP
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A. Confusion Matrix: There is no formal representation of the
matrix (confusion matrix in supervised learning or matching
matrix in unsupervised learning), however this information
could be derived from the performance layer (mexperf ).

B. Pre-processing: The basic information can be stored into the
vocabulary as a string, which does not provide a semantic
level of information though (mainly due to its complexity
level, e.g.: feature selection, feature extraction, parameter
optimization).

C. Model Induction: Due the complexity of each generated
model, its meta-data is not represented into the MEX vocab-
ulary, although it is possible to derive the needed information
through the execution’s parameters.

D. Complex Algorithm Representation: The level of repre-
sentation for each algorithm relies on: Algorithm Class, Al-
gorithm Learning Method, Algorithm Learning Problem and
Algorithm Implementation. A more complex network struc-
ture to deeply represent the semantics for each classifier is
not covered also due to complexity.

These issues require a more comprehensive analysis and are well
represented by state-of-the-art ontologies (Table 2).

Besides, a more generic machine learning platform and very in-
teresting approach for representing machine learning experiments
is OpenML [20], which misses an ontology for representing the
metadata4 and runs over XML schema representation5. For this sce-
nario, a decoupled vocabulary could help to achieve a higher level
of interoperability. Thus, an integration is desired as future work to
transform and import a mex file to this repository.

Finally, most of the machine learning libraries already provide a
well defined machine readable meta-data to manage the informa-
tion provided. In fact, the problem in this case is the missing of
a common format to interchange the useful data among many sys-
tems and teams, which would oblige the needing of implementing
different wrappers in order to define a common format. Therefore,
the motivation is to provide a decoupled and lightweight language-
independent format for achieving the higher level of interoperabil-
ity designed specifically for representing the minimal set of flows
existing on machine learning problems (Classification, Regression
and Clustering problems).

3. MEX VOCABULARY: A GENERIC AND
LIGHTWEIGHT INTERCHANGE FOR-
MAT FOR ML

The MEX vocabulary has been designed to tackle the problem of
sharing provenance information particularly on the basic machine
learning iterations in a lightweight format. We extended the W3C
PROV Ontology (PROV-O) since it provides an excellent model for
representing, capturing and sharing provenance information on the
Web. The PROV-O provides three main classes, Entity, Agent and
Activity, as well as other classes and properties enriching the prove-
nance representation. Also, is endorsed by W3C [1]. The MEX
vocabulary is composed as three sub-vocabularies:

A. MEX-Core: formalizes the key entities for representing the
basic steps on machine learning executions, as well as the
provenance information for linking between the published
paper and the produced meta-data (Figure 4).

4https://github.com/openml/OpenML
5http://www.openml.org/r/454640/output/description

B. MEX-Algorithm: representing the context of machine learn-
ing algorithms and their associated characteristics, such as
learning methods, learning problem and class of the algo-
rithm (Figure 5).

C. MEX-Performance: provides the basic entities for repre-
senting the experimental results of executions of machine
learning algorithms (Figure 6).

The first release of MEX vocabulary aims to provide an embrac-
ing formalization to define the basics of a generic machine learning
configuration (“the algorithm and its parameters, the input features
of given dataset, the sampling method and the hardware environ-
ment”) as well as the representation of its results (“measures”) .

The following sub-sections (3.3, 3.4 and 3.5) describe each layer
in a more refined way. A detailed mapping between the basic ma-
chine learning workflow and MEX Vocabulary is presented into the
sub-section 3.2

3.1 PROV-O: Expressing PROV Data Models
The PROV-O (Figure 1) is a high-level standard for provenance

endorsed by W3C [1], providing a set of classes, restrictions and
properties that for representation and interchanging provenance data
produced in many different systems and contexts.

“It provides a set of classes, properties, and restrictions that can
be used to represent and interchange provenance information gen-
erated in different systems and under different contexts. It can also
be specialized to create new classes and properties to model prove-
nance information for different applications and domains” [1].

