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Abstract. The Web of Linked Data is growing and it becomes increas-
ingly necessary to discover the relationship between different datasets.
This paper proposes an approach for accurate link counting which uses
Bloom filters (BF) to compare and approximately count links between
datasets, solving the problem of lack of up-to-date meta-data about
linksets. We compare the performance to classical approaches such as
binary search tree (BST) and hash tables (HT). The results show that
Bloom filter is 12x more efficient regarding of memory usage with ade-
quate query speed performance. BF maintains a low level of false posi-
tives and a precision level quite close to 100%. In addition, we created
a small cloud comparing all English DBpedia datasets and vocabularies
available in Linked Open Vocabularies (LOV). The whole process took
only 1h45min. Moreover, we developed a GUI that uses the generated
meta-data and creates a visualization of datasets and distributions, mak-
ing it possible to apply real time filters. DataID files can also be enriched
with VoID linksets based on statistical data generated by our approach.

Keywords: Linked Open Data, Cloud Diagram, DataID, Linksets, Bloom fil-
ter.

1 Introduction

The amount of datasets in the world of Linked Data is growing each day. Yet,
counting links and visualizing the relations between these datasets is one of the
challenges which the community still struggles to solve. The creation of diagrams
which visualize the Data Web with a rich level of meta-data is a hard task. A
crucial challenge of any analysis is to provide accurate methods to analyze links
between data. While many approaches use approaches relying on a mixture of
linked data crawling, exploitation of http://datahub.io and link counts based
on fully qualified domain name (FQDN) in the linked data space, we argue
that this does not accurately reflect the status of data integration in the Data
Web.

http://aksw.org
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A second challenge is the freshness of such an analysis. Especially in the case
of large amount of big datasets, which are hosted in a decentralized way, detect-
ing and counting links requires a centralized index and methods that are scalable
enough to keep up-to-date. Having this index updated would easily be possible
if dataset creators or maintainers provide basic meta-data regarding dataset de-
scription. However, the lack of updated meta-data description, especially about
linksets1 is still a critical problem and poses extra burden on the publisher.

Given the described gaps, Dynamic-LOD intends to explore a new paradigm
in analyzing links on the Data Web. Our approach uses Bloom filter[2] (BF)
to compare and count links among datasets solving the problem of meta-data
generation describing linksets. A contribution that this work brings is the new
process for link discovery and counting, which is made by comparing objects with
subjects of different datasets, as well as ontologies. In particular, the subjects are
indexed in BF vectors, which provide memory efficiency and high performance
in the comparison process. Moreover, we store sufficient data about datasets and
linksets to create a cloud diagram and show scalability.

In order to identify datasets and distributions, this work relies on DataId[4]2

files, which are used to get the meta-data description of datasets to be included
in the diagram. A DataId file provides meta-data about multiple properties of
a dataset, including subsets and its distributions. Based on this, our approach
is able to enrich these DataId files with data about linksets, i.e. adding meta
data about how many links a described distribution has with a different dataset.
After the enrichment process, provenance of the newly generated meta-data is
guaranteed since the Prov-O3 ontology is used.

Our last contribution is the creation of a Graphical User Interface which
allows users to add DataId files and visualize datasets in a cloud diagram format.
The graph visualization is made using Data Driven Documents (D3) JavaScript
library4. Our visualization graph provides a dynamic and interactive way for
users to see links either on dataset level or on distribution level. This application
is scalable enough and was tested with a small cloud with more than a billion of
triples. Even with hundreds of datasets, it was possible to update the diagram
in a few minutes for each newly included dataset.

Dynamic-LOD is available at http://dynamiclod.dbpedia.org and its im-
plementation is open source and available at GitHub5.

This work is structured as follows: We provide a description of linksets and
Bloom filters in Section 2, followed by a motivational problem definition and
relations to previous work in Section 3. Section 4 contains the Dynamic-LOD
overview and implementations details. In Section 5 we describe results and eval-
uation obtained using our approach, and, in Section 5.3 and Section 6 we discuss
about results and conclusions.

