
LSQ: The Linked SPARQL Queries Dataset Technical
Report

Muhammad Saleem1, Intizar Ali2 Aidan Hogan3, Qaiser Mehmood2, and Axel-Cyrille
Ngonga Ngomo1

1 Universität Leipzig, IFI/AKSW, PO 100920, D-04009 Leipzig
{lastname}@informatik.uni-leipzig.de

2 Insight Center for Data Analytics, National University of Ireland, Galway
first.lastname@insight-centre.org

3 Universidad de Chile
aidhog@gmail.com

Abstract. In this report, we present LSQ – a Linked Dataset describing SPARQL
queries extracted from the logs of a variety of four prominent public SPARQL
endpoints. We argue that this dataset has a variety of uses for the SPARQL
research community. For example, it can be used generate benchmarks on the fly
by selecting real-world queries with specific characteristics that we describe. LSQ
can also be used to conduct analyses of what SPARQL (1.1) query features are
most often used to interrogate endpoints. Other use cases include characterising the
behaviour of the different types of agents that are using these endpoints or finding
out what queries agents are asking about a given resource. In more detail, we first
motivate our dataset by reference to a number of concrete use cases, extracting a
list of requirements. Next we discuss how we describe SPARQL queries in RDF,
using a mix of existing vocabularies (e.g., SPIN) and a custom vocabulary. We
present the hosting methods that we provide and remark on issues relating to
sustainability. To conclude, we show some high-level examples of the types of
conclusions that we can draw from our LSQ about the current state of SPARQL
adoption on the Web.

1 Introduction

Although there are now hundreds of public SPARQL endpoints available on the Web
– collectively indexing billions of facts and receiving millions of queries each month
– it is clear that in terms of SPARQL technology, there is still considerable room for
improvement. Many of the aforementioned public endpoints suffer from availability
problems and otherwise exhibit non-standard behaviour, such as returning partial re-
sults [2]. With respect to the implementations underlying these endpoints, many of the
benchmarks proposed to test and decide between them have been found to be too narrow
and simplistic [1]; under more fine-grained analysis, the performance of different engines
can vary by orders of magnitude without there being any clear winner [1]. Likewise,
there are many open questions now being tackled relating to the usability of SPARQL
endpoints (e.g., [12,17,6]), or to SPARQL caching (e.g., [22,11]): topics that would ap-
pear fundamental when talking about hosting mature, user-centric, high-traffic services
on the Web.



SPARQL is a relatively new technology and the recent recommendation of SPARQL
1.1 [8] brings new challenges. Many of the challenges faced –of which some are men-
tioned above–, could benefit from more information about how users are currently
interacting with SPARQL endpoints and in particular, what queries they are sending.
Such knowledge may help to focus research on optimising those queries or query fea-
tures that are most commonly required. For example, real-world queries can be used to
generate benchmarks that are more representative of the type of workload a SPARQL
engine will have to process in practice [18].4 Moreover, the analysis of agent interactions
could lead to novel approaches to general issues like usability, caching, etc.

Although query logs are available for public SPARQL endpoints through initiatives
like USEWOD5, the datasets involved are only accessible after having signed strict legal
agreements, meaning that researchers and other interested parties are limited in their
reuse of the service. Likewise, the format of the logs is ad-hoc in nature, depending on
their source. Thus, although some interesting surveys of real-world SPARQL queries
have been published from, for example, these logs [3,15,16], we still argue for the need
for a public, openly accessible dataset containing queries extracted from endpoint logs
represented in a single consistent representation.

In this report, we thus introduce the Linked SPARQL Query Log Dataset (LSQ): a
public, openly accessible dataset of SPARQL queries extracted from endpoint logs. The
current version that we describe in this report consists of 73.2 million triples collected
from four query logs, which we gathered directly from the maintainers of the endpoints
and for which we have gotten permission to make the logs public. LSQ is available from
http://aksw.github.io/LSQ/.

The rest of this report is structured as follows: In Section 2, we outline some use cases
advocating the potential impact of our dataset and derive some requirements. Section
3 discusses the LSQ dataset schema and gives examples of the RDFisation output.
Section 4 introduces the four public SPARQL query logs that we have currently RDFised.
Section 5 presents details of the resulting LSQ dataset and analyses of the queries it
contains. Section 6 provides some concrete example queries that can be executed over
the LSQ dataset in relation to the motivating use case and Section 7 concludes.

2 Motivational Use Cases

In this section, we introduce a number of potential use cases for LSQ to help motivate
the potential impact and usage of the dataset. These are the use cases we foresee going
forward. Based on these use cases, we extracted a list of milestones to be achieved by
LSQ Dataset:

UC1 Custom Benchmarks Recently, there has been a lot interest in the creation of
SPARQL benchmarks based on real-world scenarios, be they general-purpose bench-
marks [13,4,23] or benchmarks targeted at specific aspects such as federation [20].
The LSQ dataset can be used to generate realistic benchmarks by selecting queries
matching ad-hoc desiderata, be it to have broad coverage of the features of SPARQL

4 http://feasible.googlecode.com
5 http://usewod.org/; retr. 2015/04/14.

http://aksw.github.io/LSQ/
http://feasible.googlecode.com
http://usewod.org/


1.1, or to focus on specific aspects: e.g., researchers focusing on efficient property-
path execution may wish to extract those real-world queries featuring use of property
paths and basic graph patterns, but no other features.