Therefore, its characteristics are suitable for the depiction of a
generic machine learning experiment (Figure 2) regarding algo-
rithms and hyper-parameters mex-algo, the measures for classifi-
cation, regression, clustering problems, as well as the most used
statistical measures for describing performances mex-perf. More-
over, the runs are defined by the mex-core layer.

Figure 1: Expanded Terms: Entities as yellow ovals, Activities as
blue rectangles, and Agents as orange pentagons [1].

The MEX Vocabulary has been fully designed reusing the PROV-
O entities.

3.2 The Machine Learning Iterations
The overall goal is to provide a lightweight vocabulary to repre-

sent the executions generated by machine learning algorithms and
its associated variables.

Figure 2 depicts the most common iterations for a set of exe-
cutions of a machine learning problem (Classification, Regression
and Clustering), excluding preprocessing characteristics mainly de-
rived from complex data mining techniques, such as feature analy-
sis, denoising, data normalization or skewness, for instance. Here,
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a real world problem (ML Problem (A) rounded circle) could be
represented by a learning problem (e.g.: Classification Problem
rounded circle) as well as split into many sub-problems (SP1, . . . ,
SPn).

One of the key-factors to design a simple and lightweight format
is to represent the entities and their relationships as simple as pos-
sible. In order to guarantee a clear level of representativeness, the
vocabulary has been designed to perform each sub-problem as one
experiment (Experiment rounded circle), i.e., each sub-problem can
be represented by one mex file.

The mappings between the classical machine learning iterations
(Figure 2) and the MEX Vocabulary classes are described as fol-
lows:

(A) ML Problem → collecting the basic information regarding
the context of an experiment: mexcore:Context
and mexcore:ApplicationContext.

(B) (Classification) Problem → definition of existing learning
technique: mexperf:PerformanceMeasure and mex
perf:AlgorithmClass.

(C) Experiment → basic information for a given experiment as
well as its existing logical sub-experiments: Experiment
and ExperimentConfiguration.

(D) Sampling Method→ the applied experiment sampling method:
mexcore:SamplingMethod.

(E) Hardware Configuration→ mexcore:HardwareConfi-
guration.

(F) Execution→ the core class to represent each run (mexcore:
SingleExecution or :OverallExecution) of an al-
gorithm. It connects the variables for a given execution:
Execution.

(G) Model→ represents the basic information regarding the gen-
erated (train) or the used (test) model/classifier mexcore
:Model.

(H) DataSet→ definition and representation of given dataset and
its individuals: mexcore:Dataset, mexcore:Example
and mexcore:ExampleCollection.

(I) Phase→ the phase of given execution: train, validation, test:
mexcore:Phase.

(J) Algorithm → the machine learning algorithm, its charac-
teristics and its implementation: mexalgo:Algorithm,
mexalgo:LearningMethod, mexalgo:Learning-
Problem, mexalgo:AlgorithmClass, mexalgo:
Implementation.

(K) Parameters→ the hyperparameters for given algorithm: mex
algo:AlgorithmParameter.

(L) Example Performance→ Example measures (predicted and
real values/labels) are represented by mexperf:Example
Performance and mexperf:ExemplePerformance
Collection (respective collection class).

(M) Overall→ the Classifier overall measures are represented by
the mexperf:PerformanceMeasure class, which has
as subclasses: :ClassificationMeasure, :Regres-
sionMeasure, :StatisticalMeasure, :Cluster-
ingMeasure, :UserDefinedMeasure.

(N) Measure→ the set of measures is represented by mexperf
:ExecutionPerformance.

The following subsections (3.3, 3.4 and 3.5) detail each vocabu-
lary’s component.

3.3 MEX Core (mexcore)

• :ApplicationContext: Basic project information.

• :Context: Scientific context of an experiment, e.g.: stock
market, link predictions, part-of-speech tagging, logistics.

