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Abstract. The decentral architecture behind the Web has led to pieces of in-
formation being distributed across data sources with varying structure. Hence,
answering complex questions often requires combining information from struc-
tured and unstructured data sources. We present an extension for HAWK, a novel
search approach for Hybrid Question Answering based on combining Linked
Data and textual data. Especially, we introduce our preliminary approach towards
answering ASK queries. This approach relies a classification heuristic next to
the existing predicate-argument representations of questions to derive equivalent
combinations of SPARQL query fragments and text queries. These are executed
so as to integrate the results of the text queries into SPARQL and thus generate a
formal interpretation of the query. Our results show that these developments lead
to HAWK achieving 0.74 F-measure on the ASK queries contained in the Ques-
tion Answering over Linked Data (QALD-5) hybrid query benchmark assuming
an given optimal ranking function.

1 Introduction

Recent advances in question answering (QA) over Linked Data provide end users with
more and more sophisticated tools for querying linked data by allowing users to express
their information need in natural language [13,15,16]. This allows access to the wealth
of structured data available on the current Semantic Web also to non-experts. How-
ever, a lot of information is still available only in textual form, both on the Document
Web and in the form of labels and abstracts in Linked Data sources [8]. Therefore, a
considerable number of questions can only be answered by using hybrid question an-
swering approaches, which can find and combine information stored in both structured
and textual data sources [18].

In this paper, we extend HAWK, our hybrid QA system with the capabilities to an-
swer also boolean question, i.e., generate SPARQL queries using ASK. Given a textual
input query q, HAWK implements the following pipeline, which comprises 1) input seg-
mentation 2) part-of-speech tagging, 3) detecting entities and 4) noun phrases in q, 5)
dependency parsing and 6) applying linguistic pruning heuristics for an in-depth analy-
sis of the natural language input. The results of these steps is a predicate-argument graph
annotated with resources from the Linked Data Web. HAWK then 7) assigns semantic
meaning, i.e., properties and classes, to nodes and 8) generates basic triple patterns for
each component of the input query with respect to a multitude of features. This deduc-
tive linking of triples results in a set of SPARQL queries containing text operators as
well as triple patterns. In order to reduce operational costs, 9) HAWK discards queries



using several rules, e.g., by discarding not connected query graphs. Here, 10) HAWK
applies a simple heuristic to classify SELECT and ASK queries and 11) modifies the
generated SPARQL queries 12) respectively determines the cardinality of the SELECT
query. Finally, 13) queries are ranked using various ranking methods. The current ver-
sion of HAWK works on DBpedia as Linked Data source as well as Wikipedia abstracts
for full-text information. For the sake of this paper, we will assume the implementation
of an optimal ranking function for the generated SPARQL queries since we focus on
capturing the semantics of the input question in this paper.

Our main contributions can be summarized as follows: (1) We present HAWK, the
first QA framework tackling hybrid question answering. (2) HAWK analyses input
questions and classifies them according to a simple heuristic. (3) The modular archi-
tecture of HAWK allows simple exchanging of pipeline parts to enhance testing and
deployment, e.g., novel ranking or classification functions. (4) Our evaluation suggests
that HAWK is able to achieve F-measures of 0.74 on QALD-5 hybrid test set.

The rest of the paper is structured as follows: In Section 2, we briefly describe
related work and in Section 3 we detail HAWK’s architecture. HAWK’s performance
and the influence of entity annotation systems is evaluated in Section 4. Finally, we
conclude in Section 5. A demo as well as additional information can be found at our
project home page http://aksw.org/Projects/HAWK.html.

2 Related Work

Hybrid question answering is related to the fields of hybrid search and question answer-
ing over structured data. In the following, we thus give a brief overview of the state of
the art in these two areas of research.