UC2 SPARQL Adoption A variety of researchers have presented analyses of SPARQL
queries in logs [3,15,16], looking at which SPARQL features are most commonly
used and how they are used. Likewise, theoretical features of queries – such as othe
treewid th of graph patterns or well-designedness [14] – can be gauged to see if
hypothetical worst-cases occur often in practice. By curating various query logs, our
dataset facilitates further analyses of how the SPARQL 1.1 language is being used.

UC3 Caching Works on caching [22,11] try to maximise the space vs. time trade-off
by re-using previous results of computation. There is the question not only of what
types of data to cache (full query results, intermediate results, etc.), but also which
data to cache (which results are more likely to be re-used). By analysing sequences
of timestamped queries, researchers in this area can simulate caching options under
realistic conditions looking for practical answers to these questions.

UC4 Usability A variety of works are now emerging in the area of the usability of
SPARQL endpoints. Works on auto-completion [12,17,6] may benefit from extract-
ing patterns from past queries and using them to guide future suggestions. Works on
query relaxation and approximation [5,9,21] could benefit from analysing invalid or
empty queries and seeing how agents reformulate their subsequent requests.

UC5 Optimisation Relating to the previous use cases, statistics collected from queries
can help to fine-tune the parameters of query engines based on patterns in real world
usage, for example, the likelihood of picking a certain join algorithm, how much
memory to assign to specific query processing sub-tasks.

UC6 Meta-Querying The previous five use cases have been “internal” in the sense
of helping to improve or understand things relating to SPARQL. However, as a
more general (but admittedly speculative) use case, LSQ can support what we call
“meta-querying”: querying for queries. For example, from LSQ, one could find out
what are the queries that people are asking about a resource of interest, be it a
particular city, a conference, a product, the person themselves, etc.

This list of use cases is of course incomplete and indeed one could imagine further
use cases that are not mentioned herein. Still, from the use cases above, we can derive a
list of facets of queries and their execution that LSQ Dataset should capture:

F1 Query Features The dataset should describe the features used in individual queries
(ASK, OPTIONAL, etc.) in such a manner that, e.g., queries can be extracted accord-
ing to the features they use/omit (UC1), or the number of queries using a feature
can be determined (UC2). Such tasks should be possible by querying the meta-data
rather than needing to scan and parse the syntax of all SPARQL queries.

F2 Query Statistics The query meta-data should likewise capture high-level informa-
tion about the size and “complexity” of the queries in terms of, e.g., number of triple
patterns, join variables within a single query, etc., allowing, e.g., overall trends to be
analysed (UC1, UC5) or queries of a certain size to be extracted (UC2).

F3 Queried Resources The dataset should list the constants explicitly mentioned by a
given query, be they subject IRIs (UC6) specific predicates (UC1), etc.



F4 Execution Details The dataset should provide information about the execution of
each query, including a timestamp (UC3–4, UC6), the endpoint it was issued to
(UC1–6), and an anonymised identifier for the issuing client (UC2, UC4).

F5 Query Results Although the full query results would be far too large to include, the
dataset should include high-level information about whether the query incurred an
error (UC4) and if not, whether it returned results (UC4) and how many (UC1–2).

These facets circumscribe the target scope of our LSQ Dataset. However, due to
practical issues – such as the prohibitive size of potential output data or a given log not
containing the pertinent information – we may not be able to capture all the data for all
facets across all logs. Such issues will be discussed in depth later.

3 RDF Data Model

Our goal is to create a Linked Dataset describing the SPARQL queries issued to various
public SPARQL endpoints. In this section, we describe in detail the RDF data model we
employ to capture the facets mentioned in the previous section. In the design of this data
model, we identified a number of desiderata, as follows:

D1 Generality The data model should broadly cover the aforementioned facets. The
resulting dataset should allow for use cases to be satisfied over the meta-data alone
and without needing to parse the raw query text.

D2 Conciseness Since out logs contain millions of queries, the resulting data model
should be concise to keep the overall dataset size manageable.

D3 Usability Basic competency questions over the dataset (e.g., get all queries with a
given feature) should translate into efficient queries.

D4 Linked Data Compatibility URIs should be made dereferenceable per Linked Data
Principles. Terms from external well-known vocabularies should be re-used where
appropriate. Links to other datasets should be provided.

However, some of these desiderata are antagonistic. In particular, the need for
conciseness conflicts with the need for generality and usability. In the data model, we
thus need to strike a balance. In Figure 1, we provide an overview of the core of the
schema for the LSQ data-model. Listing 1 provides an example output for a query. The
main aspects of the dataset are now detailed.

Query instance Queries in the data are typed as sq:Query. As a practical design
decision, we create query instances for each log whereby a query is linked to a single
endpoint from whose log it was extracted. Hence if the same query with the same syntax
is issued to the same endpoint multiple times, it is represented with a single instance of
sq:Query. However, if queries with the same syntax are issued to different endpoints,
there would instances of sq:Query for each endpoint.6 Hence, instances of this class

6 The main reason for this decision is to satisfy conciseness: if we considered query resources
that were independent of an endpoint, we would need to create n-ary predicates for all of the
endpoint-specific data about a query.



are linked to the query text (using sd:text) and to the originating endpoint (using
lsqv:endpoint).7

Executions Query instances are linked to an instance of the class lsqv:Execution
for each time the query was run against that endpoint. Each such instance provides a
time (dct:issued) and a crytographically-hashed and salted I.P. to identify which
queries are run by the same agent (lsqv:agentId).