• :Experiment: The main class to define one experiment
and its basic information.

• :Execution: The smallest representation of a run of an
algorithm. Each execution carry the associated values for
each existing variable.

• :ExperimentConfiguration: Each set of executions
should be grouped by one configuration i.e., for one experi-
ment we could have many executions, in different hardware
environments or over different algorithm configurations.

• :HardwareConfiguration: Basic hardware configu-
ration information.

• :SamplingMethod: The sampling method applied.

• :Phase: Train, Test or Validation.

• :Model: The generated Classifier.

• :DataSet: The dataset used on the experiment.

• :Example: Each object represents the identification of an
attribute (dct:Identifier) and the corresponding value
(prov:value) (Figure 3). Predicted classes (labels) are
represented by the mexperf layer.

• :ExampleCollection: It represents a row (instances/ex-
ample) used as input for an execution.

• :Feature: Each object represents a used feature.

Figure 3: A classic input dataset for a machine learning execution



Figure 2: The diagram representing the classical iterations for an execution of a machine learning problem (Classification, Regression or
Clustering). The white rounded rectangles representing a complete path for a Classification problem as well as its input (Model, Corpus,
Phase and Algorithm) and outputs variables (Example Performance and Overall Performance)

3.4 MEX Algorithm (mexalgo)

• :LearningMethod: The algorithm learning method
(e.g.:Reinforcement or Supervised).

• :LearningProblem: The algorithm learning problem
(e.g.:Meta-heuristic or Association).

• :AlgorithmClass: The algorithm class
(e.g.:ArtificialNeuralNetwork or Boosting).

• :AlgorithmParameter: the representation of each al-
gorithm parameter and its associated values.

• :AlgorithmParameterCollection: A simple col-
lection class for :AlgorithmParameter.

• :Implementation: Represents an implementation for an
algorithm, i.e., the reference for a library or software that
provides the specific algorithm (e.g.: Weka or SPSS).

3.5 MEX Performance (mexperf)

• :PerformanceMeasure: The root class for representing
the measures. It is applicable whenever an overall execution
(mexcore:OverallExecution) is being described.

• :ClassificationMeasure: usual measures for machine
learning classification problems.

• :RegressionMeasure: usual measures for machine learn-
ing regression problems.

• :StatisticalMeasure: usual statistical measures.

Figure 5: mexalgo layer: describing the algorithm information for
certain machine learning experiment

• :ClusteringMeasure: usual measures for machine learn-
ing clustering problems.

• :UserDefinedMeasure: a special case for representing
specific measures for given domain, which tends to be un-
usual for a generic machine learning context, but necessary.
Examples are particular indicators and metrics for represent-
ing thresholds in models of stock market prediction.

• :UserDefinedMeasureCollection: A collection for
the :UserDefinedMeasure class.

• :ExamplePerformance: used whenever a single execu-
tion is being described (mexcore:SingleExecution).
It represents the predicted class or value for those specific
execution as well as the real class or value (Figure 3). It is
linked to the mexcore:Example class.



Figure 4: mexcore layer: blue classes defined as prov:activity, describing the core information for certain machine learning experiment

• :ExamplePerformanceCollection: A collection for
:ExamplePerformance class.

• :ExecutionPerformance: represents the class to con-
trol the performance of each execution as well as interlink
the MEX layers.

Figure 6: mexperf layer: describing the performance of the experi-
ment

3.6 MEX Layers: linking the information
The Figure 7 depicts the most important relationships existing on

MEX to connect and represent the flow of information among the

three layers. Besides, it represents the maximum level of abstrac-
tion for given machine learning problem: a machine learning classi-
fier (mexalgo:Algorithm) runs over an existing set of param-
eters (mexcore:SingleExecution or mexcore:Overall
Execution) and produces a particular set of measures (mexperf:
ExecutionPerformance).