First, we present hybrid search approaches which use a combination of structured as
well as unstructured data to satisfy an user’s information need. Semplore [21] is the first
known hybrid search engine by IBM. It combines existing information retrieval index
structures and functions to index RDF data as well as textual data. Semplore focuses
on scalable algorithms and is evaluated on an early QALD dataset. Bhagdev et al. [1]
describe an approach to hybrid search combining keyword searches, Semantic Web
inferencing and querying. The proposed K-Search outperforms both keyword search
and pure semantic search strategies. A personalized hybrid search implementing a ho-
tel search service as use case is presented in [20]. Unfortunately, Yoo’s approach [20]
does not present any qualitative evaluation and it lacks source code and test data for
reproducibility.

All presented approaches fail to answer natural-language questions. Second, we ex-
plain several QA approaches for answering natural language questions. Schlaefer et
al. [12] describe Ephyra, an open-source question answering system and its extension
with factoid and list questions via semantic technologies. Cimiano et al. [4] developed
ORAKEL to work on structured knowledge bases. The system is capable of adjusting its
natural language interface using a refinement process on unanswered questions. Lopez
et al. [10] introduce PowerAqua, another open source system, which is agnostic of the
underlying yet heterogeneous sets of knowledge bases. It detects on-the-fly the needed
ontologies to answer a certain question, maps the users query to Semantic Web vocab-



ulary and composes the retrieved (fragment-)information to an answer. Damljanovic et
al. [5] present FREyA to tackle ambiguity problems when using natural language inter-
faces. Many ontologies contain hard to map relations, e.g., questions starting with ’How
long. . .’ can be disambiguated to a time or a distance. By incorporating user feedback
and syntactic analysis FREyA is able to learn the users query formulation preferences
increasing the systems question answering precision. Cabrio et al. [2] present a demo
of QAKiS, an agnostic QA system grounded in ontology-relation matches. The relation
matches are based on surface forms extracted from Wikipedia to enforce a wide vari-
ety of context matches, e.g., a relation birthplace(person, place) can be explicated by X
was born in Y or Y is the birthplace of X. Unger et al. [16] describe Pythia, a question
answering system based on two steps. First, it uses a domain-independent representa-
tion of a query such as verbs, determiners and wh-words. Second, Pythia is based on
a domain-dependent, ontology-based interface to transform queries into F-logic. More-
over, Unger et al. [15] present a manually curated, template-based approach, dubbed
TBSL, to match a question against a specific SPARQL query. Shekarpour et al. [13]
develop SINA a keyword and natural language query search engine which is aware of
the underlying semantics of a keyword query. Treo [7] emphasis the connection be-
tween the semantic matching of input queries and the semantic distributions underlying
knowledge bases. Recently, Peng et al. [11] describe an approach for hybrid QA map-
ping keywords as well as resource candidates to modified SPARQL queries. Due to its
novelty we were not able to compare it to HAWK.

Several industry-driven QA-related projects have emerged over the last years. For
example, DeepQA of IBM Watson [6], which was able to win the Jeopardy! challenge
against human experts. Further, KAIST’s Exobrain1 project aims to learn from large
amounts of data while ensuring a natural interaction with end users. However, it is yet
limited to Korean for the moment.

The field HAWK refers to is hybrid question answering for the Semantic Web, i.e.,
QA based on hybrid data (RDF and textual data). To the best of our knowledge, none of
the previous works has addressed this question so far. For more information and related
work, please have a look at Usbeck et al. [19].

3 Method

In the following, we will shortly describe the 8-step, modular pipeline of HAWK via
this running example: Did Napoleon’s first wife die in France? For
more information please have a look at the full method description [19].

1. Input Segmentation. To be generic with respect to the language of the input
question, HAWK uses a modular system that is able of tokenizing even languages with-
out clear separation like Chinese2. For English input questions our system relies on the
clearNLP [3]-framework which provides a.o. a white space tokenizer, POS-tagger and
transition-based dependency parsing.