SPIN Representation To help meet the generality requirement, we attach a complete
SPIN representation of the query to each query instance (for brevity, other than high-level
details such as the subclasses of sp:Query, the full SPIN model is not shown in the
schema diagram; we instead refer the reader to [10]). The SPIN representation provides
a complete description of the query in RDF, allowing for arbitrarily-detailed queries to
be written against the LSQ dataset.

Shortcut Triples Given that the SPIN representation may involve an arbitrary level of nest-
ing using a variety of predicates, to meet the usability requirement, we provide shortcut
triples to indicate the SPARQL query features used in the query. These triples link query
instances (with the predicate lsqv:usesFeature) to instances of sd:Feature.
We enumerate a comprehensive list of such feature instances in our vocabulary, including
lsqv:Filter, lsqv:Optional, lsqv:SubQuery, etc. These shortcut triples
greatly simplify the process of finding queries in LSQ based on the features they (do
not) use.

Structural Statistics We also provide generic structural statistics [1] about the static
query, as follows:

– The number of Basic Graph Patterns (lsqv:bgps)
– The number of triple patterns (lsqv:triplePatterns)
– The number of join vertices/variables (lsqv:joinVertices)
– The mean join vertex degree (i.e., the mean number of triple patterns containing a

join variable; lsqv:meanJoinVertexDegree)
– The join vertex type (i.e., star, path, hybrid, and sink [19], which will be discussed

later; lsqv:joinVertexType)

Data-driven Statistics Next we provide data-driven statistics [1] about the execution
of the query. Since such data are not typically provided by the logs, we generate these
statistics by running the query locally against an offline copy of the dataset in question.
This generation was done on a machine with 16 GB RAM and a 6-Core i7 3.40 GHz CPU
running Ubuntu 14.04.2 using Virtuoso 7.1 with NumberOfBuffers = 1360000,
and MaxDirtyBuffers = 1000000. Of course, the resulting statistics may differ
to those that occurred during the original execution logged by the public endpoint; rather
they are intended to serve as a guide for, e.g., selecting benchmark queries, etc. These
statistics are:

7 Although there are some existing predicates with the label endpoint, such as void:endpoint
or sd:endpoint, the domain of these predicates were not queries but, e.g., datasets or
services. In general, we were careful to avoid inappropriate term re-use.



sp:Query

lsqv:usesFeature

sd:Feature

lsqv:Execution

lsqv:execution

xsd:long

sd:endpoint

lsql:hasExecutionError

xsd:string

lsqv:agent
dcterms:issued

xsd:dateTimeStamp

lsqv:Filter
lsqv:Distinct

…
lsqv:Union

sp:text
lsqv:parseError

xsd:string

@pre%ix(lsqv:(<http://lsql.aksw.org/vocab#>
@pre%ix(lsqr:(<http://lsql.aksw.org/res/>(
@pre%ix(rdf:(http://www.w3.org/1999/02/22CrdfCsyntaxCns#
@pre%ix(sp:(http://spinrdf.org
@pre%ix(dct:(<http://pul.org/dc/terms/>
@pre%ix(xsd:(<http://www.w3.org/2001/XMLSchema#>
@pre%ix(sd:(<http://www.w3.org/ns/sparql-service-description#>

Sub Class Property

sp:Select
sp:Ask

sp:Describe
sp:Construct

xsd:decimal

lsqv:resultSize
lsqv:runTimeMs

lsqv:bgps
lsqv:triplePatterns
lsqv:joinVertices

lsqv:meanJoinVerticesDegree
lsqv:meanTriplePatternSelectivity

lsqv:mentionsSubject
lsqv:mentionsPredicate

lsqv:mentionsObject

lsqv:JoinVertex

lsqv:joinVertex

lsqv:Star
lsqv:Path

lsqv:Hybrid
lsqv:Sink

lsqv:joinVertexType

lsqv:joinVertexDegree rdf:Resource

rdf:Resource

rdf:Resource

Fig. 1: First Draft of the Dataset Schema

– Number of results returned (lsqv:resultSize)
– Runtime of the query (lsqv:runTimeMs)
– Mean selectivity of triple patterns (lsqv:meanTriplePatternSelectivity)

Minimality To help meet the conciseness requirement, we drop redundant type triples.
For example, query instances are typed once with their most specific SPIN class
(sp:Ask, sp:Construct, sp:Describe, sp:Select) but the generic type triple
for sp:Query omitted. Likewise, we do not explicitly type instances with lsqv:Execution.
These omissions do not affect the other desiderata.

Summary The above data model is designed to cover the facets mentioned in Section 2
while striking what we argue to be a good compromise between the goals of generality,
conciseness and usability. Of course, given aspects such as the SPIN representation of
the query – included to increase the generality of the dataset – the goal of conciseness
may be threatened. We will discuss this trade-off later in the context of the final dataset
size(s).

With respect to Linked Data Compatibility, all query instances and executions are
identified with dereferenceable URIs. Our data model also re-uses class and property
terms from established external vocabularies, including SPIN, DC Terms and SPARQL
Service Descriptions. Finally, with respect to external links, LSQ provides links to every
URI mentioned in a query.