Figure 7: The interlinking among layers (mex-core, mex-algo and
mex-perf )



4. USE CASES
In this section, we will illustrate how the MEX ontology can

be used in real scenarios. Figure 8 shows an excerpt of the RDF
graph applied to an experiment dubbed Labour Negotation Con-
tract Offer Judgement Predictions. The experiment’s aim was to
document the application of various classification methods imple-
mented in the WEKA toolkit to judge about offers for Canadian
labour contracts. As can be seen, the Execution instance named
exec-A is the central hub of the subgraph. Simply, each execution
exec-A has one or more performance measure, grouped by the
ExecutionPerformance class. Data provenance information
is ensured through prov:used properties, which link the individ-
ual above to training- and testSplit, namely the working
datasets, the wekaLADtree and alternatingDecisionTree
algorithms, the adtTreeModel and the hardware configura-
tion. Datatype values are not displayed in the sub-graph due to lack
of space.

Figure 8: An excerpt of the RDF graph from the Labour use-case.
Full arrows are inverse rdf:type properties, whilst dashed ar-
rows are prov:used properties.

A second real world example is the creation of provenance in-
formation for the ACL Wiki page for part-of-speech (POS) taggers6

which does not provide the desired level of information for a bench-
mark. For example, the features are not clearly stated as well as the
algorithms (just the respective implementations). Some approaches
were defined with no machine-readable information, such as the de-
fined cross-validation method for the TnT system. Figure 9 shows
an excerpt of the RDF graph for representing the French TreeBank
results. Here, the mex file could be used in order to provide the
needed metadata information to achieve a reasonable level of com-
parison between new approaches.

As example, we defined an instance of the mexcore:Expe-
rimentConfiguration in order to group the three existing
systems (Morfette, SEM and MElt) per Sampling Method (sm1)
method and Dataset (ds1), both defined on the current bench-
mark. Each execution (exec1, exec2 and exec3) points
to an execution performance instance (ep1, ep2 and ep3, re-
spectively). It is worth noting that the POS models are commonly
evaluated, among others, by the accuracy of "unknown words". Al-
though these specific measure is not represented into the MEX Per-
formance layer, we could represent it in a "string level", making use
of the mexperf:UserDefinedMeasure class. As future work
we plan to represent the Natural Language Processing scenarios
extending MEX with existing state-of-the-art Vocabularies, such as
NIF [8], creating a subclass of mexperf:PerformanceMeasure

6http://aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_
of_the_art)

class for representing NLP measures.

Figure 9: An excerpt of the RDF graph from the ACL POS Tagging
use-case.

Other real-world examples for machine learning implementa-
tions can be found into the MEX repository on GitHub7. These
examples refer to the work presented in [3, 5, 17]. All resources
are available on the MEX Project8 website.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced the MEX Vocabulary to explain

provenance information for machine learning experiments, built on
the PROV-O ontology and following Linked Data best-practices.
We argue that by using the MEX vocabulary, researchers will be
able to interchange the machine learning experiments by a metadata
common, interoperable and lightweight format. Despite the high
level of interoperability achieved with MEX vocabulary, the devel-
opment of APIs is planned in order to support the usage for research
groups which have no semantic web knowledge as background,
once the manipulation of the vocabulary in different programming-
languages entails an extra effort (e.g.: a machine learning problem
implementation using Java or Python as programming-language).
Also, a notorious issue is related with the update management pro-
cess for algorithms and software implementations, since it is im-
practical to map all existing entities for those classes. In order to
minimize this gap, besides focus on state-of-the-art software for
machine learning (e.g.: Weka), we plan to provide an user interface
for suggesting missing entities.

As future work, we plan the integration with OpenML platform
as well as examine more machine learning representations. Be-
sides, we plan to integrate MEX into existing machine learning
tools, such as Weka [7] and DL-Learner [12], for instance, allow-
ing a fully transparent process of the mex file generation to the end
user.
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