1 http://www.w3.org/TR/void/#linkset
2 https://github.com/dbpedia/dataid/blob/master/ontology/dataid.ttl
3 http://www.w3.org/TR/prov-o/
4 http://d3js.org/
5 https://github.com/AKSW/dynamiclod

http://dynamiclod.dbpedia.org
http://www.w3.org/TR/void/#linkset
https://github.com/dbpedia/dataid/blob/master/ontology/dataid.ttl
http://www.w3.org/TR/prov-o/
http://d3js.org/
https://github.com/AKSW/dynamiclod
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2 Background

2.1 Linkset Definition

In order to clarify the definition of the term linkset used in this work, a brief
explanation is following given. Let ID be a dataset (as given by DataID), SID

the set of subsets of the dataset ID, DID the set of distributions of the dataset
ID and DSID

the set of distributions of subset S of dataset ID. Each distribution
d consists of a set of RDF triples in the form < s, p, o >. We define that a link
occurs from distributions d1 to distribution d2 if d1 contains a triple t1 =<
s1, p1, o1 > and d2 contains a triple t2 =< s2, p2, o2 > and o1 = s2. We then call
t1 a link (independently of the property used) and say that the distributions are
linked to each other (cf. Section 3.2). Furthermore, let a linkset Ld1→d2 be the
set of links in d1.

From this definition it easily follows that linksets between distributions, sub-
sets, datasets can be aggregated in a straightforward manner. We omit the de-
tails and just mention that a dataset id1 is linked to another dataset id2, if a
non-empty linkset from any distribution DSid1

to DSid2
exists. For practical rea-

sons (noise reduction) we later consider only linksets with more than 50 links:
|Ldm→dn

| ≥ 50 or |Lidm→idn
| ≥ 50 respectively.

2.2 Bloom Filter

Bloom filter is a probabilistic data structure created by Burton H. Bloom in
1970 [2]. The main goal is to check whether an element x exists in a set S.
In this data structure with 100% recall, false negative (fn) matches are not
possible, while a small percentage of false positives (fp) are condoned. Queries
will always return either ”possibility the element x exists in set S” or ”sure
element x does not exists in set S”. The proposal of Bloom filter is to handle
with search algorithms in a large amount of data in a much more performative
way, with a margin of error viable within certain applications in many different
domains [6,14]. Usually fewer than 10 bits per element are necessary for a 1% of
fp probability, independent of the size of the set S [3]. The weakness of Bloom
filter is the possibility for a false positive (fp), which are elements that are not
part of S but are reported being in the set by the algorithm.

The Bloom filter was chosen according to [18,20]. Besides, the space and time
advantages makes this data structure more coherent on this scenario rather than
binary search trees, hash tables, arrays or linked lists, for example. A benchmark
can be found at Putze’s work [18].

Bloom filter is an essential part of this paper because linkset indexing re-
lies on it. Dynamic LOD uses this model in order to identify the links among
distributions of datasets loaded from DataId files.

In order to have a fixed fp rate, the length of the structure must grow linearly
with the number of elements. The total number of bits m for the desired number
of elements n and fp rate p, is defined as:

m = − n log p

(log 2)2
(1)
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Besides, an optimal number of hash functions is given by:

k = (m/n) log 2. (2)

The false positive probability (fpp) is calculated according to the dataset
size. Equation 3 defines the fpp value used in our experiments. Our applica-
tion uses a properties file which allows to customize fpp equation. An fpp of
0.9/distributionSize guarantees an expected value (EV) of finding 0.9 links per
distribution that are not links (false positives).

fpp =

{
0.9/distributionSize, if size > 1000000,

0.0000001, otherwise.
(3)

3 Problem Definition and Related Work

3.1 Link Granularity

Exploring linked datasets becomes more and more important since new datasets
are often released. A general visualization of the relations among these datasets
is needed in order to have a comprehension of the current structure of Linked
Data. Several works such as [15,19,13] explore different ways to create diagrams
and represent datasets and their relations. However, a major drawback of these
approaches is the lack of a granular model of dataset meta-data, which serves as
a prerequisite for accurate link counting. Such a model is provided by DataId[4],
a DCAT6 extension similar to a VOID file, which provides URIs for datasets
that can be used as identifiers. Furthermore, DataID provides a mechanism to
define subsets of datasets.

Figure 1 shows a complete overview of links in different levels of granularity
regarding linkset representation. Datasets are represented by IDn (as given by
DataID), subsets represented by Sn and distributions represented by Dn. Lreal is
a linkset containing links between two distributions as measured on the intersec-
tion of subjects and objects (cf. Section 2.1 ). Note that it is irrelevant whether
the distribution belongs to the same dataset or not for the measurement. The
distributions represent the basic building blocks for aggregation. The linksets
L1 to L4 can be generated by calculating the union of the linksets between all
distributions of the respective subsets and datasets.