4 Current Query Logs

In this section, we provide a brief overview of the query logs we have collected and
RDFised in the context of the LSQ dataset. We contacted a number of administrators of



Listing 1: An example LSQ representation of an SWDF query
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix lsqr: <http://lsq.aksw.org/res/> .
@prefix lsqrd: <http://lsq.aksw.org/res/SWDF-> .
@prefix lsqv: <http://lsq.aksw.org/vocab#> .
@prefix sp: <http://spinrdf.org/sp#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

# QUERY INSTANCE META-DATA
lsqrd:q483 lsqv:endpoint <http://data.semanticweb.org/sparql> ;
sp:text """SELECT DISTINCT ?prop
WHERE {

?obj rdf:type swdf:SessionEvent .
?obj ?prop ?targetObj .
FILTER (isLiteral(?targetObj)) }
LIMIT 150""" .

# STRUCTURAL META-DATA
lsqrd:q483 lsqv:bgps 1 ; lsqv:triplePatterns 2 ; lsqv:joinVertices 1 ;
lsqv:meanJoinVerticesDegree 2.0 ;
lsqv:usesFeature lsqv:Filter , lsqv:Distinct , lsqv:Limit ;
lsqv:mentionsSubject "?obj" ;
lsqv:mentionsPredicate "?prop" , rdf:type ;
lsqv:mentionsObject "?targetObj" , swdf:SessionEvent ;
lsqv:joinVertex lsqr:q483-obj .

lsqr:q483-obj lsqv:joinVertexDegree 2 ; lsqv:joinVertexType lsqv:Star .

# DATA-SENSITIVE META-DATA
lsqrd:q483 lsqv:resultSize 16 ; lsqv:runTimeMs 6 ;
lsqv:meanTriplePatternSelectivity 0.5007155695730322 ;

# QUERY EXECUTION META-DATA
lsqrd:q483 lsqv:execution lsqrd:q483-e1 , lsqrd:q483-e2 , lsqrd:q483-e3 , lsqrd:

q483-e4 .
lsqrd:q483-e1 lsqv:agent lsqr:A-WlxKE0QQRlhCUBdGRx1QGVRbQRNsN2YUWF5W ;
dct:issued "2014-05-22T17:08:17+01:00"ˆˆxsd:dateTimeStamp .

lsqrd:q483-e2 lsqv:agent lsqr:A-WlxKE0QQRlhCUBdGRx1QGVRdRBNsN2YUW1pS ;
dct:issued "2014-05-20T14:34:35+01:00"ˆˆxsd:dateTimeStamp .

lsqrd:q483-e3 lsqv:agent lsqr:A-WlxKE0QQRlhCUBdGRx1QGVRdRBNsN2YUW1pS ;
dct:issued "2014-05-20T14:28:37+01:00"ˆˆxsd:dateTimeStamp .

lsqrd:q483-e4 lsqv:agent lsqr:A-WlxKE0QQRlhCUBdGRx1QGVRdRBNsN2YUW1pS ;
dct:issued "2014-05-20T14:24:13+01:00"ˆˆxsd:dateTimeStamp .

# SPIN REPRESENTATION
lsqrd:q483 a sp:Select ;
sp:distinct true ; sp:limit "150"ˆˆxsd:long ;
sp:resultVariables ( [ sp:varName "prop"ˆˆxsd:string ] ) ;
sp:where (

[ sp:subject [ sp:varName "obj"ˆˆxsd:string ] ;
sp:predicate rdf:type ;
sp:object <http://data.semanticweb.org/ns/swc/ontology#SessionEvent>

]
[ sp:subject [ sp:varName "obj"ˆˆxsd:string ] ;
sp:predicate [ sp:varName "prop"ˆˆxsd:string ] ;
sp:object [ sp:varName "targetObj"ˆˆxsd:string ]

]
[ a sp:Filter ;
sp:expression [ a sp:isLiteral ; sp:arg1 [ sp:varName "targetObj"ˆˆxsd:string

] ]
]

) .



widely-used public SPARQL endpoints.8 Unfortunately, a number of administrators were
unable to provide their logs or to give permission to make their logs publicly available.
At this point in time, we have collected and RDFised four query logs from four popular
SPARQL endpoints, which we now introduce.9

DBpedia is a Linked Dataset that is extracted from Wikipedia with crowd-sourced
community efforts. The dataset is exposed as SPARQL endpoint at http://dbpedia.
org/sparql through a Virtuoso instance. The DBpedia query log we have currently
obtained spans from April 30, 2010 to July 20, 2010 (these queries refer to DBpedia
v.3.5.1). The log records over 1.7 million query executions.

Linked Geo Data contains a collection of spatial Linked Datasets that have been ex-
tracted from Open Street Map. The data are accessible via a public SPARQL endpoint at
http://linkedgeodata.org/sparql through a Virtuoso instance. The Linked
Geo Data (LGD) query log spans from November 24, 2010 to July 6, 2011. The log
records over 1.6 million query executions.

Semantic Web Dog Food: SWDF is an effort to generate a Linked Dataset about
papers, presentations and people participating in top Semantic Web related conferences
and workshops. The dataset is typically accessible through a SPARQL endpoint at
http://data.semanticweb.org/sparql through a Sesame interface.10 The
Semantic Web Dog Food (SWDF) log spans from May 16, 2014 to November 12, 2014
and records over 1.4 million query executions.