2. Part-of-Speech (POS)-Tagging. HAWK annotates each token with its POS-
tag which will be later used to identify possible semantic annotations. POS-tagging

1 http://exobrain.kr/
2 https://github.com/clir/clearnlp
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Fig. 1: Pipeline steps of HAWK.

on the running example will result in the following: Did(VBD) Napoleon(NNP)
’s(POS) first(JJ) wife(NN) die(VB) in(IN) France(NNP) ?(.)

3. Entity Annotation. Next, our approach identifies named entities and tries to link
them to the underlying knowledge base. Most QA challenges, including QALD-5, rely
on the DBpedia [9] as source for structured information in the form of Linked Data. For
recognizing and linking named entities HAWK’s default annotator is FOX [14], a feder-
ated knowledge extraction framework based on Ensemble Learning. An optimal annota-
tor would annotate our running example Napoleon with http://dbpedia.org/
resource/Napoleon and France with http://dbpedia.org/resource/
France.

4. Noun Phrase Detection. HAWK identifies noun phrases, i.e., semantically mean-
ingful word groups, i.e., real-world entities or concepts not captured by the underlying
knowledge base, not yet recognized by the entity annotation system, using the result of
the POS tagging step. Input tokens are combined following manually-crafted linguistic
heuristics based on POS-tag sequences derived from the QALD 5 benchmark questions.
Two domain experts implemented the deduced POS-tag sequences and safeguarded the
quality of this algorithm w.r.t. the QA pipeline f-measure. Here, the first wife
would be detected as noun phrase.

5. Dependency Parsing.



To capture linguistic and semantic relations, HAWK parses the query using de-
pendency parsing and semantic role labeling [3]. The dependency parser generates a
predicate-argument tree based on the preprocessed question.

6. Linguistic Pruning. Here, HAWK has captured entities from a given knowledge
base, noun phrases as well as the semantic structure of the sentence. Still, this structure
contains tokens that are meaningless for retrieving the target information or even intro-
duce noise into the process. Thus, HAWK prunes nodes from the predicate-argument
tree based on their POS-tags, e.g., deleting all DET nodes, interrogative phrases such
as Give me or List, and auxiliary tokens such as did. The linguistically pruned
dependency tree with combined noun phrases for our running example would only
contain die as a root node with two children, namely first-wife and http:
//dbpedia.org/resource/France. The node first-wife has one further
sub-node called http://dbpedia.org/resource/Napoleon.

7. Semantic Annotation. Now, the tree structure contains only semantically mean-
ingful (combined) token and entities, i.e, individuals from the underlying knowledge
base. To map the remaining token to properties and classes from the target knowledge
base and its underlying ontology, our framework uses information about possible ver-
balizations of ontology concepts and leverages a fuzzy string search. These verbal-
izations are based on both rdfs:label3 information from the ontology itself and
(if available) verbalization information contained in lexica, in our case in the exist-
ing DBpedia English lexicon4. After this step, either a node is annotated with a class,
property or individual from the target knowledge base or it causes a full-text lookup in
the targeted Document Web parts. With respect to the running example die would be
annotated with the properties dbo:deathPlace and dbo:dbo:deathDate.

8. Generating hybrid SPARQL Queries. Given a (partly) annotated predicate ar-
gument, HAWK generates hybrid SPARQL queries. It uses an Apache Jena FUSEKI5

server, which implements the full-text search predicate text:query on a-priori de-
fined literals. Those literals are basically mappings of textual information to a certain in-
dividual URI from a target knowledge, i.e., an implicit enrichment of structured knowl-
edge from unstructured data.

Especially, our framework HAWK indexes a-priori the following information per
individual: dbo:abstract, rdfs:label, dbo:redirect and dc:subject to
capture document based information. This information is then retrieved by a special
FUSEKI predicate (text:query) by using exact matches or fuzzy matches on each
non-stopword token of an indexed field.