Existing approach like [19] assume pay-level domain and sub-domains as
the basis for dataset definition and are using granularity level of L4. Taking
advantage of DataId descriptions, our approach allows to use different levels of
granularity in a visualization graph and expand datasets to their subsets and
distributions.

6 http://www.w3.org/TR/vocab-dcat/

http://www.w3.org/TR/vocab-dcat/
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Fig. 1: The full arrows (Lreal) represents links between distributions. The dotted
arrows are: L1 distribution to subset, L2 subset to subset , L3 distribution to
dataset, L4 dataset to dataset

3.2 Linking Predicates

Another classification of linkage can be done by analyzing the linking predicate.
While owl:sameAs has well-defined formal semantics and is the predicate clos-
est to traditional deduplication or record linkage or object reconciliation in the
database area, counting owl:sameAs links exclusively provides a very limited
view of the Data Web and has been critized for being used carelessly and too
frequent [8].

Several other properties have been proposed with rdfs:seeAlso and skos:

{ exact | close | broad | narrow | related} Match being the most com-
mon. Furthermore, domain-specific properties such as http://rdvocab.info/

RDARelationshipsWEMI/manifestationOfWork or http://dbpedia.org/ontology/
birthplace are employed.

In our work, we are lenient and consider all predicates for linking. While for
crawling link direction is important – although DBpedia is the largest author-
ity [19], no backlinks are included – we argue that linking properties are often
either symmetrical 7 or it is feasible to assume that an inverse property exists or
could be easily created, e.g. following a birthplace↔isBirtplaceOf pattern
or simply birthplace−1.

To the best of our knowledge, we have not encountered predicates expressing
negative links yet (e.g. notLinkedTo).

Vocabulary Links . Another aspect of linking properties that is often neglected
are links to vocabularies and links between vocabularies. Especially, the linkage
via rdf:type has not yet been visualized in a cloud diagram and is often not
included in link analysis. Reusing the

3.3 Link Validity

It’s possible to discover and count links using web crawlers, for instance, using
LDSpider[11] framework and dereference linked data URLs. The disadvantage

7 and highly unlikely to be asymmetric

http://rdvocab.info/RDARelationshipsWEMI/manifestationOfWork
http://rdvocab.info/RDARelationshipsWEMI/manifestationOfWork
http://dbpedia.org/ontology/birthplace
http://dbpedia.org/ontology/birthplace
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of using crawlers is that it takes long time to crawl large number of datasets,
even using multiple threads creating HTTP connections for target datasets. An
advantage is that link targets are validated, i.e. resolve in a linked data way. Our
approach doesn’t validate all links of a linkset. However, Dynamic LOD takes a
statistical sample set for each linkset created, and makes the validation. Thus,
we can express with certain interval of confidence the validity of a given linkset.

3.4 Bloom Filter on Linked Data

Even accepting a false positive rate, Bloom filters reduces the I/O activity during
operations. For Linked Data, Bloom filters has been used in several approaches
with different purpose.

As an example, in [21], Bloom filters are used as a SPARQL extension for test-
ing blank nodes membership. It’s possible to notice that in certain circumstances
Bloom filters has the potential to reduce the overall bandwidth requirements of
making a query, which in some cases queries were reduced by 97% of the size.
In [10] the authors use same size Bloom filters to retrieve data from filters inter-
section. The evaluation shows clear improvement over overlap-oblivious queries,
and preserved the perfect recall of almost queries. The authors in [16] present an
approach for answering queries through an evolutionary search algorithm which
uses Bloom filter for rapid approximate evaluation of generated solutions. Bloom
filters don’t allow elements removal from the set, thus, variations of the origi-
nal Bloom filter had been used such in [17] where the author chooses Counting
Bloom filters to filter non-matches candidates to a query.

3.5 Linked Open Data Cloud Diagrams

The LOD cloud diagram[19] is one of the main motivation for us, since there
are several problems which can be pointed out. One of the main disadvantages
of LOD cloud diagram, is that one assumes that every distribution in the same
pay-level domain or sub-domains belongs to the same dataset. Thus, the LOD
cloud currently fails to generate a precise diagram about the described datasets.
Another weak point is the up-to-dateness, which means that new releases of the
LOD cloud diagram can take years, thus it’s not possible to know what’s the real
current state of the cloud diagram. Finally, another important point is the lack
of filters as the result is a static image with no significant interaction between
user and the diagram.