British Museum provides a Linked Data representation of an online collection contain-
ing records of more than 3 million artefacts. The British Museum (BM) Linked Dataset
is accessible at http://collection.britishmuseum.org/sparql through
an OWLIM/GraphDB interface. The log we have acquired spans from November 8,
2014 to December 1, 2014 and contains over 800 thousand query executions.

Overview of datasets In Table 1, we present some high-level statistics of the original
Linked Datasets corresponding to the time of the logs (e.g., DBpedia refers to DBpedia
v.3.5.1), including the number of distinct triples, subjects, predicates, objects and classes
over which queries would have been issued. The statistics were collected by downloading
and locally analysing the data. These datasets will be used later to generate controlled
estimates of data-sensitive statistics for queries, such as runtimes, result sizes, triple
pattern selectivity, etc.

8 We acknowledge Dimitris Kontokostas, Jens Lehmann, Richard Cyganiak, and Hugh Glaser
for the provision of the query logs of DBpedia, Liked Geo Data, Semantic Web Dog Food and
British Museums respectively.

9 We are currently in the process of RDFising two more logs (from BioPortal and Strabon), which
we hope to make available in the coming weeks; likewise, we are in the process of obtaining
and RDFising extended logs from, e.g., DBpedia.

10 Unfortunately, at the time of writing, this SPARQL endpoint was not available.

http://dbpedia.org/sparql
http://dbpedia.org/sparql
http://linkedgeodata.org/sparql
http://data.semanticweb.org/sparql
http://collection.britishmuseum.org/sparql


Table 1: Basic statistics of the original datasets over which queries from the logs were
executed

DATASET TRIPLES SUBJECTS PREDICATES OBJECTS CLASSES

DBpedia 232,536,510 18,425,128 39,672 65,184,191 244
LGD 1,032,026,569 238,509,864 30,882 492,282,120 1,113
SWDF 294,870 30,856 185 93,051 126
BM 1,359,400 483,877 27 684,733 1

5 Linked SPARQL Query Dataset Statistics

We applied the RDFisation process to the four logs mentioned in the previous section.
Given that the logs were in different formats, we created custom scripts to extract and
normalise data from the four different sources, mapping them to the target schema
outlined in Section 3. We now give a more in-depth analysis of the resulting datasets, as
well as an analysis of the unique queries, query executions and agents mentioned therein.
Our goal is to provide insights into the scope and usefulness of the dataset, as well as its
limitations.

5.1 Query Analysis

Table 2 provides a high-level analysis of the queries (both query executions and unique
queries) appearing in each of the four logs. While the majority of queries are SELECT
(91.6% overall), SWDF contains a large number of DESCRIBE queries (31.1%). BM
contains a noticeably high ratio of parse errors (77.63%), compared with DBpedia
(35.27%), SWDF (13.75%), or LGD (4.35%). Conversely, while LGD is the lowest in
terms of parse errors, it generates the highest ratio of runtime errors (16.08%), followed
by DBpedia (5.54%), SWDF (0.05%), and BM (0%); one likely explanation is that
runtime errors – which include timeouts – are more frequent against larger datasets;
likewise, as we will see later, the vast majority of BM queries we found were quite
simple and uniform, with no joins, and hence are less likely to cause problems during
execution.11

Table 3 shows the distribution of queries with respect to different triple-pattern-level
join types as we defined previously in [19]. The idea is to count individual join variables
within a Basic Graph Pattern as individual joins and type them depending on how they
connect triple patterns. We say that a join vertex has an “outgoing link” if it appears as a
subject of a triple pattern, and that it has an “incoming link” if it appears as predicate or
object. The types are then as follows:

STAR has multiple outgoing links but no incoming links.
PATH has precisely one incoming and one outgoing link.

11 We suspect that the uniformity of BM queries may be due to one agent asking a high volume
of simple queries to the endpoint; unfortunately the BM log did not include agent data, so we
cannot confirm nor refute this possibility.



Table 2: High-level analysis of the queries and query executions in the LSQ dataset
for each log (QE = Query Executions, UQ = Unique Queries, PE = Parse Errors, RE
= Runtime Error, ZR = Zero Results, SEL = SELECT, CON = CONSTRUCT, DES =
DESCRIBE; percentages are with respect to UQ)

DATASET
QE UQ PE RE ZR SEL CON DES ASK
№ № № № № % % % %

DBpedia 1,728,041 1,208,789 426,425 69,523 176,257 94.6 0.9 0.1 4.4
LGD 1,656,254 311,126 13,546 50,059 143,574 89.3 2.3 0.0 8.4
SWDF 1,411,483 99,165 13,645 475 25,674 68.8 0.0 31.1 0.1
BM 879,426 129,989 100,916 0 29,073 100 0.0 0.0 0.0

Overall 5,675,204 1,749,069 554,532 120,057 374,578 91.6 1.2 2.3 4.9

Table 3: Percentage of unique queries containing different types of joins (a query may
contain multiple join types)

.

DATASET
STAR PATH HYBRID SINK NO JOIN

% % % % %

DBpedia 38.58 8.60 6.79 6.31 61.23
LGD 28.18 9.46 7.57 1.24 72.00
SWDF 10.70 11.25 4.01 0.93 84.25
BM 0.00 0.00 0.00 0.00 100.00

Overall 33.05 8.79 6.62 4.51 66.51

HYBRID has at least one incoming and outgoing link and three or more links.
SINK has multiple incoming links but no outgoing links.