The generation of SPARQL triple pattern is based on a pre-order walk to reflect the
empirical observation that i) related information is situated close to each other in the tree
and ii) information is more restrictive from left to right. This breadth-first search visits
each node and generates several possible triple patterns based on the number of anno-

3 We assume dbo stands for http://dbpedia.org/ontology, dbr for http:
//dbpedia.org/resource/, rdfs for http://www.w3.org/2000/01/rdf-
schema#, dc for http://purl.org/dc/elements/1.1/ and text for http:
//jena.apache.org/text#

4 https://github.com/cunger/lemon.dbpedia
5 http://jena.apache.org/documentation/serving_data/



tations and the POS-tag itself. With this approach HAWK is independent of SPARQL
templates and to work on natural language input of any length and complexity. Each
pattern contains at least one variable from a pre-defined set of variables, i.e., ?proj
for the resource projection variable, ?const for resources covering constraints related
to the projection variable as well as a variety of variables for predicates to inspect the
surrounding of elements in the knowledge base graph. During this process, each iter-
ation of the traversal appends the generated patterns to each of the already existing
SPARQL queries. This combinatorial effort results in covering every possible SPARQL
graph pattern given the predicate-argument tree. Amongst others, HAWK generates for
the running example the following three hybrid SPARQL queries:

1. SELECT ?proj {?proj text:query ’first wife’.
?proj dbo:deathPlace dbr:France.
?proj ?pbridge dbr:Napoleon.}

2. SELECT ?proj {?proj text:query ’first wife’.
?proj dbo:deathDate dbr:France.
?proj ?pbridge dbr:Napoleon.}

3. SELECT ?proj {?proj text:query ’first wife’.
?const pbridge dbr:France.
?proj ?pbridge dbr:Napoleon.}

9. Semantic Pruning of SPARQL Queries. Covering each possible SPARQL graph
pattern with the above algorithm results in a large number of generated SPARQL queries.
To effectively handle this large set of queries and reduce the computational effort,
HAWK implements various methods for pruning. For example, it assumes that uncon-
nected query graphs, missing projection variables and cyclic SPARQL triple pattern
lead to empty or semantically meaningless results. Thus, HAWK discards those queries.

In the running example, the semantic pruning discards query number two from
above because it violates the range restriction of the dbo:deathDate predicate. Al-
though semantic pruning drastically reduces the amount of queries, it often does not
result in only one query. Thus, a ranking of the remaining queries is applied before the
best SPARQL query is send to the target triple store.

10. Classification of ASK Queries. To decide whether the user intended a set of
entities or a boolean answer as result, HAWK relies on a simple heuristic based on
the first word, dubbed indicator word, of the query, see Table 1. We tried using POS
tags for the same purposes. However, experiments using POS tags failed due to missing
semantics of POS-tags. Furthermore, we acknowledge that classifying questions based
on word-level analysis is not language-independent. In the future, we will work on a
language independent version of the module leveraging the dependency structure of
the input question. Obviously, our running example is classified as ASK demanding
question.

11. Modify the SPARQL query. After classifying questions and detecting the need
for an ASK query, HAWK modifies the existing structure, i.e., changes the type of the
SPARQL query by replacing the SELECT in the query with ASK. Furthermore, HAWK



Table 1: Indicator Word for classifying ASK queries in English questions.

Indicator Word (POS-tag) Stem form

Do (VBP), Does (VBZ), Did (VBD) do
Is (VBZ), Are (VBP), Was (VBD) be
Have (VBP), Has (VBZ), Had (VBD) have

skips the cardinality calculation due to ASK queries not requiring the LIMIT solution
modifier.6

With respect to our running example, the final query would be:

1. ASK {?proj text:query ’first wife’.
?proj dbo:deathPlace dbr:France.
?proj ?pbridge dbr:Napoleon}

12. Cardinality. If HAWK classifies an input question as entity search related rather
than demanding a boolean answer, we need to determine the target cardinality x, i.e.,
modify the solution modifier LIMIT x. The number of answers expected for a given
query is indicated by cardinality of the first seen POS-tag, e.g., the POS-tag NNS de-
mands the plural while NN demands the singular case and thus leads to different x. That
is, each plural indicating POS-tag will return 10 results by default rather than 1. In the
future, we will use a machine learning-based algorithm to learn the correct number of
x ≥ 1.