LODLive [5] is an environment that queries predefined SPARQL endpoints.
This work allows to make filters in a dynamic way, however linksets are shown
only within resources of a dataset, and they are not extensible to others datasets
or subsets. Since it’s not possible to query multiples datasets, LODLive does not
provides methods for link discovery.

Protovis [1] was already been analyzed before in [12], and it’s a graphical
approach to visualizing the LOD Cloud diagram. The bubble colors reflect the
CKAN rating, however the only user interactivity is when clicking on any bubble,
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the user is taken to the package details page at CKAN. The main advantage is
that the diagram is automatically updated, since it uses CKAN API.

Nevertheless the cited diagrams has advantages which make them so im-
portant to community. It’s important to stress that the visualization issue led
to exists more approaches which are not cited here, however they have their
importance in the different Linked Data domains.

4 Dynamic-LOD

4.1 Overview

Figure 2 shows an overview of the framework architecture. The service was writ-
ten in Java and uses Apache Jena[7] to parse and write RDF data. MongoDB8

has shown scalability and is used to store non-RDF data regarding to statisti-
cal data, internal paths, domain resources, etc. To implement Bloom filter, the
Dynamic LOD uses Google Guava Library9.

A Java class named Manager is the central controller of the service and is
responsible for communication with the HTTP Servlet (which makes interface
with the GUI) and manages the process of streaming dump files, Bloom filter
creation and link counting. A Servlet interfaces with the GUI and a REST API.
The GUI has two roles, first let the user add DataId files and second provide a
diagram representing datasets and linksets.

Moreover, the GUI contains a log window fed by websockets providing real
time information about the progress of datasets insertion and link counting.
The REST API allows users to a) send a DataId, a dataset URL or a dataset
distribution URL to be streamed and compared with previously loaded datasets
and return meta-data in RDF about a specific dataset distribution, subset or
dataset and b) post a list of dataset URLs and retrieve a LOD diagram.

The whole process was divided in four main stages which consists on pars-
ing DataId file, streaming distributions, creating filters and link counting. The
provided meta-data by our service can be used to for DataId enrichment or for
diagram visualization. The following section provides a detailed description of
each of the four stages.

1. Parse DataId file and check for modifications. In order to get a list
of dump files to stream, Dynamic-LOD parses the received DataId file and
searches for distributions using dataid:Distribution class or equivalent
classes. Then the application fetches the dcat:downloadURL object and
checks HTTP headers (Last-Modified and Content-Length) for each fetched
distribution. This is made in order to verify whether data has been modified.

2. Stream Distributions. In case there are modifications or it’s a new distri-
bution, the Dynamic-LOD application streams the new dump file. Statistic
calculations are made at this stage and subject and object of each triple are
separated and saved in different files.

8 https://www.mongodb.org/
9 https://code.google.com/p/guava-libraries/
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Fig. 2: Service overview

3. Create Bloom filter. For each distribution a Bloom filter is created using
subjects stored by the previously step.

4. Count Links and Update RDF. At this stage, the FQDN filter loads
the Bloom filters which might have positive values, then, objects of the
distribution are compared with the Bloom filter vectors. Finally, a set of
links is tested in order to verify whether the resources are available.

4.2 Implementation

We describe the parsing process of DataIds in Algorithm 1. Each DataId con-
tains one or more datasets ID having zero or more subsets S, which can re-
cursively have subsets of their own. Let DataID distribution D be defined as
Dx = {t1, t2, ..., tn} where elements ti are RDF triples. We use IDs to denote
DataID subsets where D ⊂ IDs. DataID datasets ID are defined by IDs ⊂ ID.

Algorithm1 demonstrates the process for parsing a DataId file. A set ID
gets all parents datasets described in the file. For each subset IDs ⊂ ID the
function to parse the dataset is called. Case the subset IDs has distributions,
and a new MongoDB object is stored saving meta-data about D. The status
of D is changed to ”WAITING FOR STREAMING”, which means that the
current distribution should be streamed before create the Bloom filter. If IDs

has subsets, the function to parse dataset is recursively called.