From Table 3, we see that most of the queries are either STAR (subject–subject join;
33.1%) or contain no join (66.5%). As mentioned before, in the case of the British
Museum, none of the queries contained a join. However, we note that 37% of queries
contain a single triple pattern: the other queries without joins contain multiple BGPs or,
e.g., are DESCRIBE queries looking a single URI without a WHERE clause (see SWDF
in Table 2), etc.

Table 4 shows the mean values for various query features across all query logs. These
features are important, for example, when selecting queries for inclusion in SPARQL
benchmarks [1,7]. The SWDF queries are generally more complex, on average, in terms
of the number of BGPs and total number of triple patterns. However, they contain fewer
joins among triple patterns and the join vertex degree is also on a lower side (e.g., 0.35
for SWDF vs. 0.78 for DBpedia). LGD and DBpedia queries exhibit, on average, both
the largest number of results and the longest runtimes; this is likely due to the associated
datasets being much larger than either SWDF or BM. With respect to BM, we see that
the queries are not only uniform (all containing a single triple pattern), but they do not
return results over the dataset; this again suggests that the British Museum log contains
a high volume of simple, synthetic queries.



Table 4: Comparison of the mean values of different query features across all query logs
(RS = Result Size, TPs = Triple Patterns, JVs = Join Vertices, MJVD = Mean Join Vertex
Degree, MTPS = Mean Triple Pattern Selectivity)

DATASET RS BGPs TPs JVs MJVD MTPS RUNTIME (ms)

DBpedia 87.57 1.81 2.22 0.40 0.78 0.002 20.26
LGD 161.90 1.75 2.16 0.37 0.75 0.030 32.28
SWDF 19.65 2.57 2.94 0.26 0.35 0.025 11.98
BM 0.00 1.00 1.00 0.00 0.00 0.000 6.78

Overall 122.45 1.74 2.04 0.24 0.45 0.013 26.40

Table 5: Percentage of queries using various specific SPARQL features
DATASET UNION OPTIONAL DISTINCT FILTER REGEX SERVICE SUB-QUERY

DBpedia 4.42 36.20 18.44 23.47 2.90 0.0005 0.00
LGD 9.65 25.10 22.25 31.10 1.25 0.0000 0.01
SWDF 32.71 25.32 45.40 0.95 0.06 0.0012 0.02
BM 0.00 0.00 100.00 0.00 0.00 0.0000 0.00

Overall 7.64 31.78 23.30 23.19 2.22 0.0004 0.01

Table 6: Percentage of queries using at least one feature from a given categorisation
(SOLUTION MOD. includes the solution modifiers ORDER BY, OFFSET, and LIMIT;
AGGREGATES include GROUP BY, HAVING, AVG, SUM, COUNT, MAX, and MIN;
NEGATION include MINUS, NOT EXISTS, and EXISTS; BINDING includes VALUES
and BINDING; GRAPH includes FROM, FROM NAMED, and GRAPH)

DATASET SOLUTION MOD. AGGREGATES NEGATION BINDING GRAPH

DBpedia 1.036 0.001 0.001 0.000 0.002
LGD 60.443 0.007 0.000 0.000 0.000
SWDF 33.265 2.405 0.001 0.008 0.001
BM 0.000 0.000 0.000 0.000 0.000

Overall 18.117 0.174 0.001 0.001 0.001

Tables 5 and 6 show the percentage use of groups of different SPARQL features; a
query is counted in a given group if it uses one of the associated features. In general, we
found that the SPARQL 1.1 features are rarely used; however, in the case of DBpedia and
LGD, this may be due to the age of the logs. The most widely used feature is OPTIONAL
(31.78%), followed by DISTINCT (23.3%) and FILTER (23.19%). Solution modifiers
(i.e., LIMIT, OFFSET, ORDER BY) are also quite often used (18.11%).12

12 Indeed, similar observations were made previously by Arias et. al [3].



Table 7: Statistics about the agents executing queries

Dataset
Agents Exec/Agent Max. Agent
№ µ σ № %

DBpedia 3,041 568.2 6,343.0 266,836 15.5
LGD 725 2,284.5 19,437.4 286,677 17.3
SWDF 274 5,151.3 80,916.2 1,341,874 95.1

5.2 Execution and Agent Analysis

Thus far we have analysed statistics of unique queries. In this section, we are interested in
looking at (a) whether the same queries tend to be executed many times and (b) whether
or not some agents tend to be responsible for many of the query executions.

With respect to the number of times a given query is executed, if we take the
total number of query executions (5,675,204) and the total number of unique queries
(1,749,069) from Table 2, we can see that a given query is executed on average about
3.2 times in the scope of the logs defined. To compare this distribution for the four
logs, Figure 2 provides a Lorenz curve, which shows what (maximal) ratio of unique
queries account for what (minimal) ratio of query executions. For example, we see that
for SWDF, 80% of the unique queries account for about 10% of the overall executions,
or equivalently that the top 20% most frequently executed queries account for 90% of all
executions. On the other hand, the executions for DBpedia are much more evenly spread.
For LGD, the sharp ascent of the curve suggests that a handful of unique queries account
for the majority of executions.