13. Ranking For the sake of this paper, we assume an optimal ranking algorithm to
demonstrate the capabilities of HAWK to identify and generate the correct ASK query
per input question rather than additionally introducing noise in the process of choosing
the correct ASK amongst the generated SPARQL queries. To ensure we are able to
generate hybrid SPARQL queries capable of answering the benchmark questions, the
optimal ranker returns always those hybrid SPARQL queries which lead to a maximum
f-measure. Obviously, the optimal ranking can only be used if the answers are know,
i.e., HAWK operates on the QALD 5 benchmark datasets containing the gold standard
answer set. This ranking functions allows to determine the parts of the hybrid question
answering pipeline which do not perform well. An optimal ranking will reveal that the
winning SPARQL queries for our running example are:

1. ASK {?proj text:query ’first wife’.
?proj dbo:deathPlace dbr:France.
?proj ?pbridge dbr:Napoleon},

2. ASK {?proj text:query (’first wife’ AND ’Napoleon’) .
?proj dbo:deathPlace dbr:France.}.

6 http://www.w3.org/TR/rdf-sparql-query/#ask



4 Evaluation

The QALD-5 [17] benchmark has a training and a test dataset for question answering
containing a subset of hybrid benchmark questions. Moreover, questions depending on
Yago ontology7 types cannot be answered.

The QALD-5 dataset contains 40 training, respectively 10 test questions for hy-
brid QA. To increase the number of gold standard queries, we did not restrict ourselves
to only hybrid, boolean questions but to boolean questions in general, not demand-
ing aggregations, e.g., FILTER, and only DBpedia ontology types. Thus, we used 27
questions for the evaluation from the combined dataset following the restrictions given
above8.

Table 2: Results with and without the ASK-extension of HAWK.

Question Type Global F-measure Global F-measure with skipping

Hybrid SELECT 0.19 0.27
Hybrid ASK 0.47 0.74
Hybrid SELECT+ASK 0.24 0.35

Table 2 details our results on the combined QALD 5 dataset using an optimal
ranker approach. Our simple classification is able to decide in all cases for the cor-
rect command method w.r.t. the benchmark data. The skipping measure takes into ac-
count, iff HAWK does not generate any answer set, i.e., returns ’I do not know the
answer’. Overall, the novel implementation of the ASK-related modules improves the
overall F-measure by more than 10%. A demo of the framework can be found at
http://hawk.aksw.org.

5 Conclusion

In this paper, we briefly introduced HAWK, a hybrid QA system for the Web of Data,
and analysed its performance against the combined QALD 5 dataset using the new
ASK-query module. We showed that by using a generic approach to generate SPARQL
queries from predicate-argument structures, HAWK is able to achieve an F-measure
of up to 0.35. Currently, HAWK faces several limitations, such as not capturing the
exact semantics due to missing dictionaries (e.g., vice-president), the ability to use
FILTER and SPARQL aggregation functions (FILTER (?high > 100)) or com-
pound questions. Besides, HAWK assumes error-free data sources and user input to
focus on the underlying mechanisms that capture the input semantics. Furthermore, the
current version of HAWK is based on a frequently modified Java implementation whose

7 http://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago/

8 https://github.com/AKSW/hawk/blob/master/resources/qald-
5_test_train.xml



performance can be experience in the demo. Our work on HAWK, however, revealed
several other open research questions, of which the most important lies in finding the
correct ranking approach to map a predicate-argument tree to a possible interpretation.
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