Towards an Approximated Accurate Measure of Links on the Data Web 9

Algorithm 1 Parse DataID file

1: ID ←readParentDatasetsFromDataId();
2: for all IDs in ID do
3: parseDataset(IDs)
4: saveMongoDBObject(IDs))
5: end for
6: function parseDataset(ID)
7: saveMongoDBObject(ID));
8: if ID has distributions then
9: D ← ID[distribution]

10: saveMongoDBObject(D);
11: setStatus(D, ”WAITING FOR STREAMING”);
12: end if
13: for all Subsets s of ID do
14: parseDataset(s)
15: end for
16: end function

The MongoDB contains collections that describe datasets, subsets, distribu-
tions and linksets. Here, MongoDB collections (except for linksets) are updated
with meta-data fetched from the DataId file.

The next process stream distributions and is described in algorithm 2. For
each distribution D which has a status that allows the distribution be streamed,
a newConcurrentAtomicQueue is created. The queue necessary since multiple
threads will be consuming triples. The first thread t1 uses regular expressions
to separate sj and oj . All literals are removed and two files are created, the first
containing subjects and the second with objects. The second thread t2 analyses
and creates a list of fully qualified domain name (FDQN) plus the first string
of the path (in the format http://<authority>/<string>/) for each sj and oj .
The analysis of fully qualified domain name is important because will avoid
unnecessary comparison between distributions that don’t have common domains.
Then, the Di is streamed and each triple sj , pj , oj is added to the queue. Finally,
fpp is calculated based on the number of loaded subjects.

At this point, for each streamed distribution the application has two files,
the first with the list of objects and the second with Bloom filter vector (which
contains hashes from subjects).

Algorithm3 is the last to be described. At this stage the FQDN are compared
and the necessary Bloom filters are loaded. Now, Bloom filters are effectively used
to compare sets and count links among them. First for each distribution D a set
P is created which contains the intersection of FQDN from the Di[objects] and
D[subjects]. Note that subjects are from all other D which are different from
the current distribution Di since it’s not necessary to compare a distribution
with itself. Having P it’s possible to know which Bloom filters should be loaded
that might contain links with the Di, and load them to a set of threads. Next,
a buffer is created containing the objects from the current distribution. The

http://<authority>/<string>/
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Algorithm 2 Streaming new distribution

1: for all D which should be streamed do
2: queue← new concurrentAtomicQueue();
3: th1 ← new Thread(separateObjectsAndSubjects(queue);
4: th2 ← new Thread(checkDomains(queue));
5: while streaming(uncompress(Di)) do
6: for all sj , pj , oj ∈ Di do
7: queue.add(sj , pj , oj)
8: end for
9: end while

10: fpp← calculateFPP (th1.getNumberOfSujects())
11: updateMongoDBObjects(statistics);
12: end for
13: return fpp

threads of the set are started using the buffer of objects to compare with the
previously loaded Bloom filters. Finally, when all threads finish counting links,
the data is saved as a MongoDB object and
set is tested to check links availability.

It is unfeasible to validate all links of a linkset and check whether they resolve.
To determine the sample set size to be tested with certain confidence score,
we extracted randomly (random sampling) values from the linksets, where the
sample size is defined having 95% of confidence interval and p < 2%. Future
work will include a more complex statistics estimation process such as Wald’s
and bootstrapping methods and Monte Carlo simulation.

At this stage all the meta-data needed to create the LOD cloud diagram is
stored in the MongoDB. The database contains enough data regarding to subsets,
datasets and distributions (all meta-data taken by the DataId description). In
addition, data about linksets are now available making possible to visualize
links among different datasets. Regarding to figure 1 the representation might
be done for L1, L2, L3 and L4.

It’s important to stress that the application reads and retrieve, however
doesn’t store any RDF data. All RDF triples are created on the fly reading
documents from MongoDB and using Jena to create RDF.

5 Evaluation

In order to demonstrate why Bloom filter (BF) was chosen, we first compared BF
with two classical search structures: HashMap Search (HS) and Binary Search
Tree (BST). We evaluate three parameters: memory usage for each structure,
time to compare a set with 10 millions objects varying the structure, size and
time to compare different datasets with a fixed structure size. Second, we mea-
sured the time of BF to compare and count links for 513 distribution files. Finally,
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Algorithm 3 Counting links

1: for all D already streamed do
2: P ← FQDN(Di[objects]) ∩ FQDN(∀D[subjects]|Di /∈ D)
3: for all subjectsBloomFilter ∈ P do
4: threads[i]←createNewThread(subjectsBloomFilterj);
5: i← i + 1;
6: end for
7: while buffer = read(Di[objects]) do
8: for all threads do
9: createLinksets(buffer, threadk)

10: end for
11: end while
12: while threadsStillRunning() do
13: wait();
14: end while
15: updateMongoDBObjects(linksets)
16: newThread(testSample(linksets))
17: end for

we adapted Dynamic-LOD to parse VoID files description10 and measured the
performance of link counting.