With respect to the distribution of executions amongst agents, Table 7 provides high-
level statistics for DBpedia, LGD and SWDF (we do not have agent information in the
logs for the British Museum). We see that the number of unique agents ranges from 274
in the case of SWDF to 3,041 in the case of DBpedia. We also see that, on average, each
agent is responsible for hundreds or thousands of query executions; however, we can
see that this mean value is associated with a high standard deviation, particularly in the
case of SWDF, which implies that a few (presumably automated) agents are responsible
for a great many queries. This can likewise be seen in the number of queries issued by
agent with the most query executions, who is responsible for 15.5–17.3% in DBpedia
and LGD respectively, but a notable 95.1% in the case of SWDF. To better illustrate
this, Figure 3 presents the relevant Lorenz curve, in which we can see a heavy skew;
for example, 90% of the agents with fewest executions are cumulatively responsible for
fewer than 3% of the total executions (2.7% for DBpedia, 0.7% for LGD, and 0.2% for
SWDF). From this curve, we posit that the vast majority of queries encountered in these
logs are from a handful of high-volume, automated agents; this should be taken into
account by users of the LSQ dataset.

6 The LSQ Dataset in Practice

We have made the LSQ dataset available through three media: (i) dereferenceable Linked
Data, (ii) flat dumps and (iii) a SPARQL endpoint. In this section, we wish to provide



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ratio of unique queries

ra
ti
o
of

q
u
er
y
ex
ec
ti
on

s

equality DBpedia
SWDF LGD
BRM

Fig. 2: Lorenz curve for distribution of ex-
ecutions per unique query

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ratio of agents

ra
ti
o
of

q
u
er
y
ex
ec
ti
on

s

equality DBpedia
SWDF LGD

Fig. 3: Lorenz curve for distribution of ex-
ecutions per unique agent

some concrete queries that can be issued against the LSQ SPARQL endpoint in order to
derive insights relevant to each of the use cases discussed in Section 2.

UC1 Facilitating Benchmark Generation: LSQ can help users generate custom bench-
marks by selecting real-world queries meeting certain criteria. Listing 2 is an example
SPARQL query over LSQ that provides a list of 50 queries with additional parameters
set for both structural and data-driven criteria useful for creating custom benchmarks [1].

Listing 2: UC1: Collect 50 benchmark queries having more than 10 results, fewer than 5
triple patterns, using filters, with an execution time below 50 ms
PREFIX lsqv: <http://lsq.aksw.org/vocab#>
PREFIX sp: <http://spinrdf.org/sp#>
SELECT ?query FROM <http://data.semanticweb.org>
WHERE {

?id sp:text ?query ; lsqv:resultSize ?rs ; lsqv:triplePatterns ?tp ;
lsqv:runTimeMs ?rt ; lsqv:usesFeature lsqv:Filter .

FILTER (?rs > 10 && ?tp <5 && ?rt < 50 ) }
LIMIT 50

UC2 SPARQL Adoption The Linked SQ dataset can also be used to gain insights
into how the SPARQL query language is being used in practice, be that to find out how
features are used and combined (Listing 3) or to see, for example, what kinds of joins
are most common (Listing 6)

Listing 3: UC2: The number of queries using both UNION and FILTER
PREFIX lsqv: <http://lsq.aksw.org/vocab#>
SELECT COUNT(?queryId) AS ?unionFilterCount
WHERE { ?queryId lsqv:usesFeature lsqv:Union , lsqv:Filter . }

UC3 Caching The Linked SQ dataset can also be used to find useful patterns to
cache, commonly repeated queries, or to create realistic caching benchmarks using the



timestamp of execution times. Listing 4 gives an example of an LSQ query that finds the
most frequently executed queries that take a long time to compute but have small result
sizes that can be cheaply cached.

Listing 4: UC3: Get top query executions for smaller result set queries.
PREFIX lsqv:<http://lsq.aksw.org/vocab#>
PREFIX sp:<http://spinrdf.org/sp#>
SELECT DISTINCT ?query COUNT(?exs) AS ?exsCount
WHERE {

?id sp:text ?query ; lsqv:resultSize ?rs ; lsqv:execution ?exs ; lsqv:runTimeMs
?rt .

FILTER (?rs < 100 && ?rt > 10000)}
GROUP BY ?query ORDER BY DESC(COUNT(?exsCount))

UC4 Usability From the Linked SQ Dataset, one can derive a list of queries that resulted
in parse errors, runtime errors, or empty results. One can also look at which agents issued
such queries, and how their queries evolved over time. Listing 5 gives a small example
of a query looking for parse errors encountered by a given agent, ordered by time.

Listing 5: UC4: Which queries resulted in a parse error for a given agent?
PREFIX lsqv: <http :// lsq .aksw.org/vocab#>
PREFIX lsqr: <http :// lsq .aksw.org/ res/>
PREFIX sp: <http:// spinrdf .org/sp#>
PREFIX dct: <http :// purl .org/dc/terms/>
SELECT ?query ?time ?error
WHERE {

?id sp: text ?query ; lsqv : parseError ? error ; lsqv : execution ?ex .
?ex dct : issued ?time ;

lsqv : agent lsqr :A−WlFJE0QQRlhBVRNGRx1QGVdaRhNsN2YUW15R .
}

ORDER BY ?time

UC5 Optimisation Given a particular workload of queries, an optimiser can decide how
to configure indexes, etc., to improve the performance of typical queries. Administrators
can use LSQ to derive some default statistics for what is most common across different
databases. For example, Listing 6 provides a query to see how frequently queries con-
taining paths return zero results, which may motivate optimisations to pre-filter empty
paths; one could consider a similar example to find path queries that take the longest
time, which may suggest to materialise indexes for specific paths.