All experiments were made using a Intel(R) Core(TM) i7-3720QM (4 cores,
8 threads), 16GB DDR3 and a 250GB SSD Sata III drive.

5.1 Data Structure

Space Efficiency. The result (Figure 3) shows that the main advantages of
using BF shows the memory usage for varying the number of objects for each
structure. The difference from HS and BST to BF is notable. Storing 8 millions
of objects HS and BST use more than 0.5 GB of RAM memory. Considering
that a regular dataset can easily have more than this number of triples, the
usage of HS and BST are unfeasible. It’s important to stress that figure 3 shows
the memory usage for loading only one structure, however, usually a dataset is
compared with not only one, but multiple targets. BF fulfills its function using
less then 34Mb of memory, performing in average 12x better than HS and 10x
better then BST.

Varying the Structure Size. In the next experiment, we loaded to each
structure from 10 to 75 millions of subjects, and we compared with a fixed set
of 10 millions of objects, and the results are shown in the Figure 4a. For less
than 65M of objects, the best performance was made by HS followed by BF
and BST. Above of 65M, BF has the best performance, and the degradation of
performance of HS and BST is given by the amount of memory used. HS and
BST grows faster than BF, forcing the operational system to use swap memory

10 http://lod-cloud.net/data/void.ttl
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impacting directly on the performance. The same doesn’t happen with BF, and
it’s possible to observe that for BF, the time remains almost stable even varying
the size from 25M to 75M of objects.

Varying the Set Size. For Figure 4b, we added 10 millions of subjects in each
structure, and we varied from 10 to 100 millions objects to be compared. The
fastest approach is HS, following by BF and BST. The recall of all three ap-
proaches is 100%, since none of them allows false negatives. Using the algorithm
described in Equation (3) for BF, the precision stays at 100%. The same is not
true for HS, where from 1M the precision is 0.99987 and 10M is 0.99125. This
means that for 100M triples using HS we might have more than 800 thousand
of false positives which is unfeasible.

1 2 3 4 5 6 7 8

0

200

400

600

Structure size (Millions of subjects)

M
em

o
ry

(b
y
te

s) HS

BST

BF

Fig. 3: Memory usage per indexed subjects

20 40 60 80

10

20

30

Structure size (millions of subjects)

T
im

e
(s

ec
o
n
d
s)

(a) Time to compare 10M objects

50 100
0

50

100

150

objects to compare (millions)

HS

BST

BF

(b) Time to search with different sizes

Fig. 4: In (a) we fixed number comparison to 10M objects, and in (b) we fixed
the structure size to 10 million subjects



Towards an Approximated Accurate Measure of Links on the Data Web 13

5.2 Quantitative Evaluation

Counting Links. To verify the impact of BF false positives, we made five
experiments. For the first experiment, we added the 48 English DBpedia distri-
butions11 and counted links among them. Then, we added all 358 vocabularies
available in LOV12 (referred as round 2), and again we counted links among the
vocabularies and DBpedia distributions. In the last three experiments, we added
three NIF[9] converted corpora: Reuters12813, RSS-50014 and Brown Corpus15

(which contains 123 distributions). We measured false positive rate and time to
count links. All Bloom filters were created with fpp described in Equation (3).
The results are resumed in Table 1. For DBpedia, up to 812 millions of triples
in 48 distributions were analyzed. There are more than 9 billions of links among
the 48 distributions, and BF had an average precision of 0,99999985 with 1.354
false positives total. There are two reasons for the high number of links: (1)
DBpedia is a dense graph with a high indegree within the dataset. (2) most of
the distributions use the same set of subjects (the DBpedia identifiers). So if
a DBpedia URI occurs as an object, it is highly likely to have an intersections
with most of the distributions.