Listing 6: U5: The number of empty-result queries with path joins
PREFIX lsqv: <http://lsq.aksw.org/vocab#>
SELECT COUNT(?id) AS ?starQueries
WHERE {
?id lsqv:joinVertex ?joinVertex ; lsqv:resultSize 0 .
?joinVertex lsqv:joinVertexType lsqv:Path . }

UC6 Meta-querying The final example query in Listing 7 shows how one can find all
the queries relating to a given resource, in this case Michael Jackson.



Listing 7: UC6: Fetch all queries asking about Michael Jackson
PREFIX sp:<http://spinrdf.org/sp#>
SELECT DISTINCT ?query
WHERE {

?id sp:text ?query .
{ ?id lsqv:mentionsSubject <http://dbpedia.org/ontology/Michael_Jackson> }
UNION
{ ?id lsqv:mentionsObject <http://dbpedia.org/ontology/Michael_Jackson> }

}

7 Conclusions and Future Directions

In this report we presented LSQ, the first, to the best of our knowledge, Linked Dataset
describing SPARQL queries. We showed a variety of use cases where LSQ can be
helpful. We provided various statistics about the static and runtime features of SPARQL
queries collected from four well-known SPARQL endpoints. It was shown that most
of the queries are simple, i.e., few triple patterns, few triple pattern joins, and small
result sizes and runtimes. Furthermore, we have looked in to the agent analysis and
concluded that most of SPARQL queries are generated by automated agents. Finally,
we provided various SPARQL queries to collect the statistics related to the discussed
use cases. As future work, we are collecting logs from other SPARQL endpoints (e.g.,
Bioportal, Strabon) and will be added into LSQ. Furthermore, we will provide an API
access where user can submit their queries.

References

1. G. Aluç, O. Hartig, M. T. Ozsu, and K. Daudjee. Diversified stress testing of rdf data
management systems. In ISWC, 2014.

2. C. B. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche. SPARQL web-querying infras-
tructure: Ready for action? In ISWC, pages 277–293, 2013.

3. M. Arias, J. D. Fernández, M. A. Martı́nez-Prieto, and P. de la Fuente. An empirical study of
real-world SPARQL queries. CoRR, 2011.

4. C. Bizer and A. Schultz. The berlin sparql benchmark. IJSWIS, 2009.
5. A. Calı̀, R. Frosini, A. Poulovassilis, and P. T. Wood. Flexible querying for SPARQL. In

OTM, pages 473–490, 2014.
6. S. Campinas. Live SPARQL auto-completion. In ISWC Posters & Demos, pages 477–480,

2014.
7. O. Görlitz, M. Thimm, and S. Staab. Splodge: Systematic generation of sparql benchmark

queries for linked open data. In ISWC. 2012.
8. S. Harris, A. Seaborne, and E. Prud’hommeaux, editors. SPARQL 1.1 Query Language.

W3C Recommendation, 21 March 2013. Available at http://www.w3.org/TR/
sparql11-query/.

9. A. Hogan, M. Mellotte, G. Powell, and D. Stampouli. Towards fuzzy query-relaxation for
RDF. In ESWC, pages 687–702, 2012.

10. H. Knublauch, J. A. Hendler, and K. Idehen, editors. SPIN – Overview and Motivation.
W3C Member Submission, 22 February 2011. Available at http://www.w3.org/
Submission/spin-overview/.



11. T. Lampo, M. Vidal, J. Danilow, and E. Ruckhaus. To cache or not to cache: The effects of
warming cache in complex SPARQL queries. In OTM, pages 716–733, 2011.

12. J. Lehmann and L. Bühmann. Autosparql: Let users query your knowledge base. In ESWC,
pages 63–79, 2011.

13. M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo. Dbpedia sparql benchmark -
performance assessment with real queries on real data. In ISWC, 2011.

14. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. In ISWC, pages
30–43, 2006.

15. F. Picalausa and S. Vansummeren. What are real sparql queries like? In SWIM, 2011.
16. L. Rietveld and R. Hoekstra. Man vs. machine: Differences in sparql queries. In USEWOD,

2014.
17. L. Rietveld and R. Hoekstra. YASGUI: feeling the pulse of linked data. In EKAW, pages

441–452, 2014.
18. M. Saleem, Q. Mehmood, and A.-C. Ngonga Ngomo. FEASIBLE: A featured-based sparql

benchmark generation framework. In ISWC, 2015.
19. M. Saleem and A.-C. Ngonga Ngomo. HiBISCuS: Hypergraph-based source selection for

sparql endpoint federation. In ESWC, 2014.
20. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. Fedbench: A

benchmark suite for federated semantic data query processing. In ISWC, 2011.
21. R. D. Virgilio, A. Maccioni, and R. Torlone. A similarity measure for approximate querying

over RDF data. In EDBT/ICDT, pages 205–213, 2013.
22. G. T. Williams and J. Weaver. Enabling fine-grained HTTP caching of SPARQL query results.

In ISWC, pages 762–777, 2011.
23. H. Wu, T. Fujiwara, Y. Yamamoto, J. Bolleman, and A. Yamaguchi. Biobenchmark toyama

2012: an evaluation of the performance of triple stores on biological data. JBMS, 2014.


	LSQ: The Linked SPARQL Queries Dataset Technical Report