The time to count these links was 1h43m20s, and the amount of disk space
occupied by BF was 771MB. In the second experiment, we added up to 862k
triples from 358 datasets available in LOV. BF counted more than 31 millions
of links having a precision of 0,999997518 with 77 false positives. To compare
LOV datasets with the previously loaded DBpedia, took only 72 seconds.

In the last three experiments, we added three NIF corpora and for Reuters-
128 and RSS-500 no fp were detected. For Brown corpora, the precision was
0.99999966 with 3 false positives.

Table 1: Adding new datasets
Round Dataset Dist. Triples tp fp Precision F-Measure Time

1 English DBpedia 48 812M 9.013.302.727 1.354 0,99999985 0,999999925 01:43:20

2 LOV Vocabularies 358 862K 31.027.759 77 0,99999752 0.999998759 00:01:12

3 Routers128 1 7k 2501 0 1 1 00:00:21

4 RSS-500 1 10k 1265 0 1 1 00:00:33

5 Brown Corpus 123 3.4M 890.760 3 0.99999663 0.999998316 00:04:04

Lod-cloud VoID Description. Although we don’t have a DataId file to de-
scribe all datasets from lod-cloud, we adapted our application to parse the avail-

11 http://downloads.dbpedia.org/3.9/en/
12 http://lov.okfn.org/lov.nq.gz
13 https://github.com/AKSW/n3-collection/blob/master/Reuters-128.nt
14 https://github.com/AKSW/n3-collection/blob/master/RSS-500.nt
15 http://brown.nlp2rdf.org/
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able VoID file16. Thus, we can estimate how long it would take to create links in a
wider scale among all available resources described by void:dataDump property.
Only 62% of the resources were available to download, and the list of downloaded
distribution can be found at our GitHub Webpage17.

It took us around 1 hour and 56 minutes to download and create BF for
all distributions. Naturally, the external factors (e.g. download speed) directly
affects the performance of the system, considering that a considerable work is
made while streaming the distributions. However, we measured the time to count
links by comparing distributions which took us 49 minutes to create the linksets.
This measure doesn’t consider the time to validate dereferencability of the links,
and the reason is that again, this depends of external factors (e.g. timeout of
connections).

5.3 Discussion

We evaluated Dynamic-LOD in three different aspects: firstly by analyzing data
structure performance comparing BF with HS and BST, secondly a quantitative
evaluation regarding fp, speed to count links in a dense scenario like DBpedia
and thirdly on a large scale based on lod-cloud distributions. In fact, all three
evaluations indicates that BF is a good choice for what our work proposes.

The main advantage of BF over HS and BST is the memory efficiency. This
importance is given because to compare datasets, usually it’s necessary to load
multiple filters in the RAM memory. Another interesting property of BF is the
ability to control the false positive probability. An unexpected result was that
the number of links can be higher than the number of triples due to the fact
that –unlike linked data – distributions can be linked to several distribution
according to our link definition. The Table 1 contains 531 distributions (which
are dump files and vocabularies), and its possible to notice that the precision
and F-Measure remain at a high level.

Even with this high precision level, BF uses only a few bits per entry, which
justifies our choice for this structure. This also had sown when testing our ap-
proach on LOD.

6 Conclusions

For efficient comparison of datasets we used a probabilistic data structure called
Bloom filter to count links between datasets and create a scalable implementa-
tion of a link analysis between dataset distributions. Therefore we can notice,
according to the evaluation section that using Bloom filters has a good perfor-
mance for comparing sets and storing data while accepting a low trade-off for
correctness. While we approximate the count of linking, our definition of links
is accurate (up to validation of the online status). Although the Bloom filter

16 http://lod-cloud.net/data/void.ttl
17 https://github.com/AKSW/dynamiclod
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parameter that controls the false positive probability can be adjusted to the
size of the dataset, we discovered that this assumption is not appropriate for
distributions that are linked to many other distributions.

In this initial experiment and proof-of-concept implementation, we have shown
that the performance of the Bloom filter data structure, the creation of linkset
becomes feasible. We are providing up to date measurements and diagrams on
http://dynamiclod.dbpedia.org

We are exploring the possibility of using Dynamic-LOD not only a stand alone
service, but interface it with a DataId SPARQL endpoint to centralize and enrich
DataId’s. Moreover, we are aware that only accepting dump file is a limitation
to our approach, future works would include reading SPARQL endpoint to get
the data from distributions.

Acknowledgement. CAPES foundation (Ministry of Education of Brazil) for the
given scholarship.
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